Articles | Volume 13, issue 11
https://doi.org/10.5194/gmd-13-5367-2020
https://doi.org/10.5194/gmd-13-5367-2020
Model description paper
 | 
06 Nov 2020
Model description paper |  | 06 Nov 2020

R2D2 v2.0: accounting for temporal dependences in multivariate bias correction via analogue rank resampling

Mathieu Vrac and Soulivanh Thao

Related authors

Attributing the occurrence and intensity of extreme events with the flow analogue method
Robin Noyelle, Davide Faranda, Yoann Robin, Mathieu Vrac, and Pascal Yiou
Weather Clim. Dynam., 6, 817–839, https://doi.org/10.5194/wcd-6-817-2025,https://doi.org/10.5194/wcd-6-817-2025, 2025
Short summary
Long vs. short: understanding the dynamics of persistent summer hot spells in Europe
Duncan Pappert, Alexandre Tuel, Dim Coumou, Mathieu Vrac, and Olivia Martius
Weather Clim. Dynam., 6, 769–788, https://doi.org/10.5194/wcd-6-769-2025,https://doi.org/10.5194/wcd-6-769-2025, 2025
Short summary
A causality-based method for multi-model comparison: application to relationships between atmospheric, oceanic and marine biogeochemical variables
Germain Bénard, Marion Gehlen, and Mathieu Vrac
Earth Syst. Dynam., 16, 1085–1102, https://doi.org/10.5194/esd-16-1085-2025,https://doi.org/10.5194/esd-16-1085-2025, 2025
Short summary
Contribution of physical latent knowledge to the emulation of an atmospheric physics model: a study based on the LMDZ Atmospheric General Circulation Model
Ségolène Crossouard, Soulivanh Thao, Thomas Dubos, Masa Kageyama, Mathieu Vrac, and Yann Meurdesoif
EGUsphere, https://doi.org/10.5194/egusphere-2025-1418,https://doi.org/10.5194/egusphere-2025-1418, 2025
Short summary
A Bayesian statistical method to estimate the climatology of extreme temperature under multiple scenarios: the ANKIALE package
Yoann Robin, Mathieu Vrac, Aurélien Ribes, Occitane Barbaux, and Philippe Naveau
EGUsphere, https://doi.org/10.5194/egusphere-2025-1121,https://doi.org/10.5194/egusphere-2025-1121, 2025
Short summary

Related subject area

Climate and Earth system modeling
SASIEv.1: a framework for seasonal and multi-centennial Arctic sea ice emulation
Sian Megan Chilcott, Malte Meinshausen, and Dirk Notz
Geosci. Model Dev., 18, 4965–4982, https://doi.org/10.5194/gmd-18-4965-2025,https://doi.org/10.5194/gmd-18-4965-2025, 2025
Short summary
COSP-RTTOV-1.0: flexible radiation diagnostics to enable new science applications in model evaluation, climate change detection, and satellite mission design
Jonah K. Shaw, Dustin J. Swales, Sergio DeSouza-Machado, David D. Turner, Jennifer E. Kay, and David P. Schneider
Geosci. Model Dev., 18, 4935–4950, https://doi.org/10.5194/gmd-18-4935-2025,https://doi.org/10.5194/gmd-18-4935-2025, 2025
Short summary
Assessing modifications to the Abdul-Razzak and Ghan aerosol activation parameterization (version ARG2000) to improve simulated aerosol–cloud radiative effects in the UK Met Office Unified Model (UM version 13.0)
Pratapaditya Ghosh, Katherine J. Evans, Daniel P. Grosvenor, Hyun-Gyu Kang, Salil Mahajan, Min Xu, Wei Zhang, and Hamish Gordon
Geosci. Model Dev., 18, 4899–4913, https://doi.org/10.5194/gmd-18-4899-2025,https://doi.org/10.5194/gmd-18-4899-2025, 2025
Short summary
Correction of sea surface biases in the NEMO ocean general circulation model using neural networks
Andrea Storto, Sergey Frolov, Laura Slivinski, and Chunxue Yang
Geosci. Model Dev., 18, 4789–4804, https://doi.org/10.5194/gmd-18-4789-2025,https://doi.org/10.5194/gmd-18-4789-2025, 2025
Short summary
Representing lateral groundwater flow from land to river in Earth system models
Chang Liao, L. Ruby Leung, Yilin Fang, Teklu Tesfa, and Robinson Negron-Juarez
Geosci. Model Dev., 18, 4601–4624, https://doi.org/10.5194/gmd-18-4601-2025,https://doi.org/10.5194/gmd-18-4601-2025, 2025
Short summary

Cited articles

Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W., and Courchamp, F.: Impacts of climate change on the future of biodiversity, Ecol. Lett., 15, 365–377, https://doi.org/10.1111/j.1461-0248.2011.01736.x, 2012. a
Ben-Ari, T., Boé, J., Ciais, P., Lecerf, R., Van der Velde, M., and Makowski, D.: Causes and implications of the unforeseen 2016 extreme yield loss in the breadbasket of France, Nat. Commun., 9, 1627, https://doi.org/10.1038/s41467-018-04087-x , 2018. a
Bevacqua, E., Maraun, D., Vousdoukas, M., Voukouvalas, E., Vrac, M., Mentaschi, L., and Widmann, M.: Higher probability of compound flooding from precipitation and storm surge in Europe under anthropogenic climate change, Sci. Adv., 5, eaaw5531, https://doi.org/10.1126/sciadv.aaw5531, 2019. a
Boé, J., Terray, L., Habets, F., and Martin, E.: Statistical and dynamical downscaling of the Seine basin climate for hydro‐meteorological studies, Int. J. Climatol., 27, 1643–1655, https://doi.org/10.1002/joc.1602, 2007. a
Brown, C. J., Schoeman, D. S., Sydeman, W. J., Brander, K., Buckley, L. B., Burrows, M., Duarte, C. M., Moore, P. J., Pandolfi, J. M., Poloczanska, E., Venables, W., and Richardson, A. J.: Quantitative approaches in climate change ecology, Glob. Change Biol., 17, 3697–3713, https://doi.org/10.1111/j.1365-2486.2011.02531.x, 2011. a
Download
Short summary
We propose a multivariate bias correction (MBC) method to adjust the spatial and/or inter-variable properties of climate simulations, while also accounting for their temporal dependences (e.g., autocorrelations). It consists on a method reordering the ranks of the time series according to their multivariate distance to a reference time series. Results show that temporal correlations are improved while spatial and inter-variable correlations are still satisfactorily corrected.
Share