Articles | Volume 14, issue 4
https://doi.org/10.5194/gmd-14-1921-2021
https://doi.org/10.5194/gmd-14-1921-2021
Model evaluation paper
 | 
12 Apr 2021
Model evaluation paper |  | 12 Apr 2021

Quantifying and attributing time step sensitivities in present-day climate simulations conducted with EAMv1

Hui Wan, Shixuan Zhang, Philip J. Rasch, Vincent E. Larson, Xubin Zeng, and Huiping Yan

Related authors

Features of mid- and high-latitude low-level clouds and their relation to strong aerosol effects in the Energy Exascale Earth System Model version 2 (E3SMv2)
Hui Wan, Abhishek Yenpure, Berk Geveci, Richard C. Easter, Philip J. Rasch, Kai Zhang, and Xubin Zeng
EGUsphere, https://doi.org/10.5194/egusphere-2024-4020,https://doi.org/10.5194/egusphere-2024-4020, 2025
Short summary
Representing the effects of giant aerosol in droplet nucleation in E3SMv2
Yu Yao, Po-Lun Ma, Yi Qin, Matthew W. Christensen, Hui Wan, Kai Zhang, Balwinder Singh, Meng Huang, and Mikhail Ovchinnikov
EGUsphere, https://doi.org/10.5194/egusphere-2024-523,https://doi.org/10.5194/egusphere-2024-523, 2024
Preprint withdrawn
Short summary
Numerical coupling of aerosol emissions, dry removal, and turbulent mixing in the E3SM Atmosphere Model version 1 (EAMv1) – Part 1: Dust budget analyses and the impacts of a revised coupling scheme
Hui Wan, Kai Zhang, Christopher J. Vogl, Carol S. Woodward, Richard C. Easter, Philip J. Rasch, Yan Feng, and Hailong Wang
Geosci. Model Dev., 17, 1387–1407, https://doi.org/10.5194/gmd-17-1387-2024,https://doi.org/10.5194/gmd-17-1387-2024, 2024
Short summary
Numerical coupling of aerosol emissions, dry removal, and turbulent mixing in the E3SM Atmosphere Model version 1 (EAMv1) – Part 2: A semi-discrete error analysis framework for assessing coupling schemes
Christopher J. Vogl, Hui Wan, Carol S. Woodward, and Quan M. Bui
Geosci. Model Dev., 17, 1409–1428, https://doi.org/10.5194/gmd-17-1409-2024,https://doi.org/10.5194/gmd-17-1409-2024, 2024
Short summary
Further improvement and evaluation of nudging in the E3SM Atmosphere Model version 1 (EAMv1): simulations of the mean climate, weather events, and anthropogenic aerosol effects
Shixuan Zhang, Kai Zhang, Hui Wan, and Jian Sun
Geosci. Model Dev., 15, 6787–6816, https://doi.org/10.5194/gmd-15-6787-2022,https://doi.org/10.5194/gmd-15-6787-2022, 2022
Short summary

Related subject area

Climate and Earth system modeling
Correction of sea surface biases in the NEMO ocean general circulation model using neural networks
Andrea Storto, Sergey Frolov, Laura Slivinski, and Chunxue Yang
Geosci. Model Dev., 18, 4789–4804, https://doi.org/10.5194/gmd-18-4789-2025,https://doi.org/10.5194/gmd-18-4789-2025, 2025
Short summary
Representing lateral groundwater flow from land to river in Earth system models
Chang Liao, L. Ruby Leung, Yilin Fang, Teklu Tesfa, and Robinson Negron-Juarez
Geosci. Model Dev., 18, 4601–4624, https://doi.org/10.5194/gmd-18-4601-2025,https://doi.org/10.5194/gmd-18-4601-2025, 2025
Short summary
FINAM is not a model (v1.0): a new Python-based model coupling framework
Sebastian Müller, Martin Lange, Thomas Fischer, Sara König, Matthias Kelbling, Jeisson Javier Leal Rojas, and Stephan Thober
Geosci. Model Dev., 18, 4483–4498, https://doi.org/10.5194/gmd-18-4483-2025,https://doi.org/10.5194/gmd-18-4483-2025, 2025
Short summary
The Detection and Attribution Model Intercomparison Project (DAMIP v2.0) contribution to CMIP7
Nathan P. Gillett, Isla R. Simpson, Gabi Hegerl, Reto Knutti, Dann Mitchell, Aurélien Ribes, Hideo Shiogama, Dáithí Stone, Claudia Tebaldi, Piotr Wolski, Wenxia Zhang, and Vivek K. Arora
Geosci. Model Dev., 18, 4399–4416, https://doi.org/10.5194/gmd-18-4399-2025,https://doi.org/10.5194/gmd-18-4399-2025, 2025
Short summary
Enhancing winter climate simulations of the Great Lakes: insights from a new coupled lake–ice–atmosphere (CLIAv1) system on the importance of integrating 3D hydrodynamics with a regional climate model
Pengfei Xue, Chenfu Huang, Yafang Zhong, Michael Notaro, Miraj B. Kayastha, Xing Zhou, Chuyan Zhao, Christa Peters-Lidard, Carlos Cruz, and Eric Kemp
Geosci. Model Dev., 18, 4293–4316, https://doi.org/10.5194/gmd-18-4293-2025,https://doi.org/10.5194/gmd-18-4293-2025, 2025
Short summary

Cited articles

Barrett, A. I., Wellmann, C., Seifert, A., Hoose, C., Vogel, B., and Kunz, M.: One Step at a Time: How Model Time Step Significantly Affects Convection-Permitting Simulations, J. Adv. Model. Earth Sy., 11, 641–658, https://doi.org/10.1029/2018MS001418, 2019. a
Beljaars, A., Bechtold, P., Köhler, M., Morcrette, J. J., A.Tompkins, Viterbo, P., and Wedi, N.: The numerics of physicalparameterization, in: Seminar on Recent Developments in Numerical Methods for Atmospheric and Ocean Modelling, European Centre For Medium-Range Weather Forecasts, Shinfield Park, Reading, United Kingdom, ECMWF, 2004. a, b
Beljaars, A., Dutra, E., Balsamo, G., and Lemarié, F.: On the numerical stability of surface–atmosphere coupling in weather and climate models, Geosci. Model Dev., 10, 977–989, https://doi.org/10.5194/gmd-10-977-2017, 2017. a
Beljaars, A., Balsamo, G., Bechtold, P., Bozzo, A., Forbes, R., Hogan, R. J., Köhler, M., Morcrette, J.-J., Tompkins, A. M., Viterbo, P., and Wedi, N.: The Numerics of Physical Parametrization in the ECMWF Model, Front. Earth Sci., 6, 137, https://doi.org/10.3389/feart.2018.00137, 2018. a, b
Beljaars, A. C. M.: Numerical schemes for parametrizations, in: Seminar on Numerical Methods in Atmospheric Models, European Centre For Medium-Range Weather Forecasts, Shinfield Park, Reading, 1–42, available at: https://www.ecmwf.int/node/8028 (last access: 6 April 2021), 1991. a
Download
Short summary
Numerical models used in weather and climate research and prediction unavoidably contain numerical errors resulting from temporal discretization, and the impact of such errors can be substantial. Complex process interactions often make it difficult to pinpoint the exact sources of such errors. This study uses a series of sensitivity experiments to identify components in a global atmosphere model that are responsible for time step sensitivities in various cloud regimes.
Share