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Abstract. Over the last few years, multivariate bias correc-
tion methods have been developed to adjust spatial and/or
inter-variable dependence properties of climate simulations.
Most of them do not correct – and sometimes even degrade –
the associated temporal features. Here, we propose a mul-
tivariate method to adjust the spatial and/or inter-variable
properties while also accounting for the temporal depen-
dence, such as autocorrelations. Our method consists of an
extension of a previously developed approach that relies on
an analogue-based method applied to the ranks of the time
series to be corrected rather than to their “raw” values. Sev-
eral configurations are tested and compared on daily tem-
perature and precipitation simulations over Europe from one
Earth system model. Those differ by the conditioning in-
formation used to compute the analogues and can include
multiple variables at each given time, a univariate variable
lagged over several time steps or both – multiple variables
lagged over time steps. Compared to the initial approach,
results of the multivariate corrections show that, while the
spatial and inter-variable correlations are still satisfactorily
corrected even when increasing the dimension of the con-
ditioning, the temporal autocorrelations are improved with
some of the tested configurations of this extension. A major
result is also that the choice of the information to condition
the analogues is key since it partially drives the capability of
the proposed method to reconstruct proper multivariate de-
pendences.

1 Introduction

Climate model simulations are and will remain the main
source of numerical projections to understand and antici-
pate climate change consequences. Those projections are
performed under various greenhouse gas emission scenarios,
prescribed for instance within the fifth international Coupled
Model Intercomparison Project (CMIP5; IPCC, 2013) or the
ongoing CMIP6 (Eyring et al., 2016) and are widely used by
the scientific community investigating climate changes and
their manifold impacts. Indeed, climate changes have been
anticipated to affect multiple domains: hydrology and water
resources (e.g., Gleick, 1989; Christensen et al., 2004; Piao
et al., 2010), agronomy and crops (e.g., Ciais et al., 2005;
Ben-Ari et al., 2018), ecology and biodiversity (e.g., Brown
et al., 2011; Bellard et al., 2012), economy (e.g., OCDE,
2015; Tol, 2018) or human migrations (e.g., Defrance et al.,
2017) are examples of domains where expected impacts of
climate evolution can be high and therefore quite problem-
atic for society.

To get robust impact estimations, the climate projections
have thus to be as precise and informative as possible. How-
ever, even simulations of the current climate often present
statistical biases: their mean, variance or more generally their
distributions can more or less largely differ from observa-
tional reference datasets (see, e.g., Christensen et al., 2008;
Teutschbein and Seibert, 2012; François et al., 2020, among
many other studies). This also means that climate projections
for future periods are also expected to have biases, poten-
tially similar. That is why many impact studies, for current
or future climate, have to rely on “adjusted” climate simu-
lations obtained via bias correction (BC) methods. Over the
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last decades, many statistical and data-science BC techniques
have been progressively devised for this specific purpose.
The objective of such techniques is to transform (i.e., “cor-
rect” or “adjust”) the climate model simulations such that,
for a calibration time period, the obtained corrections are
equivalent to a reference dataset in terms of one or several
targeted statistical features (e.g., means, variances or distri-
butions). Simple methods can be used in the event that the
target is only the mean (as the so-called “delta” or “anomaly”
methods, e.g., Xu, 1999) or the variance (e.g., “simple scal-
ing” Eden et al., 2012; Schmidli et al., 2006). Neverthe-
less, in general, the most employed methods are based on
the “quantile-mapping” approach (e.g., Déqué, 2007; Gud-
mundsson et al., 2012) and its many variants (e.g., Kallache
et al., 2011; Vrac et al., 2012; Cannon et al., 2015), whose
target is the whole univariate distribution (i.e., not only the
mean and variance but all moments of higher order, as well
as any percentile) of a given climate variable.

However, if many statistical aspects can be adjusted with
such methods, all are only univariate, i.e., related to only
one physical variable at a single location. If multiple vari-
ables and/or at multiple locations have to be corrected, the in-
dependent applications of several one-dimensional bias cor-
rection (1d-BC) methods will not modify the intrinsic de-
pendence structure of the simulations to be corrected (Vrac,
2018). Therefore, if the climate model simulations have bi-
ases in their inter-variable and/or inter-site dependences (e.g.,
in their correlations), most of the quantile-mapping and uni-
variate BC techniques will not correct these features and
will basically preserve their biases. This obviously has con-
sequences for the impact models requiring multiple climate
variables as input: if the physical relationships (i.e., the sta-
tistical dependences) of those input variables are not real-
istic enough, the biases in the multivariate situations can
quickly propagate to the simulated impacts themselves, even
if the simulations are adjusted by 1d-BC methods (e.g., Boé
et al., 2007). More generally in climate sciences, the accurate
modeling of dependences is a key aspect for proper assess-
ments and projections of compound events and their asso-
ciated risks (e.g., Leonard et al., 2014; Zscheischler et al.,
2018; Bevacqua et al., 2019).

Consequently, some multivariate bias correction (MBC)
methods have been recently designed to tackle the issues of
the biases in multivariate dependences. The goal is basically
the same as for univariate corrections: find a transformation
that makes climate model simulations have the same targeted
statistical features as a reference in the calibration period.
In this case, the target statistical features include not only
univariate features but also multivariate statistical features
such as correlations or the empirical copula. The various
MBCs developed so far can be categorized into three main
families (Vrac, 2018; Robin et al., 2019; François et al.,
2020):

– the “marginal/dependence” approaches, correcting sep-
arately univariate distributions and dependences before
joining them to provide multivariate corrections (e.g.,
Vrac, 2018; Cannon, 2017);

– the “conditional successive” methods, adjusting one
variable at a time but conditionally on the previously
corrected variables to ensure proper multidimensional
relationships (e.g., Piani and Haerter, 2012; Dekens
et al., 2017);

– the “all-in-one” models, which do not separate the mul-
tivariate distribution, neither in marginal/dependence,
nor in conditional distributions, but directly transform
one multidimensional distribution into another multidi-
mensional distribution (e.g., Robin et al., 2019).

A first intercomparison and critical review of MBC meth-
ods has been carried out by François et al. (2020). One ma-
jor finding was that, although most of the MBC techniques
(depending on their hypotheses and configurations) are more
or less able to provide adjusted multidimensional properties,
none of them explicitly account for temporal dependence
properties. This implies that, although multivariate properties
can be correctly adjusted (and sometimes, spatial properties
as well, depending on the method), the temporal structure of
the data generated by MBC methods is different from that of
the model data to be corrected but not necessarily closer to
that of the reference data. Therefore, there is a need to im-
prove temporal properties resulting from MBC outputs. Of
course, this specific need should not be filled at the expense
of the other (marginal, inter-variable or inter-site) properties.

In the present study, we rely on a recently developed MBC
method named R2D2 to propose an extension allowing us
to improve the autocorrelation of the multivariate adjusted
data. This R2D2 extension takes advantage of an analogue-
based technique to reconstruct the multidimensional depen-
dence conditionally on a temporal sequences of ranks.

The rest of this article is organized as follows: Sect. 2 de-
scribes the reference and model data on which the proposed
R2D2 extension is evaluated. Section 3 provides a short re-
minder about the initial R2D2 approach and the detailed de-
scription of its new extension, as well as the experimental
design set up for evaluation. Then, results are given and ana-
lyzed in Sect. 4, under the following underlying focus ques-
tion: can the suggested method improve the temporal depen-
dences without degrading the other (marginal, spatial and
inter-variable) properties? Finally, the main findings are sum-
marized and discussed in Sect. 5.

2 Reference and model data

To perform tests and analyses of the proposed correction
method, we will rely on daily temperature at 2 m (T2) and
precipitation (PR) from one run of a global climate model
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to be corrected on one hand and from an observation-based
reference dataset on the other hand.

The latter corresponds to WFDEI data, which are the
WATCH Forcing Data (WFD; Weedon et al., 2011) method-
ology applied to ERA-Interim data for the period from 1 Jan-
uary 1979 to 31 December 2016 on a 0.5◦× 0.5◦ spatial grid
(Weedon et al., 2014) over the land-only European region
(30◦ N, −10◦ E – 70◦ N, 30◦ E), corresponding to 4167 grid
points.

The climate model data to be corrected are extracted –
for the same region – from simulations performed by the
IPSL-CM5A-MR Earth system model (Marti et al., 2010;
Dufresne et al., 2013). Historical simulations from the en-
semble member “r1i1p1” are used for 1979–2005. This is
concatenated with simulations under RCP8.5 scenario made
from the same ensemble member for 2006–2016, hence pro-
viding a 1979–2016 time period. Those simulations have an
initial 1.25◦× 2.5◦ spatial resolution. To allow comparisons
and applications of BC methods, they are then regridded to
the WFDEI spatial resolution with a bi-cubic interpolation
for temperature and a conservative interpolation for precipi-
tation.

Note that only one climate model is used for application
and evaluation purposes in the present study. Of course, other
models will have other biases that must be corrected differ-
ently. However, our goal is not to test the proposed approach
on many climate models but rather to establish a proof of
concept of the R2D2 extensions on an illustrative simulations
run. We hypothesize that the main general findings obtained
on this single model will still be valid for other models and
simulations.

3 Methods and design of experiments

3.1 A short reminder about the R2D2 method

The proposed methodology relies on – or can be seen
as an extension of – the Rank Resampling for Distri-
butions and Dependences (R2D2) bias correction method
(Vrac, 2018). R2D2 consists of two steps: first, a univari-
ate BC is performed to adjust the marginal distributions,
and then the empirical copula function (i.e., the depen-
dence structure between the variables of interest, rid of their
marginal distribution) is adjusted. Thus, R2D2 belongs to the
“marginal/dependence” family of multivariate bias correc-
tions (see François et al., 2020, for a description of the other
families: “successive conditional” and “all in one”).

For the first step, any 1d-BC method can be employed. In
Vrac (2018) and in the following details of the present study,
the cumulative distribution function – transform (CDF-t) ap-
proach, e.g., Vrac et al. (2012), is used to adjust the marginal
properties for temperature. A specific version of CDF-t is
used to correct precipitation data. This version relies on a
stochastic singularity removal (SSR; Vrac et al., 2016) ap-

proach to manage dry time steps: first, zeros (from both ref-
erences and simulations) are randomly transformed to pos-
itive but very small values (<10−6); then CDF-t is applied
onto the whole set of data (i.e., transformed data and ini-
tially positive values altogether), and the correction results
are thresholded such that values <10−6 are set to 0.

For the second step, R2D2 uses a “conditioning dimen-
sion” (called “reference variable” in Vrac, 2018) from the
1d-BC results. This univariate 1d-BC time series – and more
precisely its ranks – serves as a conditioning to find, within
the other 1d-BC variables, the values that have the same rank
associations as those in the training reference dataset (details
and examples on R2D2 can be found in Vrac, 2018). Hence,
this method relies on a univariate conditioning dimension to
generate rank associations, in the same way as an analogue
technique (initially developed by Lorenz, 1969) relies on its
predictors to generate values. By doing so, this MBC ap-
proach allows us to reproduce observed multivariate (spatial
and multi-variable) dependence structures, while preserving
some temporal properties of the initial simulations via the
conditioning dimension.

However, if the temporal features of the conditioning di-
mension (i.e., one physical variable at one given location) is
preserved by construction, this is not necessarily the case for
the other variables (i.e., different physical variables and/or
spatial locations) and even not the case at all for variables
having a weak rank correlations with the conditioning di-
mension. Therefore, taking advantage of the analogue-based
philosophy of R2D2, several extensions are here proposed to
improve the temporal properties of the corrections brought
by the initial R2D2.

3.2 Accounting for temporal structures via
multivariate rank conditioning

The main idea of the proposed extensions consists of seeing
the R2D2 approach as an analogue-based method. Indeed, in
Sect. 3.1, it is clear that the resampling of the multivariate
ranks is conditional to a single rank value of the conditioning
dimension. In analogue techniques used in the climate litera-
ture (e.g., Zorita and von Storch, 1999; Yiou, 2014; Jézéquel
et al., 2018, among others), the conditioning (i.e., predictor)
variable can be multivariate. In our case, since the purpose
of R2D2 is to correct the dependence structure, we want the
notion of analogue situations to only account for the depen-
dence structure and not for the marginal distribution. Hence,
the distance between two situations is not computed based on
the raw values of the conditioning dimensions but based on
their ranks. The best analogue is thus defined as the situation
(e.g., day) having the association of ranks the closest to that
of the conditioning dimension in terms of Euclidean distance.
Here, an extension of R2D2 is proposed and allows different
configurations, all relying on R2D2 applied conditionally on
a multidimensional conditioning dimension:
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– R2D2 conditional on a multivariate information at a
given time t . The conditioning dimensions in R2D2 can
be chosen freely. They can belong to the set of variables
to be corrected, provided as exogenous variables or be
a combination of both. There is no restriction either on
the spatial scales of the conditioning dimensions. For in-
stance, as a bivariate conditioning dimension, one could
combine a daily North Atlantic Oscillation (NAO) in-
dex, to provide large-scale information, with the tem-
perature at one grid point as a source of small-scale
information. Other choices could be the temperature at
two given locations, the temperature and the precipita-
tion at one location, etc.

– R2D2 conditional on a rank sequence at times (t−n, t−
n+1, . . ., t) of a univariate conditioning dimension. The
idea here is about the same as in the previous sugges-
tion but instead of conditioning the rank resampling on
a multivariate conditioning dimension at time t , it is on
a univariate one (e.g., temperature at a given location,
or NAO index) but at several (e.g., n) lagged time steps
(t − n, t − n+ 1, . . ., t).

– R2D2 conditional on a rank sequence of a multivariate
conditioning dimension. This is a logical combination
of the two previous configurations to condition R2D2

on information characterizing a temporal sequence of
multiple variables.

Whatever the configuration, the choice of the conditioning
dimension is however not trivial, as it conditions the tempo-
ral properties of the model that will be conserved after cor-
rection. In the case of a configuration accounting for the rank
sequence, the length of the sequence to search the analogues
has to be chosen. This length will be referred to as “Block-
A” (for “block analogue”) hereafter. Moreover, in order to
avoid discontinuities in the reconstructed final sequence of
ranks, the whole sequence of the best analogue is not fully
kept but only a subsequence corresponding to a given number
of elements at the end of the complete sequence. This kept
subsequence is referred to as “Block-K” (for “block kept”)
hereafter, and its length also has to be chosen as shorter than
or equal to Block-A. Searching for the best analogue with a
length Block-A and then keeping only a length Block-K –
shorter than Block-A – allows us to not only avoid disconti-
nuities in the (rank and correction) time series but also give
flexibility to the proposed BC method to adapt to the tem-
poral dynamics of the climate model to correct. Preliminary
tests (not shown) indicate that Block-A = 9 and Block-K =
7 are reasonable choices and that the results are only weakly
influenced by a slight change of those values.

In the case of ties for the choice of best analogues, the
proposed R2D2 algorithm selects the first time step having
the minimal Euclidean distance. Hence, the order in which
the dataset is searched to find the analogue ranks will in-
fluence the selected time step and may thus potentially also

influence the results. For example, ties might occur when in-
cluding daily precipitation as a conditioning variable, par-
ticularly when precipitation at a single location is the only
conditioning dimension. Indeed, there are potentially many
time steps where it did not rain at the conditioning location.
All of these time steps would all have the same rank (in this
case, 1). This means that some rank combinations that are
also compatible with the rank of the conditioning dimension
(in this example, no rain at the conditioning location) will not
be present in the corrected dataset. Hence, some rank asso-
ciations can be either under-represented or over-represented
in the corrected dataset compared to the reference dataset be-
cause of ties in the conditioning dimensions. However, when
using multiple conditioning dimensions (i.e., multiple condi-
tioning locations and/or variables), the number of candidates
for the best analogue with the same exact minimal Euclidean
distance decreases, hence reducing the effect of the ties in
the time series of the conditioning dimensions. Other choices
could be made to deal with tied ranks: last or median time
step (instead of first) could be selected or even a randomly
drawn time step (among those with a common minimal dis-
tance to the condition information). Nevertheless, this is not
investigated in the present paper and left for future work.

In the following, 20 different R2D2 configurations are ap-
plied and compared to the reference WFDEI dataset, the
plain simulations and the univariate BC results obtained from
CDF-t. Those 20 configurations and their notations are given
in Table 1. For the versions including five grid points in
the conditioning, the locations are chosen to characterize
five cities – Paris, Madrid, Stockholm, Rome and Warsaw
– spread out over the region. In the same manner – but more
automatically – the N grid points (N = 100 or 400) in the
other versions are chosen to uniformly cover the region of
interest.

Note that the configuration using a conditioning with only
one physical variable at a single location without accounting
for lags (i.e., R.1.1.0) exactly corresponds to the initial R2D2

method.
Moreover, in practice, the R2D2 configurations with 400

grid points or with 4167 (i.e., all) grid points for the con-
ditioning dimension provided results equivalent to those
from the same configurations but with only 100 grid points
(not shown). This emphasizes a preliminary result: taking
a large number of spatial information is not necessarily
needed once a sufficient information is provided. Hence, in
the following, experiments R.400.1.0, R.400.2.0, R.400.1.1
and R.400.2.1 will not be presented, nor will experiments
R.4167.1.0, R.4167.2.0, R.4167.1.1 and R.4167.2.1, as they
provide results similar to R.100.1.0, R.100.2.0, R.100.1.1
and R.100.2.1, respectively.

3.3 Experimental design of the correction schemes

The different configurations of the R2D2 extensions, as well
as the CDF-t univariate BC (referred to as BC1D in the fol-
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Table 1. Summary of the 20 R2D2 configurations tested. The identification name is organized in the following way. The first number indicates
the number of grid points used for the conditioning dimension of R2D2; the second one corresponds to the number of variables considered at
each grid point for the conditioning dimension (here, “1” indicates “only temperature”; “2” indicates “temperature and precipitation”); and
the third number indicates if some lagged (i.e., temporal) information is used by R2D2 (“0” means “no lag used”; “1” means “lags used”).
“Block-A” corresponds to the block size (i.e., lag length) used for the analogue search and “Block-K” to the block size that is kept from the
selected analogues of size Block-A.

Identification name Conditioning dimensions Lags accounted for Dimension of ref. var.

R.1.1.0 Temperature in the Paris grid point No (Block-A = 1; Block-K = 1) 1
R.1.2.0 Temp. and prec. in the Paris grid point No (Block-A = 1; Block-K = 1) 2
R.5.1.0 Temperature in five grid points No (Block-A = 1; Block-K = 1) 5
R.5.2.0 Temp. and prec. in five grid points No (Block-A = 1; Block-K = 1) 10
R.100.1.0 Temperature in 100 grid points No (Block-A = 1; Block-K = 1) 100
R.100.2.0 Temp. and prec. in 100 grid points No (Block-A = 1; Block-K = 1) 200
R.400.1.0 Temperature in 400 grid points No (Block-A = 1; Block-K = 1) 400
R.400.2.0 Temp. and prec. in 400 grid points No (Block-A = 1; Block-K = 1) 800
R.4167.1.0 Temperature in (all) 4167 grid points No (Block-A = 1; Block-K = 1) 4167
R.4167.2.0 Temp. and prec. in (all) 4167 grid points No (Block-A = 1; Block-K = 1) 2×4167= 8334

R.1.1.1 Temperature in the Paris grid point Yes (Block-A = 9; Block-K = 7) 1×9= 9
R.1.2.1 Temp. and prec. in the Paris grid point Yes (Block-A = 9; Block-K = 7) 2×9= 18
R.5.1.1 Temperature in five grid points Yes (Block-A = 9; Block-K = 7) 5×9= 45
R.5.2.1 Temp. and prec. in five grid points Yes (Block-A = 9; Block-K = 7) 2×5 × 9= 90
R.100.1.1 Temperature in 100 grid points Yes (Block-A = 9; Block-K = 7) 100×9= 900
R.100.2.1 Temp. and prec. in 100 grid points Yes (Block-A = 9; Block-K = 7) 2×100 × 9= 1800
R.400.1.1 Temperature in 400 grid points Yes (Block-A = 9; Block-K = 7) 400×9= 3600
R.400.2.1 Temp. and prec. in 400 grid points Yes (Block-A = 9; Block-K = 7) 2×400 × 9= 7200
R.4167.1.1 Temperature in (all) 4167 grid points Yes (Block-A = 9; Block-K = 7) 4167×9= 37503
R.4167.2.1 Temp. and prec. in (all) 4167 grid points Yes (Block-A = 9; Block-K = 7) 2×4167 × 9= 75006

lowing), are applied and evaluated according to the following
2-fold cross-validation approach. First, the methods are cali-
brated over the 1979–1997 period and applied to correct the
1998–2016 climate projections for evaluation. Then, they are
also applied the other way around, i.e., calibrated on 1998–
2016 and applied for evaluation on 1979–1997. Finally, the
two 19-year evaluation periods are gathered to dispose of the
whole 38-year time period for evaluation.

Every method is applied on daily values but on a monthly
basis, i.e., for each month separately that are joined after-
wards. However, evaluations are performed on a seasonal ba-
sis – i.e., for each season (DJF, MAM, JJA, SON) separately
– to reduce the number of figures and to group similar behav-
iors.

4 Results

In this section, we examine the effects of R2D2 on the tem-
poral, spatial, inter-variable and marginal properties of the
dataset to be corrected. In the rest of the paper, most results
are presented for winter only, but analyses for the other sea-
sons are given in the Supplement when meaningful. Figure
“X” of the Supplement will be referred to as Fig. S“X” in the
following.

4.1 Temporal correlations: are they improved?

Here, we first look at the ability of R2D2 to reproduce the
short-term temporal dependences of the conditioning dimen-
sions, through the first-order autocorrelation ρ, correspond-
ing to the coefficient of a first-order auto-regressive model
(AR1).

4.1.1 Temperature temporal correlation

For winter temperature (Fig. 1), the reference dataset shows
high AR1 coefficients for the whole region of interest
(ρ(AR1)>0.7). The IPSL (Institut Pierre Simon Laplace)
dataset and the BC1D dataset also exhibit this characteristic,
indicating that the initial model simulations are consistent
with the reference. The root mean square error (RMSE) be-
tween the AR1 coefficients of the reference dataset, the IPSL
dataset or the BC1D dataset is around 0.04. Slight differ-
ences can be observed, for instance, in Italy and Spain where
the ρ values are slightly lower than those from the reference
dataset.

For R.1.1.0 (conditioning dimension is temperature in
Paris; Fig. 1d), the AR1 coefficient of the conditioning di-
mension from the univariate correction is close to that from
the reference data. After the R.1.1.0 correction, the sites
whose temperature autocorrelations are similar to those in
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Figure 1. Maps of temperature autocorrelations of the order of 1 d for winter over the 1979–2016 period, for (a) WFDEI, (b) IPSL raw
simulations, (c) 1d-BC (CDF-t), (d) R.1.1.0, (e) R.5.1.0, (f) R.100.1.0, (g) R.1.2.0, (h) R.5.2.0, (i) R.100.2.0, (j) R.1.1.1, (k) R.5.1.1, (l)
R.100.1.1, (m) R.1.2.1, (n) R.5.2.1 and (o) R.100.2.1. In other words, the second row shows the results for temperature as a conditioning
dimension (for different numbers of locations) and without accounting for lags; the third row is the same but for temperature and precipitation
together as a conditioning dimension; the fourth and fifth rows are the same as the second and third rows but with lags accounted for. For
panels (b–o), the RMSE value, computed over the whole domain between WFDEI autocorrelations and those from the model or corrected
data, is indicated.
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the reference are located around Paris. The further the points
are from Paris, the less the R2D2 correction is able to repro-
duce the AR1 coefficients observed in the reference. This is
explained by two factors. First, the conditioning dimensions
in the reference and in BC1D are similar in terms of AR1 co-
efficients. Second, in the reference dataset, there is a strong
correlation between the conditioning dimension (the temper-
ature in Paris) and the temperature at sites that are geograph-
ically close. Indeed, in R2D2, at each time step we copy the
rank association observed in the reference dataset, given the
rank of the conditioning variable in the BC1D dataset. Hence,
for a site close to Paris, the multivariate correction will al-
ter the temperature rank sequence of the reference dataset
to make it consistent with the rank sequence of the condi-
tioning dimension in the BC1D dataset. In this case, since
temperature in Paris in the BC1D dataset possesses temporal
properties similar to the references and because of a strong
spatial dependence around Paris, the temporal properties of
temperature at a site close to Paris will be, after correction,
consistent with the temporal properties of the temperature in
Paris in the BC1D dataset and, thus, by transitivity, consistent
with the temporal properties of the temperature in Paris in the
reference dataset. In the following, we will refer to this phe-
nomenon as the “transitivity effect”. Note that variables that
are independent from (or only weakly correlated to) the con-
ditioning dimension in the reference dataset have their ranks
altered as well but not necessarily in a meaningful way. In-
deed, for independent or weakly correlated variables, the re-
arrangement of the rank sequence is equivalent to a random
permutation. Hence, to maximize the transitivity effect, it is
needed to select conditioning variables (i) that have similar
temporal properties in the reference and in the simulations
to be corrected and (ii) that, in the reference dataset, show
strong dependences with the other variables (i.e., the climate
variables at the different sites) that we want to correct. Based
on Fig. 1d, it is clear that it is not the case for the temperature
in Paris, as already found by Vrac (2018).

However, when increasing the number of sites (R.5.1.0
and R.100.1.0; Fig. 1e and f, respectively) in the condition-
ing dimension, an amplification of the transitivity effect is
visible: the areas where the AR1 coefficients are well repro-
duced have expanded and are located close to the condition-
ing sites. Indeed, the mean daily temperature is a relatively
smooth signal over this large region and the AR1 coefficients
are well represented by the simulations.

Adding precipitation in the conditioning dimension
(R.1.2.0, R.5.2.0 and R.100.2.0, respectively, Fig. 1g to i)
degrades the AR1 properties compared to having only tem-
perature as a conditioning dimension. It may come from the
fact that temperature and precipitation may not be strongly
dependent and that conditioning on precipitation to find the
value of temperatures for points in the neighborhood of con-
ditioning sites introduces more noise than signal.

When using lags in the conditioning dimensions, all con-
figurations with lags give similar results in terms of RMSE

computed on the AR1 coefficient (RMSE = 0.11) and per-
form generally better than the configurations without lags.
This could be expected since, in this case, short sequences
of ranks in the reference dataset are resampled in the R2D2

corrected dataset. Hence, it mechanically improves the agree-
ment between the reference dataset and the R2D2 corrected
dataset in terms of short-term temporal dependence. This
mechanism is the essence of the R2D2 philosophy, where we
copy, in the multivariate corrected dataset, the rank associa-
tion that is given by the conditioning dimensions.

Moreover, the configurations using more sites (R.100.1.1
and R.100.2.1) give slightly better results. The spatial vari-
ations of the AR1 coefficients are qualitatively better re-
spected, with lower values of autocorrelation in Spain, the
UK and Libya compared to the rest of the map. Quantita-
tively, however, there is a negative bias of about −0.1 on av-
erage in terms of AR1 coefficients compared to the reference
dataset.

In the end, as the initial temperature simulations have AR1
coefficients similar to those from the references, the IPSL
and BC1D simulations show the best temporal properties
(best R2D2 RMSE = 0.1, BC1D RMSE = 0.04). In terms of
temporal correlation, R.1.1.0 (i.e., initial R2D2 method) and
R.2.1.0 give the worst results with only sensible values of the
AR1 coefficient around the Paris area. However, the use of a
multivariate conditioning dimension and overall the use of a
rank sequence into the conditioning dimensions strongly im-
prove the capability of R2D2 to account for temporal depen-
dence features of the temperature variable. Indeed, the best
R2D2 results are clearly obtained for configurations account-
ing for lags.

4.1.2 Precipitation temporal correlation

For winter precipitation (Fig. 2), the reference dataset ex-
hibits AR1 coefficients with spatial structures smaller than
those for temperature. Globally, the model roughly repro-
duces the spatial distribution of the AR1 coefficients (IPSL
RMSE = 0.09) but clearly lacks spatial resolution. The
BC1D results exhibit finer spatial structures, for instance in
the northern coastline of Scandinavia. However, the BC1D
AR1 coefficients are not as good as those from the IPSL
dataset (BC1D RMSE = 0.12). For both IPSL and BC1D,
the AR1 coefficients are higher than those for the references
in Spain, on the coasts of northern Africa and on the northern
coasts of Scandinavia. The agreement between the reference
data and the raw simulations in terms of AR1 coefficients is
not as good for precipitation as for temperature.

When applying R.1.1.0 – the configuration of R2D2 with
the temperature in Paris as a univariate conditioning dimen-
sion without lag – the AR1 coefficient is not correctly recon-
structed. In most areas, the AR1 coefficient is close to zero,
except in Belgium, the Netherlands and northwestern Ger-
many where the AR1 coefficient is positive but still nega-
tively biased. This probably reveals a rather weak correlation
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Figure 2. Same as Fig. 1 but for winter precipitation autocorrelations. Note that here precipitation is never used alone as a conditioning
dimension.
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between the temperature in Paris and the precipitation in the
surrounding area. With R.5.1.0, which adds Madrid, Stock-
holm, Rome and Warsaw as conditioning sites, the precipita-
tion autocorrelation is better reconstructed around the added
conditioning sites. The effect is notably stronger around War-
saw and Stockholm, where the correlation between tempera-
ture and precipitation is stronger than in Rome and in Madrid
(in general, stronger correlations are observed in northeast-
ern Europe in winter; not shown). With R.100.1.0, using 100
conditioning sites, the AR1 coefficient reconstruction is im-
proved over all Europe but is still relatively far from the ref-
erence.

Adding precipitation in the conditioning dimensions helps
to improve the precipitation AR1 coefficient since it is likely
that the correlation between precipitation in two close sites
is stronger than the correlation between temperature in one
site and precipitation in the other site. With 100 condi-
tioning sites, geographical features present in the reference
dataset start to be visible, for instance, higher AR1 coef-
ficients on the coasts of northern Africa and on the north-
ern coasts of Scandinavia. Nevertheless, the first-order au-
tocorrelations are still biased negatively with respect to the
reference dataset. In terms of RMSE, R.1.100.0 performs
slightly better than the BC1D dataset (RMSE(BC1D)= 0.12;
RMSE(R.1.100.0) = 0.1) and is on the same level as the raw
IPSL simulations (RMSE = 0.09), although spatial struc-
tures are quite different. The transitivity effect is also limited
by the fact that temporal properties of the references and of
the BC1D dataset are not so similar. For instance, the AR1
coefficients tend to be lower in the BC1D dataset, both for
temperature and precipitation. Such differences necessarily
minimize the transitivity effect.

As for the temperature, the configurations of R2D2 using
lags in the conditioning dimensions perform better (RMSE
= 0.07), with performance relatively independent from the
number of conditioning sites or the type of climate condition-
ing dimensions. In this case, those configurations of R2D2

provide an improvement in terms of RMSE compared to the
raw IPSL simulations. Still, the AR1 coefficients are biased
negatively compared to the reference dataset: the first-order
autocorrelations are globally not as high as in the WFDEI
reanalyses. This is also the case for the other seasons, as
shown in the Supplement in Figs. S1–S3 for temperature and
in Figs. S4–S6 for precipitation.

Hence, depending on the choice of the conditioning di-
mensions, R2D2 can partially recover temporal properties of
the reference dataset, especially when conditioning by lagged
information via rank sequences. It is however hard for R2D2

to reconstruct the temporal properties perfectly or even do
better than the raw IPSL dataset or the BC1D dataset for tem-
perature, a variable whose temporality is already well repre-
sented in the model simulations. The improvement brought
by R2D2 is more pronounced for precipitation temporal prop-
erties: including precipitation itself, more conditioning sites
or lagged ranks into the conditioning dimension provides au-

tocorrelation values and structures that are more similar to
the reference ones than the other datasets are (e.g., raw or
BC1D simulations, initial R2D2 configuration R.1.1.0).

Generally, as seen in this section, although the proposed
extensions clearly improve the initial R2D2 method in terms
of temporal correlations, the latter can present some underes-
timation of the temporal properties of the reference dataset,
both for temperature and precipitation. This could be linked
to an inhomogeneous sampling of the rank associations that
are taken from the reference dataset. This is thus investigated
in the next section (Sect. 4.2).

4.2 Reference time sampling and model chronology
agreement

When the conditioning dimension is univariate and continu-
ous, with unique ranks (i.e., no repetitions of values) and be-
longs to the variables to be corrected, it is the only variable
(from the BC1D dataset) that the R2D2 resampling scheme
does not modify. Therefore, in this case, if the number of
days is the same in the reference and model dataset, each
time step is sampled exactly once and they are uniformly se-
lected. Hence, in this specific case, R2D2 reproduces exactly
the inter-site and inter-variable empirical copula of the refer-
ence but not the temporal dependences of the data.

However, when the conditioning has a dimension equal to
or greater than 2, there is no guarantee that the exact same
rank associations exist in the reference dataset. Indeed, the
higher the dimension of the conditioning, the less probable
it is to find the exact rank association in the reference and in
the BC1D dataset. This can come from either (i) a sampling
issue: the higher the dimension, the more points are needed
to uniformly sample the space or (ii) from biases in the de-
pendence structure (biases in the rank associations) of the
conditioning dimension in the dataset to be corrected. In this
case, R2D2 uses the rank associations of the reference dataset
that is the closest in terms of Euclidean distance. Hence, the
rank association of the conditioning dimension in the result-
ing R2D2 dataset can be different from that of the BC1D
dataset. One consequence is that some time steps (i.e., days in
our case) can be resampled several times, while others might
not be sampled at all. This can obviously have consequences
on the properties (marginal, inter-site, spatial, temporal) of
the multivariate corrections.

Therefore, we now analyze the distributions of the time
steps that have been selected, since it is an indicator of po-
tential biases introduced by the analogue-resampling scheme
in R2D2.

To reproduce exactly the empirical copula of the reference
dataset, each time has to be selected only once. The more un-
even the distribution of selected time steps, the more likely it
is that the correction has modified the frequency of some sit-
uations with respect to the reference dataset. However, there
is not a direct relationship between the unevenness of the dis-
tributions and the biases introduced in the correction. For in-
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stance, if some rank associations do not appear in the cor-
rection, they could have been substituted by a very similar
association. In this case, the bias introduced would be very
small.

The distributions of time steps selected in the reference
dataset in January by the different configurations of R2D2 are
shown in Fig. 3 (the distributions for April, July and October
are provided in Figs. S7–S9). As expected, R.1.1.0 presents
a uniform histogram, since it uses a univariate conditioning
that permits the sampling of the whole reference time steps.
However, this is not the case for the other configurations of
R2D2, which all have dimensions of the conditioning equal
to or greater than 2 (see Table 1). For the configurations of
R2D2 with only temperature as the conditioning dimension
and without time lags (R.5.1.0, R.100.1.0), the sampling is
quite uniform. This suggests that the spatial properties of the
temperature are quite similar between the reference dataset
and the BC1D dataset. When adding the precipitation as the
conditioning dimension without time lags (R.2.1.0, R.2.5.0,
R.2.100.0), the histograms are slightly less uniform. This in-
dicates that there can be discrepancies between the references
and the BC1D dataset for the spatial dependence of precip-
itation or the dependence between temperature and precip-
itation. Finally, when adding time lags in the conditioning
dimensions, both for temperature and precipitation (R.1.1.1,
R.1.2.1, R.1.100.1, R.5.1.1, R.5.2.1, R.5.100.1), the distribu-
tions of selected times also appear to be less uniform. This is
especially true for R.5.2.1, where we observe a trough in the
distribution between days 600 and 700. It indicates that the
modeled rank sequences in this period rarely appear in the
BC1D dataset.

Those elements can help us to interpret the performance
of the different configurations of R2D2 with respect to the
reconstruction of temporal, spatial and marginal properties
of the temperature and precipitation fields.

Moreover, in order to see how much the different R2D2

configurations change the temporal structures of the origi-
nal raw simulations, for all sites and climate variables, we
have computed the correlation between the ranks of the ini-
tial raw simulations and the ranks of the multivariate cor-
rected time series. The closer the correlation is to 1, the less
R2D2 has modified the temporal structures of the raw simu-
lations. The correlation coefficients for the different sites in
winter are shown in Figs. 4 for temperature and 5 for pre-
cipitation. The other seasons are shown in Figs. S10–S15 in
the Supplement. By construction, the CDF-t BC1D mostly
conserves the ranks of the raw simulations.

For temperature (Fig. 4), we see that the time series of
ranks have been modified substantially by R.1.1.0 (Fig. 4b).
When the number of geographical sites increases (R.5.1.0
and R.100.1.0; Fig. 4c and d), we observe the transitive effect
and the rank time series are more correlated to those from
raw simulations. It is made possible because the variations of
temperature are spatially smooth and because the references

and BC1D data seem to have similar temperature temporal
properties.

The transitivity effect is also seen when precipitation
is added as a conditioning dimension (R.1.2.0, R.5.2.0,
R.100.2.0; Fig. 4e–g) or when time lags are added (R.1.1.1,
R.5.1.1, R.100.1.1, R.1.2.1, R.5.2.1, R.100.2.1; Fig. 4h–m).
However, fewer changes are made in the rank time series
when the number of conditioning sites increases. However,
for those versions of R2D2 with a high number of condition-
ing sites, the resulting rank time series are slightly more mod-
ified (i.e., rank correlation further away from 1) than with just
the temperature as the conditioning dimension. It may come
from the fact that the higher the dimension of the condition-
ing, the more likely the rank sequence of the conditioning
dimension has to be modified.

For precipitation (Fig. 5), similar observations can be
made. However, the changes in the rank time series are larger
than for temperature. It can be partially explained by the fact
that the transitivity effect is weaker for precipitation. Indeed,
precipitation events occur at local scale and with a spatial
correlation radius smaller than for temperature.

Globally, due to the transitivity effect, sites strongly corre-
lated with the conditioning dimension in the reference dataset
have their rank sequences mostly conserved after the cor-
rection if the conditioning dimension has similar temporal
properties in the reference and the model. As a consequence,
adding more sites in the conditioning dimension generally
leads to more regions that mostly preserve the rank sequences
of the model. However, to some extent, this effect can be
counteracted by the fact that, as the dimension of the condi-
tioning grows (e.g., adding rank lags in the conditioning), it
becomes harder to find the exact rank associations in the ref-
erence data. It leads to alterations in the rank sequences for
the conditioning dimension and for the sites that are corre-
lated with it, and finally to a potential decrease of the rank
correlation between the raw simulations and their correc-
tions.

4.3 Marginal, spatial and inter-variable evaluations

As seen previously, some of the proposed R2D2 extensions
allow us to adjust temporal dependence structure. How-
ever, as the initial R2D2 method was designed to bias cor-
rect multi-site and inter-variable dependences in addition
to marginal distribution, one can wonder how the temporal
structure improvements – as well as the time-sampling fea-
tures – made by the R2D2 extensions impact the corrections
performed on the other dependences, i.e., whether or not they
degrade the marginal, spatial and inter-variable properties.
This is the purpose of Sect. 4.3.1 (marginal), 4.3.2 (inter-
variable) and 4.3.3 (spatial).
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Figure 3. Distributions of time steps selected in the reference dataset in January by the different R2D2 configurations. The equivalent
histograms for April, July and October are provided in the Supplement in Figs. S7–S9.

4.3.1 Marginal properties

We first check whether the R2D2 correction schemes are able
to reconstruct the marginal properties of the reference dataset
through two statistics: the mean and the standard deviation.

For each season and each grid point, biases in mean
temperatures have been computed and are shown in
Fig. 6 as boxplots. The associated maps are given in
Figs. S16–S19. For all seasons, there are clear differ-
ences between the reference and the IPSL simulations
(1.58<RMSE< 1.84 ◦C). The best performance is achieved
by BC1D (0.08<RMSE< 0.2 ◦C), although some light pos-
itive or negative biases may appear on some regions, depend-
ing on the season (see Figs. S16–S19). This strong improve-
ment of CDF-t over the raw simulations was expected as the

univariate BC focuses on reconstructing the marginal distri-
bution of the reference.

R.1.1.0 provides similar performance. Since the condition-
ing dimension is univariate, R2D2 only performs a permuta-
tion of the ranks in time. It then only corresponds to a time
reordering of the BC1D correction and does not affect the
marginal distributions.

On average, going from one conditioning site
to five, with R.5.1.0, increases the biases in mean
(0.13<RMSE< 0.24 ◦C). However, using 100 sites
(R.100.1.0) is equivalent to five in terms of mean
(0.13<RMSE< 0.22 ◦C). Yet, the degradation is more
visible when adding precipitation into the conditioning
dimensions and when increasing the number of conditioning
sites to 100. For R.100.2.0, the RMSE is between 0.19 and
0.54 ◦C depending on the season, and biases can locally
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Figure 4. Maps of Spearman (rank) correlations calculated for each grid point in winter over 1979–2016 between the initial climate model
temperature simulations and their corrections by (a) 1d-BC, (b) R.1.1.0, (c) R.5.1.0, (d) R.100.1.0, (e) R.1.2.0, (f) R.5.2.0, (g) R.100.2.0, (h)
R.1.1.1, (i) R.5.1.1, (j) R.100.1.1, (k) R.1.2.1, (l) R.5.2.1 and (m) R.100.2.1. The results for the other seasons are provided in the Supplement.
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Figure 5. Same as Fig. 4 but for precipitation.
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Figure 6. Boxplots of differences in mean temperature per grid point with respect to WFDEI, i.e., mean(model or BC) minus mean(WFDEI):
(a) winter, (b) spring, (c) summer and (d) fall. The associated maps are given in Figs. S16–S19.

exceed 0.5 or even 1 ◦C in winter over eastern Europe,
for instance (Fig. S16i). It can be linked to the fact that
for R.100.2.0, the distribution of time steps selected is less
uniform (Fig. 3), hence, modifying the marginal mean values
provided by CDF-t.

Similar observations can be made when looking at R2D2

corrections accounting for lags in the conditioning dimen-
sion. Configurations including precipitation have less uni-
form distributions of selected time steps and have thus higher
biases.

Somehow similar patterns of biases also occur when look-
ing at the standard deviation of the temperatures (Fig. S20).

For precipitation, univariate biases are investigated in sep-
arating occurrences of rainfall and conditional intensities
given rainfall occurrences. Hence, Fig. 7 displays, for the
four seasons, boxplots of the relative differences of the prob-
abilities of rainfall occurrence with respect to that of the ref-

erence data (Fig. 7a–d), as well as the boxplots of relative
differences of the mean conditional intensities given rain-
fall occurrences, with regard to that of the reference data
(Fig. 7e–h). The associated maps are given in the Supple-
ment (Figs. S21–S24 for occurrence probabilities and S25–
28 for mean conditional intensities). Rainfall occurrences
are defined as precipitation values >0.1 mm d−1 to get rid
of the drizzle effect present in many climate model simula-
tions (e.g., Dai, 2006; Kjellström et al., 2010; Teutschbein
and Seibert, 2012). Generally speaking, the effects of R2D2

on the occurrence and conditional mean precipitation biases
are similar to those observed on the mean temperature: (i)
the R.1.1.0 configuration provides similar performance to
BC1D, (ii) with or without time lags and with or without
adding precipitation in the conditioning, increasing the num-
ber of conditioning sites may lead to relatively higher biases,
both for occurrence probability and intensity. However, in-
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cluding precipitation itself in the conditioning does not am-
plify the precipitation biases and can even reduce them de-
pending on the season.

Biases in standard deviations for conditional precipitation
values are also given for information (Fig. S29) and coincide
with results for means.

Generally, for both temperature and precipitation marginal
properties, the biases tend to be stronger for R2D2 configu-
rations that exhibit non-uniform sampling of the time steps
selected.

4.3.2 Inter-variable correlations

We now evaluate the capability of the different R2D2 config-
urations to adjust inter-variable dependences. We first com-
pute the Pearson correlation between temperature and pre-
cipitation for each grid point in the corrected dataset. We
then compare these correlation values with those from the
references. The results are summarized as boxplots of differ-
ences in correlation (Fig. 8). The associated maps are given
for each season in Figs. S30–S33 in the Supplement. Note
that the Spearman rank correlation analysis provides simi-
lar conclusions, although they are perturbed by the rare rain-
fall occurrences, especially over northern Africa (not shown),
which complicates the analysis of the boxplots. Indeed, daily
precipitation data contain many zeros and therefore many
tied first ranks. In a case with, for example, 100 values whose
80 % are zeros, 80 ranks are ties and equal to 1, while the first
rank not equal to 1 is the 81st, creating a “jump” in the rank
distribution. A relatively small error in the rainfall occur-
rence frequency can then lead to a high bias in the Spearman
(rank) correlation, while the Pearson correlation is less sen-
sitive since it is based on “real” values and not ranks. Hence,
the Pearson correlation has been preferred.

In the IPSL model and in the BC1D correction, the corre-
lation between temperature and precipitation is weaker than
in the reference dataset. We expect R.1.1.0 to have the best
performance with regards to inter-variable rank correlation.
Indeed, it has a univariate conditioning dimension, implying
that the empirical copula between temperature and precipi-
tation of the reference data observed during the calibration
periods is reproduced almost exactly. In practice, in Fig. 8,
the boxplots for R.1.1.0 are not exactly 0. It indicates that
in the references, the empirical copula between tempera-
ture and precipitation is not exactly the same during the two
time periods used alternatively for calibration and validation.
However, R.1.1.0 (i.e., the initial R2D2 method) is the main
benchmark of the inter-variable evaluation. Indeed, it was de-
signed to adjust the temperature–precipitation dependence of
the raw simulations, which is the case since it strongly im-
proves IPSL and BC1D dataset properties. Then, the simi-
lar behaviors of the different R2D2 configurations indicate
that their T2 vs. PR correlations are also improved and in a
similar way. In other words, for all R2D2 extensions, includ-
ing those improving the temporal dependence structures (see

Sect. 4.1), the inter-variable correlation is not degraded with
respect R.1.1.0 and therefore satisfyingly corrected.

4.3.3 Spatial correlations

Finally, we evaluate the spatial correlation by computing
the loading values of the first empirical orthogonal function
(EOF) obtained from a principal component analysis (PCA)
applied on temperature and precipitation separately. For each
dataset, we compare the associated loading values with those
obtained for the references. The results for winter and sum-
mer are summarized in Fig. 9 as boxplots drawn from differ-
ences of loading values between the R2D2 corrections and
the WFDEI references. The associated maps are given in
Figs. S34–S37 in the Supplement.

For both temperature and precipitation, and for all seasons,
the raw IPSL simulations have loading values well centered
around those of WFDEI since the median of the differences
is close to 0.

Simply by correcting the marginal distribution, BC1D im-
proves the agreement with the reference dataset. Indeed,
EOFs are computed from the variance–covariance matrix,
which is sensitive to the change in the marginal distributions.

In the R2D2 configurations, as already explained, the ranks
of the non-conditioning variables are shuffled to match those
in the reference dataset during the calibration period. If the
inter-site copula is similar during the calibration and vali-
dation periods, the R2D2 configurations should improve the
spatial correlations compared to BC1D. This is the case for
R.1.1.0, as well as for other configurations, where the me-
dian of the difference is close to 0 and where an interquartile
range of the differences is narrower than that for BC1D. In-
terestingly, the configurations with the largest interquartile
range are those for which the sampling of the time steps is
less uniform (Fig. 3), illustrating again the potential impacts
of an uneven sampling. However, many R2D2 configurations
are able to reconstruct spatial properties correctly, at least as
well as the initial R2D2 method (i.e., with a univariate condi-
tioning dimension) that was explicitly designed for it. This is
even more visible when looking at the maps of loading values
(Figs. S34–S37). Hence, the introduction of additional condi-
tioning information into R2D2 – needed to improve temporal
properties as seen in Sect. 4.1 – does not degrade much the
capability of R2D2 to adjust the spatial dependence structures
of the climate simulations.

Spatial correlograms are not shown but clearly indicate
similar results.

5 Conclusions and discussion

5.1 Conclusions

To fill some needs of the climate change impact commu-
nity, an MBC method has been proposed in this study. In
addition to marginal properties, this MBC is designed to ad-
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Figure 7. (a–d) Boxplots of relative differences of the probabilities of rainfall occurrence with respect to that of the reference data; (e–h)
boxplots of relative differences of the mean conditional intensities given rainfall occurrences, with regard to that of the reference data. The
results are given for winter (a, e), spring (b, f), summer (c, g) and fall (d, h). To get rid of the drizzle effect, the threshold for precipitation
occurrence is set to 0.1 mm d−1. Associated maps are given in Figs. S21–S24 for occurrence probabilities and Figs. S25–S28 for mean
conditional precipitation.

just both the inter-site and inter-variable dependence struc-
tures of climate simulations and at the same time to improve
the temporal properties of the corrections. Our approach is
based on the previously existing R2D2 method (Vrac, 2018)
that relied on a univariate “conditioning dimension” to sam-
ple ranks from a reference dataset and therefore reconstruct
the copula-based spatial and inter-variable dependences. The
suggested R2D2 extensions allow resampling ranks given a
multivariate conditioning dimension, which could be ranks
of multiple physical variables at a time step t , ranks from a
single physical variable but over a sequence of N time steps
(t−(N−1), . . ., t) or ranks of multiple physical variables over
a sequence of N time steps.

Several configurations (i.e., different conditioning dimen-
sions including different sites and climate variables, with
or without lagged information) have been applied to correct
daily precipitation and temperature simulations over Europe
from a single climate model run, the IPSL-CM5 Earth sys-
tem model (Marti et al., 2010; Dufresne et al., 2013), with
respect to the WFDEI data (Weedon et al., 2014) as refer-
ences. As the initial R2D2 approach by Vrac (2018) was able
to properly adjust spatial and inter-variable structure but not
the temporal properties of the simulations, the underlying
question of the present study was to understand (i) if the pro-
posed multidimensional conditioning in R2D2 improves the
temporal aspects of the corrections and (ii) the impact of this
conditional resampling on the adjustment quality of the other
(i.e., marginal, spatial, inter-variable) properties. Hence, the

various R2D2 configurations have been evaluated and com-
pared to the raw simulations as well as to corrections from
the univariate BC method CDF-t (e.g., Vrac et al., 2012), first
in terms of autocorrelation to characterize the main temporal
aspects and then in terms of marginal properties, spatial de-
pendences and temperature vs. precipitation correlations.

For temporal properties, although the R2D2 variants
strongly improve the initial R2D2 approach, they do not reach
the rather good level obtained for temperature with the tested
1d-BC (due to the correct auto-correlations from the raw
temperature simulations), while the results are more debat-
able for precipitation. In general, the main conclusions were
that including more information (sites and/or lagged ranks)
in the conditioning dimension generally improves the recon-
struction of the autocorrelation coefficients, both for temper-
ature and precipitation. However, when the dimension of the
conditioning (i.e., the number of variables, sites and lags to
condition the resampling) increases, the distribution of the
sampled time steps can be quite different from the uniform
one. This has then consequences mostly on the marginals
(i.e., univariate properties), where the mean and standard de-
viation can have stronger biases for non-uniform sampling.
For the other evaluations (spatial and inter-variable proper-
ties), although variations in the results are visible depending
on the conditioning dimension used, the main conclusion is
that the proposed R2D2 configurations are relatively stable.
Thus, in general, the introduction of additional conditioning
information into R2D2 allows improving temporal properties
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Figure 8. Boxplots of differences in temperature vs. precipitation Pearson correlations between WFDEI and the different datasets (IPSL,
1d-BC IPSL and the R2D2 configurations) over 1979–2016 in (a) winter, (b) spring, (c) summer and (d) fall. The associated maps are given
for each season in the Supplement.

with a good preservation of the capability of the initial R2D2

to adjust both the spatial and inter-variable dependences of
the raw simulations. Hence, in practice, we recommend a
“compromise setting” in the choice of the conditioning di-
mension, with not too few and not too many sites. Such a
choice would prevent both from missing transitivity effects
and from having an uneven time step distribution.

5.2 Discussion and perspectives

The method suggested in this study is of course upgradable
along different axes.

First, as our goal was not to test the various R2D2 con-
figurations on several climate models but rather to establish
a proof of concept of the R2D2 extension on an illustrative
simulation run, only one climate model has been used for ap-
plication and evaluation in the present study. Although we

hypothesize that the main general findings obtained on this
single model application will still be valid for other models
and simulations, this will need to be confirmed to generalize
and refine our results to more model simulations.

Moreover, the fundamental assumption of R2D2 is that the
spatial and inter-variable copulas (i.e., rank association) is
stationary in time, even for future climate projections. This
assumption – considering that rank associations act as prox-
ies of physics (Vrac, 2018) and that physics does not change
in time – is nevertheless debatable since it needs to be ver-
ified in further works. However, it highlights the fact that
the conditioning dimension has to be carefully chosen to be
relevant, both to drive (i.e., condition) the correction of the
properties of interest and to translate the potential changes
that may happen in future climate and that would impact the
corrections. Hence, the potential non-stationarity of the de-
pendences between climate variables (i.e., rank association)
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Figure 9. Boxplots of differences in loading values for the first EOF (EOF1) between model or corrected data and WFDEI (i.e., EOF1(model
or BC) minus EOF1(WFDEI)). Panels (a) and (c) are for temperature, (b) and (d) for precipitation, for winter (a, b) and summer (c, d). The
associated maps are given in the Supplement.

may be worth exploring further. This could be done via sev-
eral questions; e.g., how stable is the rank association with
time? How long does the considered period have to be in or-
der to faithfully estimate the association? How can climate
change alter it? Those questions, however, are not specific
to our suggested method. They concern many methods and
studies relying on dependences of climate variables in cli-
mate change contexts. Such fundamental questions deserve
to be investigated on their own and are thus left for future
works.

More generally, the choice of the conditioning dimension
is a key element of the R2D2 method. Indeed, as seen in this
study, what is corrected or not by R2D2 is partially driven
by the chosen conditioning information. Thus, testing alter-
native conditioning dimensions could also be of interest for
future work, to bring additional physical/geographical infor-
mation, valuable to generate proper multivariate corrections.

This alternative conditioning – e.g., including NAO or other
indices, characterization of the circulation or other covariates
– nevertheless has to be determined according to the specific
region of interest, the climate variables to be corrected, etc.
This adaptation of the conditioning to the application is a
requirement to inject the relevant and suited physical infor-
mation into R2D2.

Of course, if a “good” conditioning must optimize the
R2D2 correction of some statistical properties, it mainly has
to optimize the properties that are the most useful for the
users of the corrections. In other words, the choice of the
R2D2 configuration has to be tailored for the end users of
the simulations. It is thus very important for the end users to
know which properties are essential to be corrected in order
to design the R2D2 configuration that is most appropriate for
their specific application. Indeed, if many statistical features
of the simulations are to be corrected, it is not clear that a
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single configuration will be able to correct all properties. For
some regions and sets of climate variables, this can happen,
but in other cases it might be needed to prioritize the most
essential ones and then choose the associated R2D2 configu-
ration.

Finally, trying to correct multiple statistical properties at
the same time remains a difficult challenge, as adjusting one
often modifies another one. Additionally, one can wonder
what is kept from the raw climate simulations if a correc-
tion is performed to adjust many statistical aspects. Hence,
when applying a multivariate bias correction method with a
configuration allowing us to modify (explicitly or implicitly)
several properties, a compromise has to always be searched
in order to balance, on the one hand, the level of correction
needed to make the simulations useful for the application of
interest and, on the other hand, the climate model signal pre-
served by the applied correction method. This is the only way
to make the (M)BC useful in practice and physically reliable.

Code and data availability. The R2D2 code (Vrac and Thao,
2020), specifically developed for this study and used to adjust
the dependence structure of the 1d-BC data, is available as an
R package (“R2D2”) under the CeCILL license and is available
for download at https://doi.org/10.5281/zenodo.4021981 (Vrac and
Thao, 2020). This package includes the source code, example data
and a user manual. The IPSL-CM5A-MR model data simulations
as part of the CMIP5 climate model simulations can be down-
loaded through the Earth System Grid Federation portals. Instruc-
tions to access the data are available here: https://pcmdi.llnl.gov/
mips/cmip5/data-access-getting-started.html, last access: 10 Febru-
ary 2019, (PCMDI, 1989). The WFDEI data used as reference in
this study can be accessed following the instructions described in
Weedon et al. (2018) or at https://doi.org/10.5065/486N-8109.

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/gmd-13-5367-2020-supplement.
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