Articles | Volume 13, issue 11
https://doi.org/10.5194/gmd-13-5367-2020
https://doi.org/10.5194/gmd-13-5367-2020
Model description paper
 | 
06 Nov 2020
Model description paper |  | 06 Nov 2020

R2D2 v2.0: accounting for temporal dependences in multivariate bias correction via analogue rank resampling

Mathieu Vrac and Soulivanh Thao

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Mathieu Vrac on behalf of the Authors (14 Sep 2020)  Author's response   Manuscript 
ED: Publish as is (23 Sep 2020) by Simone Marras
AR by Mathieu Vrac on behalf of the Authors (23 Sep 2020)
Download
Short summary
We propose a multivariate bias correction (MBC) method to adjust the spatial and/or inter-variable properties of climate simulations, while also accounting for their temporal dependences (e.g., autocorrelations). It consists on a method reordering the ranks of the time series according to their multivariate distance to a reference time series. Results show that temporal correlations are improved while spatial and inter-variable correlations are still satisfactorily corrected.