Articles | Volume 13, issue 9
https://doi.org/10.5194/gmd-13-4503-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-13-4503-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
CSIRO Environmental Modelling Suite (EMS): scientific description of the optical and biogeochemical models (vB3p0)
CSIRO, Oceans and Atmosphere, Hobart, Australia
Karen A. Wild-Allen
CSIRO, Oceans and Atmosphere, Hobart, Australia
John Parslow
CSIRO, Oceans and Atmosphere, Hobart, Australia
Mathieu Mongin
CSIRO, Oceans and Atmosphere, Hobart, Australia
Barbara Robson
Australian Institute of Marine Science, Townsville, Australia
Jennifer Skerratt
CSIRO, Oceans and Atmosphere, Hobart, Australia
Farhan Rizwi
CSIRO, Oceans and Atmosphere, Hobart, Australia
Monika Soja-Woźniak
CSIRO, Oceans and Atmosphere, Hobart, Australia
Emlyn Jones
CSIRO, Oceans and Atmosphere, Hobart, Australia
Mike Herzfeld
CSIRO, Oceans and Atmosphere, Hobart, Australia
Nugzar Margvelashvili
CSIRO, Oceans and Atmosphere, Hobart, Australia
John Andrewartha
CSIRO, Oceans and Atmosphere, Hobart, Australia
Clothilde Langlais
CSIRO, Oceans and Atmosphere, Hobart, Australia
Matthew P. Adams
School of Mathematical Sciences, Queensland University of Technology, Brisbane, Australia
Nagur Cherukuru
CSIRO, Oceans and Atmosphere, Canberra, Australia
Malin Gustafsson
Plant Functional Biology and Climate Change Cluster, Faculty of Science, University of Technology Sydney, Sydney, Australia
Scott Hadley
CSIRO, Oceans and Atmosphere, Hobart, Australia
Peter J. Ralph
Plant Functional Biology and Climate Change Cluster, Faculty of Science, University of Technology Sydney, Sydney, Australia
Uwe Rosebrock
CSIRO, Oceans and Atmosphere, Hobart, Australia
Thomas Schroeder
CSIRO, Oceans and Atmosphere, Hobart, Australia
Leonardo Laiolo
CSIRO, Oceans and Atmosphere, Hobart, Australia
Daniel Harrison
Southern Cross University, Coffs Harbour, Australia
Andrew D. L. Steven
CSIRO, Oceans and Atmosphere, Hobart, Australia
Related authors
Jodie A. Schlaefer, Clothilde Langlais, Severine Choukroun, Mathieu Mongin, and Mark E. Baird
Ocean Sci., 21, 2001–2018, https://doi.org/10.5194/os-21-2001-2025, https://doi.org/10.5194/os-21-2001-2025, 2025
Short summary
Short summary
We examined projected changes in Coral Sea temperature and currents through to 2050 using high-resolution CMIP6 models. Surface warming deepened by 30 m per decade, reaching 400 m by 2050. There was sub-surface cooling between 400 and 600 m. North Vanuatu Jet and North Caledonian Jet transports weakened, and the South Caledonian Jet strengthened. These changes may influence western boundary currents and upwelling dynamics on the Great Barrier Reef.
Jodie A. Schlaefer, Clothilde Langlais, Severine Choukroun, Mathieu Mongin, and Mark E. Baird
Ocean Sci., 21, 2001–2018, https://doi.org/10.5194/os-21-2001-2025, https://doi.org/10.5194/os-21-2001-2025, 2025
Short summary
Short summary
We examined projected changes in Coral Sea temperature and currents through to 2050 using high-resolution CMIP6 models. Surface warming deepened by 30 m per decade, reaching 400 m by 2050. There was sub-surface cooling between 400 and 600 m. North Vanuatu Jet and North Caledonian Jet transports weakened, and the South Caledonian Jet strengthened. These changes may influence western boundary currents and upwelling dynamics on the Great Barrier Reef.
André Valente, Shubha Sathyendranath, Vanda Brotas, Steve Groom, Michael Grant, Thomas Jackson, Andrei Chuprin, Malcolm Taberner, Ruth Airs, David Antoine, Robert Arnone, William M. Balch, Kathryn Barker, Ray Barlow, Simon Bélanger, Jean-François Berthon, Şükrü Beşiktepe, Yngve Borsheim, Astrid Bracher, Vittorio Brando, Robert J. W. Brewin, Elisabetta Canuti, Francisco P. Chavez, Andrés Cianca, Hervé Claustre, Lesley Clementson, Richard Crout, Afonso Ferreira, Scott Freeman, Robert Frouin, Carlos García-Soto, Stuart W. Gibb, Ralf Goericke, Richard Gould, Nathalie Guillocheau, Stanford B. Hooker, Chuamin Hu, Mati Kahru, Milton Kampel, Holger Klein, Susanne Kratzer, Raphael Kudela, Jesus Ledesma, Steven Lohrenz, Hubert Loisel, Antonio Mannino, Victor Martinez-Vicente, Patricia Matrai, David McKee, Brian G. Mitchell, Tiffany Moisan, Enrique Montes, Frank Muller-Karger, Aimee Neeley, Michael Novak, Leonie O'Dowd, Michael Ondrusek, Trevor Platt, Alex J. Poulton, Michel Repecaud, Rüdiger Röttgers, Thomas Schroeder, Timothy Smyth, Denise Smythe-Wright, Heidi M. Sosik, Crystal Thomas, Rob Thomas, Gavin Tilstone, Andreia Tracana, Michael Twardowski, Vincenzo Vellucci, Kenneth Voss, Jeremy Werdell, Marcel Wernand, Bozena Wojtasiewicz, Simon Wright, and Giuseppe Zibordi
Earth Syst. Sci. Data, 14, 5737–5770, https://doi.org/10.5194/essd-14-5737-2022, https://doi.org/10.5194/essd-14-5737-2022, 2022
Short summary
Short summary
A compiled set of in situ data is vital to evaluate the quality of ocean-colour satellite data records. Here we describe the global compilation of bio-optical in situ data (spanning from 1997 to 2021) used for the validation of the ocean-colour products from the ESA Ocean Colour Climate Change Initiative (OC-CCI). The compilation merges and harmonizes several in situ data sources into a simple format that could be used directly for the evaluation of satellite-derived ocean-colour data.
Jenny Choo, Nagur Cherukuru, Eric Lehmann, Matt Paget, Aazani Mujahid, Patrick Martin, and Moritz Müller
Biogeosciences, 19, 5837–5857, https://doi.org/10.5194/bg-19-5837-2022, https://doi.org/10.5194/bg-19-5837-2022, 2022
Short summary
Short summary
This study presents the first observation of water quality changes over space and time in the coastal systems of Sarawak, Malaysian Borneo, using remote sensing technologies. While our findings demonstrate that the southwestern coast of Sarawak is within local water quality standards, historical patterns of water quality degradation that were detected can help to alert local authorities and enhance management and monitoring strategies of coastal waters in this region.
David A. Griffin, Mike Herzfeld, Mark Hemer, and Darren Engwirda
Geosci. Model Dev., 14, 5561–5582, https://doi.org/10.5194/gmd-14-5561-2021, https://doi.org/10.5194/gmd-14-5561-2021, 2021
Short summary
Short summary
In support of the developing ocean renewable energy sector, and indeed all mariners, we have developed a new tidal model for Australian waters and thoroughly evaluated it using a new compilation of tide gauge and current meter data. We show that while there is certainly room for improvement, the model provides useful predictions of tidal currents for about 80 % (by area) of Australian shelf waters. So we intend to commence publishing tidal current predictions for those regions soon.
David A. Griffin, Mike Herzfeld, and Mark Hemer
Ocean Sci. Discuss., https://doi.org/10.5194/os-2020-107, https://doi.org/10.5194/os-2020-107, 2020
Preprint withdrawn
Short summary
Short summary
In support of the developing ocean renewable energy sector, and indeed all mariners, we have developed a new tidal model for Australian waters and thoroughly evaluated it using a new compilation of tide gauge and current meter data. We show that while there is certainly room for improvement, the model provides useful predictions of tidal currents for about 80 % (by area) of Australian shelf waters. So we intend to commence publishing tidal current predictions for those regions soon.
Cited articles
Anthony, K. R. N., Kleypas, J. A., and Gattuso, J.-P.: Coral reefs modify their
seawater carbon chemistry - implications for impacts of ocean acidification,
Glob. Change Biol., 17, 3655–3666, 2011. a
Atkins, P. W.: Physical Chemistry, Oxford University Press, Oxford, 5th Edn.,
1994. a
Atkinson, M. J.: Productivity of Eniwetak Atoll reef predicted from
mass-transfer relationships, Cont. Shelf Res., 12, 799–807, 1992. a
Atkinson, M. J. and Bilger, B. W.: Effects of water velocity on phosphate
uptake in coral reef-flat communities, Limnol. Oceanogr., 37, 273–279, 1992. a
Atkinson, M. J. and Smith, S. V.: C:N:P ratios of benthic marine plants,
Limnol. Oceanogr., 28, 568–574, 1983. a
Aumont, O., Ethé, C., Tagliabue, A., Bopp, L., and Gehlen, M.: PISCES-v2: an ocean biogeochemical model for carbon and ecosystem studies, Geosci. Model Dev., 8, 2465–2513, https://doi.org/10.5194/gmd-8-2465-2015, 2015. a
Babcock, R. C., Baird, M. E., Pillans, R., Patterson, T., Clementson, L. A.,
Haywood, M. E., Rochester, W., Morello, E., Kelly, N., Oubelkheir, K., Fry,
G., Dunbabin, M., Perkins, S., Forcey, K., Cooper, S., Donovan, A., Kenyon,
R., Carlin, G., and Limpus, C.: Towards an integrated study of the Gladstone
marine system, 278 pp., ISBN: 978-1-4863-0539-1, Tech. rep., CSIRO Oceans and
Atmosphere Flagship, Brisbane, 2015. a
Baird, M. E.: Numerical approximations of the mean absorption cross-section of
a variety of randomly oriented microalgal shapes, J. Math. Biol., 47,
325–336, 2003. a
Baird, M. E. and Emsley, S. M.: Towards a mechanistic model of plankton
population dynamics, J. Plankton Res., 21, 85–126, 1999. a
Baird, M. E., Timko, P. G., Suthers, I. M., and Middleton, J. H.: Coupled
physical-biological modelling study of the East Australian Current with
idealised wind forcing: Part II: Biological dynamical analysis, J. Marine
Sys., 59, 271–291, 2006. a
Baird, M. E., Leth, O., and Middleton, J. F.: Biological response to
circulation driven by mean summertime winds off central Chile: A numerical
model study, J. Geophys. Res., 112, C07031, https://doi.org/10.1029/2006JC003655,
2007a. a
Baird, M. E., Timko, P. G., and Wu, L.: The effect of packaging of chlorophyll
within phytoplankton and light scattering in a coupled physical-biological
ocean model., Mar. Fresh. Res., 58, 966–981, 2007b. a
Baird, M. E., Adams, M. P., Babcock, R. C., Oubelkheir, K., Mongin, M.,
Wild-Allen, K. A., Skerratt, J., Robson, B. J., Petrou, K., Ralph, P. J.,
O'Brien, K. R., Carter, A. B., Jarvis, J. C., and Rasheed, M. A.: A
biophysical representation of seagrass growth for application in a complex
shallow-water biogeochemical model, Ecol. Model., 325, 13–27,
2016a. a, b, c, d, e, f, g, h, i, j
Baird, M. E., Cherukuru, N., Jones, E., Margvelashvili, N., Mongin, M.,
Oubelkheir, K., Ralph, P. J., Rizwi, F., Robson, B. J., Schroeder, T.,
Skerratt, J., Steven, A. D. L., and Wild-Allen, K. A.: Remote-sensing
reflectance and true colour produced by a coupled hydrodynamic, optical,
sediment, biogeochemical model of the Great Barrier Reef, Australia:
comparison with satellite data, Environ. Modell. Softw., 78, 79–96,
2016b. a, b, c, d, e, f
Baretta-Bekker, J., Baretta, J., and Ebenhöh, W.: Microbial dynamics in the
marine ecosystem model ERSEM II with decoupled carbon assimilation and
nutrient uptake, J. Sea Res., 38, 195–211, 1997. a
Beckmann, A. and Hense, I.: Torn between extremes: the ups and downs of
phytoplankton, Ocean Dynam., 54, 581–592, 2004. a
Benthuysen, J. A., Tonin, H., Brinkman, R., Herzfeld, M., and Steinberg, C.:
Intrusive upwelling in the Central Great Barrier Reef, J. Geophys. Res.-Oceans, 121, 8395–8416, 2016. a
Blondeau-Patissier, D., Brando, V. E., Oubelkheir, K., Dekker, A. G.,
Clementson, L. A., and Daniel, P.: Bio-optical variability of the absorption
and scattering properties of the Queensland inshore and reef waters,
Australia, J. Geophys. Res.-Oceans, 114, C05003, https://doi.org/10.1029/2008JC005039, 2009. a, b, c
Bohren, C. F. and Huffman, D. R.: Absorption and scattering of light particles
by small particles, John Wiley & Sons, 1983. a
Boudreau, B. P.: A method-of-lines code for carbon and nutrient diagenesis in
aquatic sediments, Comput. Geosci., 22, 479–496, 1996. a
Bruggeman, J. and Kooijman, S. A. L. M.: A biodiversity-inspired approach to
aquatic ecosystem modeling, Limnol. Oceanogr., 52, 1533–1544, 2007. a
Butenschön, M., Clark, J., Aldridge, J. N., Allen, J. I., Artioli, Y., Blackford, J., Bruggeman, J., Cazenave, P., Ciavatta, S., Kay, S., Lessin, G., van Leeuwen, S., van der Molen, J., de Mora, L., Polimene, L., Sailley, S., Stephens, N., and Torres, R.: ERSEM 15.06: a generic model for marine biogeochemistry and the ecosystem dynamics of the lower trophic levels, Geosci. Model Dev., 9, 1293–1339, https://doi.org/10.5194/gmd-9-1293-2016, 2016. a, b, c
Cambridge, M. L. and Lambers, H.: Specific leaf area and functional leaf
anatomy in Western Australian seagrasses, in: Inherent variations in plant
growth: physiological mechanisms and ecological consequences, edited by:
Lambers, H., Poorter, H., and Vuren, M. M. I. V., Backhuys,
Leiden, 88–99, 1998. a
Carpenter, E., O’Neil, J., Dawson, R., Capone, D., Siddiqui, P., Roenneberg,
T., and Bergman, B.: The tropical diazotrophic phytoplankter
Trichodesmium: Biological characteristics of two common species,
Mar. Ecol. Prog. Ser., 95, 295–304, 1993. a
Chartrand, K. M., Ralph, P. J., Petrou, K., and Rasheed, M. A.: Development of
a Light-Based Seagrass Management Approach for the Gladstone Western Basin
Dredging Program, Tech. rep., DAFF Publication. Fisheries Queensland, Cairns
126 pp., 2012. a
Chartrand, K. M., , Bryant, C. V., Sozou, A., Ralph, P. J., and Rasheed, M. A.:
Final Report: Deepwater seagrass dynamics: Light requirements, seasonal
change and mechanisms of recruitment, Tech. rep., Centre for Tropical Water
and Aquatic Ecosystem Research (TropWATER) Publication, James Cook
University, Report No 17/16, Cairns, 67 pp., 2017. a
Cherukuru, N., Dekker, A. G., Hardman-Mountford, N. J., Clementson, L. A., and
Thompson, P. A.: Bio-optical variability in multiple water masses across a
tropical shelf: Implications for ocean colour remote sensing models, Estuar.
Coast. Shelf Sci., 219, 223–230, 2019. a
Clementson, L. A. and Wojtasiewicz, B.: Dataset on the absorption
characteristics of extracted phytoplankton pigments, Data in Brief, 24, 103875,
https://doi.org/10.1016/j.dib.2019.103875, 2019. a, b
Condie, S. A., Herzfeld, M., Margvelashvili, N., and Andrewartha, J. R.:
Modeling the physical and biogeochemical response of a marine shelf system to
a tropical cyclone, Geophys. Res. Lett., 36, L22603, https://doi.org/10.1029/2009GL039563,
2009. a, b
CSIRO: EMS Release v1.1.1. v1. CSIRO, Software Collection,
https://doi.org/10.25919/5e701c5c2d9c9, 2019. a
CSIRO Coastal Environmental Modelling Team: CSIRO Environmental Modelling Suite GitHub archive, available at: https://github.com/csiro-coasts/EMS/, last access: 22 September 2020a. a
CSIRO Coastal Environmental Modelling Team: CSIRO Environmental Modelling Suite GitHub archive v1.1.1, available at: https://github.com/csiro-coasts/EMS/releases/tag/v1.1.1, last access: 22 September 2020. a
Dietze, H., Matear, R., and Moore, T.: Nutrient supply to anticyclonic
meso-scale eddies off western Australia estimated with artificial tracers
released in a circulation model, Deep-Sea Res. Pt. I, 56, 1440–1448, 2009. a
Duarte, C. M. and Chiscano, C. L.: Seagrass biomass and production: a
reassessment, Aquat. Bot., 65, 159–174, 1999. a
Dutkiewicz, S., Hickman, A. E., Jahn, O., Gregg, W. W., Mouw, C. B., and Follows, M. J.: Capturing optically important constituents and properties in a marine biogeochemical and ecosystem model, Biogeosciences, 12, 4447–4481, https://doi.org/10.5194/bg-12-4447-2015, 2015. a, b, c
Falter, J. L., Atkinson, M. J., and Merrifield, M. A.: Mass-transfer limitation
of nutrient uptake by a wave-dominated reef flat community, Limnol.
Oceanogr., 49, 1820–1831, 2004. a
Fasham, M. J. R., Ducklow, H. W., and McKelvie, S. M.: A nitrogen-based model
of plankton dynamics in the oceanic mixed layer, J. Mar. Res., 48, 591–639,
1990. a
Fennel, K., Gehlen, M., Brasseur, P., Brown, C. W., Ciavatta, S., Cossarini,
G., Crise, A., Edwards, C. A., Ford, D., Friedrichs, M. A. M., Gregoire, M.,
Jones, E. M., Kim, H.-C., Lamouroux, J., Murtugudde, R., and Perruche, C.:
Advancing marine biogeochemical and ecosystem reanalyses and forecasts as
tools for monitoring and managing ecosystem health, Front. Mar. Sci., 6, 89, https://doi.org/10.3389/fmars.2019.00089,
2019. a
Ficek, D., Kaczmarek, S., Stoń-Egiert, J., Woźniak, B., Majchrowski,
R., and Dera, J.: Spectra of light absorption by phytoplankton pigments in
the Baltic; conclusions to be drawn from a Gaussian analysis of empirical
data, Oceanologia, 46, 533–555, 2004. a
Flynn, K. J. and Mitra, A.: Why plankton modelers should reconsider using
rectangular hyperbolic (Michaelis-Menten, Monod) descriptions of
predator-prey interactions, Front. Mar. Sci., 3, 165, https://doi.org/10.3389/fmars.2016.00165, 2016. a
Fulton, E. A., Smith, A. D. M., Smith, D. C., and Johnson, P.: An integrated
approach is needed for ecosystem based fisheries management: Insights from
ecosystem-level management strategy evaluation, PLoS One, 9, e84242, https://doi.org/10.1371/journal.pone.0084242, 2014. a, b
Geider, R. J., MacIntyre, H. L., and Kana, T. M.: A dynamic regulatory model of
phytoplanktonic acclimation to light, nutrients, and temperature, Limnol.
Oceanogr., 43, 679–694, 1998. a
Gentleman, W.: A chronology of plankton dynamics in silico: how
computer models have been used to study marine ecosystems, Hydrobiologica,
480, 69–85, 2002. a
Gras, A. F., Koch, M. S., and Madden, C. J.: Phosphorus uptake kinetics of a
dominant tropical seagrass Thalassia testudinum, Aquat. Bot., 76,
299–315, 2003. a
Griffies, S. M., Harrison, M. J., Pacanowski, R. C., and Rosati, A.: A
technical guide to MOM4 GFDL Ocean Group TECHNICAL REPORT NO. 5
Version prepared on 3 March 2004, Tech. rep., NOAA/Geophysical Fluid
Dynamics Laboratory, 2004. a
Gumley, L., Descloitres, J., and Shmaltz, J.: Creating reprojected true color
MODIS images: A tutorial, Tech. Rep 1.0.2, 17 pp., Tech. rep., Univ. of
Wisconsin, Madison, 2010. a
Gustafsson, M. S. M., Baird, M. E., and Ralph, P. J.: Modelling
photoinhibition and bleaching in Scleractinian coral as a function of light,
temperature and heterotrophy, Limnol. Oceanogr., 59, 603–622, 2014. a
Hadley, S., Wild-Allen, K. A., Johnson, C., and Macleod, C.: Quantification of
the impacts of finfish aquaculture and bioremediation capacity of integrated
multi-trophic aquaculture using a 3D estuary model, J. Appl. Phycol., 28, 1875–1889,
https://doi.org/10.1007/s10811-015-0714-2, 2015b. a, b
Hansen, J. W., Udy, J. W., Perry, C. J., Dennison, W. C., and Lomstein, B. A.:
Effect of the seagrass Zostera capricorni on sediment microbial
processes, Mar. Ecol. Prog. Ser., 199, 83–96, 2000. a
Hansen, P. J., Bjornsen, P. K., and Hansen, B. W.: Zooplankton grazing and
growth: Scaling within the 2–2,000 µm body size range, Limnol. Oceanogr.,
42, 687–704, 1997. a
Harris, G., Batley, G., Fox, D., Hall, D., Jernakoff, P., Molloy, R., Murray,
A., Newell, B., Parslow, J., Skyring, G., and Walker, S.: Port Phillip Bay
Environmental Study Final Report, CSIRO, Canberra, Australia, 1996. a
Herzfeld, M., Andrewartha, J., Baird, M., Brinkman, R., Furnas, M., Gillibrand,
P., Hemer, M., Joehnk, K., Jones, E., McKinnon, D., Margvelashvili, N.,
Mongin, M., Oke, P., Rizwi, F., Robson, B., Seaton, S., Skerratt, J., Tonin,
H., and Wild-Allen, K.: eReefs Marine Modelling: Final Report, CSIRO, Hobart,
497 pp.,
available at http://hdl.handle.net/102.100.100/90405?index=1 (last access: 22 September 2020),
Tech. rep., CSIRO, 2016. a
Hochberg, E. J., Apprill, A. M., Atkinson, M. J., and Bidigare, R. R.:
Bio-optical modeling of photosynthetic pigments in corals, Coral Reefs, 25,
99–109, 2006. a
Hundsdorfer, W. and Verwer, J. G.: Numerical solutions of time-dependent
advection-diffusion-reaction equations, Springer, 2003. a
Hurd, C. L.: Water motion, marine macroalgal physiology, and production, J.
Phycol., 36, 453–472, 2000. a
Jones, E. M., Baird, M. E., Mongin, M., Parslow, J., Skerratt, J., Lovell, J., Margvelashvili, N., Matear, R. J., Wild-Allen, K., Robson, B., Rizwi, F., Oke, P., King, E., Schroeder, T., Steven, A., and Taylor, J.: Use of remote-sensing reflectance to constrain a data assimilating marine biogeochemical model of the Great Barrier Reef, Biogeosciences, 13, 6441–6469, https://doi.org/10.5194/bg-13-6441-2016, 2016. a
Kaldy, J. E., Brown, C. A., and Andersen, C. P.: In situ 13C
tracer experiments elucidate carbon translocation rates and allocation
patterns in eelgrass Zostera marina, Mar. Ecol. Prog. Ser., 487,
27–39, 2013. a
Kemp, W. M., Murray, L., Borum, J., and Sand-Jensen, K.: Diel growth in
eelgrass Zostera marina, Mar. Ecol. Prog. Ser., 41, 79–86, 1987. a
Lee, J.-Y., Tett, P., Jones, K., Jones, S., Luyten, P., Smith, C., and
Wild-Allen, K.: The PROWQM physical–biological model with benthic–pelagic
coupling applied to the northern North Sea, J. Sea Res., 48, 287–331,
2002. a
Lee, K.-S. and Dunton, K. H.: Inorganic nitrogen acquisition in the seagrass
Thalassia testudinum: Development of a whole-plant nitrogen budget,
Limnol. Oceanogr., 44, 1204–1215, 1999. a
Li, Y. and Gregory, S.: Diffusion of ions in sea water and in deep-sea
sediments, Geochim. Cosmochim. Ac., 38, 703–714, 1974. a
Litchman, E. and Klausmeier, C. A.: Trait-based community ecology of
phytoplankton, Annu. Rev. Ecol. Evol. Syst., 39, 615–639, 2008. a
Longstaff, B. J.: Investigations into the light requirements of seagrasses in
northeast Australia, Ph.D. thesis, University of Queensland, 2003. a
Lønborg, C., Álvarez-Salgado, X. A., Duggan, S., and
Carreira, C.: Organic matter bioavailability in tropical coastal waters: The
Great Barrier Reef, Limnol. Oceanogr., 63, 1015–1035, 2017. a
Mann, K. H. and Lazier, J. R. N.: Dynamics of Marine Ecosystems, Blackwell
Scientific Publications Inc., Oxford, 3rd Edn., 2006. a
Monbet, P., Brunskill, G. J., Zagorskis, I., and Pfitzner, J.: Phosphorus
speciation in the sediment and mass balance for the central region of the
Great Barrier Reef continental shelf (Australia), Geochim. Cosmochim.
Ac., 71, 2762–2779, 2007. a
Mongin, M., Baird, M. E., Lenton, A., and Hadley, S.: Optimising reef-scale
CO2 removal by seaweed to buffer ocean acidification, Environ.
Res. Lett., 11, 034023, https://doi.org/10.1088/1748-9326/11/3/034023, 2016a. a
Mongin, M., Baird, M. E., Tilbrook, B., Matear, R. J., Lenton, A., Herzfeld,
M., Wild-Allen, K. A., Skerratt, J., Margvelashvili, N., Robson, B. J.,
Duarte, C. M., Gustafsson, M. S. M., Ralph, P. J., and Steven, A. D. L.: The
exposure of the Great Barrier Reef to ocean acidification, Nat.
Commun., 7, 10732, https://doi.org/10.1038/ncomms10732, 2016b. a, b, c, d, e
Munhoven, G.: Mathematics of the total alkalinity–pH equation – pathway to robust and universal solution algorithms: the SolveSAPHE package v1.0.1, Geosci. Model Dev., 6, 1367–1388, https://doi.org/10.5194/gmd-6-1367-2013, 2013. a
Munk, W. H. and Riley, G. A.: Absorption of nutrients by aquatic plants, J.
Mar. Res., 11, 215–240, 1952. a
Murray, A. and Parlsow, J. S.: Modelling the nutrient impacts in Port
Phillip Bay – a semi enclosed marine Australian ecosystem, Mar.
Freshwater Res., 50, 469–81, 1999. a
Murray, A. and Parslow, J.: Port Phillip Bay Integrated Model: Final
Report, Tech. rep., CSIRO, GPO Box 1666, Canberra, ACT 2601, 201 pp., 1997. a
Nielsen, M. V. and Sakshaug, E.: Photobiological studies of Skeletonema
costatum adapted to spectrally different light regimes, Limnol.
Oceanogr., 38, 1576–1581, 1993. a
Orr, J. C., Fabry, V. J., Aumont, O., Bopp, L., Doney, S. C., Feely, R. A.,
Gnanadesikan, A., Gruber, N., Ishida, A., Joos, F., Key, R. M., Lindsay, K.,
Maier-Reimer, E., Matear, R., Monfray, P., Mouchet, A., Najjar, R. G.,
Plattner, G.-K., Rodgers, K. B., Sabine, C. L., Sarmiento, J. L., Schlitzer,
R., Slater, R. D., Totterdell, I. J., Weirig, M.-F., Yamanaka, Y., and Yool,
A.: Anthropogenic ocean acidification over the twenty-first century and its
impact on calcifying organisms, Nature, 437, 681–686, 2005. a
Pailles, C. and Moody, P. W.: Phosphorus sorption-desorption by some sediments
of the Johnstone Rivers catchments, northern Queensland, Aust. J. Mar.
Fresh. Res., 43, 1535–1545, 1992. a
Pasciak, W. J. and Gavis, J.: Transport limited nutrient uptake rates in
Dictylum brightwellii, Limnol. Oceanogr., 20, 604–617, 1975. a
Reynolds, C. S.: The ecology of freshwater phytoplankton, Cambridge University
Press, 1984. a
Ribes, M. and Atkinson, M. J.: Effects of water velocity on picoplankton uptake
by coral reef communities, Coral Reefs, 26, 413–421, 2007. a
Roberts, D. G.: Root-hair structure and development in the seagrass
Halophila ovalis (R. Br.) Hook. f., Aust. J. Mar. Freshw. Res., 44,
85–100, 1993. a
Robson, B., Webster, I., Margvelashvili, N. Y., and Herzfeld, M.: Scenario
modelling: simulating the downstream effects of changes in catchment land
use., Tech. rep., CRC for Coastal Zone, Estuary and Waterway Management
Technical Report 41, 26 pp., 2006. a
Robson, B. J., Baird, M. E., and Wild-Allen, K. A.: A physiological model for
the marine cyanobacteria, Trichodesmium, in: MODSIM2013, 20th
International Congress on Modelling and Simulation, edited by: Piantadosi, J.
R. S. A. and Boland, J., Modelling and Simulation Society of
Australia and New Zealand, 1652–1658, available at:
https://www.mssanz.org.au/modsim2013/H3/robson.pdf (last access: 22 September 2020), 2013. a, b, c
Sarmiento, J. L., Slater, R. D., Fasham, M. J. R., Ducklow, H. W., Toggweiler,
J. R., and Evans, G. T.: A seasonal three-dimensional ecosystem model of
nitrogen cycling in the North Atlantic euphotic zone, Global Biogeochem.
Cy., 7, 417–450, 1993. a
Schiller, A., Herzfeld, M., Brinkman, R., and Stuart, G.: Monitoring,
predicting and managing one of the seven natural wonders of the world, B.
Am. Meteorol. Soc., 95, 23–30, https://doi.org/10.1175/BAMS-D-12-00202.1, 2014. a
Schroeder, T., Devlin, M. J., Brando, V. E., Dekker, A. G., Brodie, J. E.,
Clementson, L. A., and McKinna, L.: Inter-annual variability of wet season
freshwater plume extent into the Great Barrier Reef lagoon based on satellite
coastal ocean colour observations, Mar. Pollut. Bull., 65, 210–223, 2012. a
Skerratt, J., Wild-Allen, K. A., Rizwi, F., Whitehead, J., and Coughanowr, C.:
Use of a high resolution 3D fully coupled hydrodynamic, sediment and
biogeochemical model to understand estuarine nutrient dynamics under various
water quality scenarios, Ocean Coast. Manage., 83, 52–66, 2013. a
Skerratt, J., Mongin, M., Wild-Allen, K. A., Baird, M. E., Robson, B. J.,
Schaffelke, B., Soja-Woźniak, M., Margvelashvili, N., Davies, C. H.,
Richardson, A. J., and Steven, A. D. L.: Simulated nutrient and plankton
dynamics in the Great Barrier Reef (2011–2016), J. Marine Syst., 192, 51–74,
2019. a, b, c
Smith, R. C. and Baker, K. S.: Optical properties of the clearest natural
waters, Appl. Optics, 20, 177–184, 1981. a
Soja-Woźniak, M., Baird, M. E., Schroeder, T., Qin, Y., Clementson, L.,
Baker, B., Boadle, D., Brando, V., and Steven, A.: Particulate
backscattering ratio as an indicator of changing particle composition in
coastal waters: observations from Great Barrier Reef waters, J. Geophys.
Res.-Oceans, 124, 5485–5502, https://doi.org/10.1029/2019JC014998, 2019. a
Spillman, C., Imberger, J., Hamilton, D., Hipsey, M., and Romero, J.: Modelling
the effects of Po River discharge, internal nutrient cycling and
hydrodynamics on biogeochemistry of the Northern Adriatic Sea, J. Marine Syst.,
68, 167–200, 2007. a
Steven, A. D. L., Aryal, S., Bernal, P., Bravo, F., Bustamante, R. H., Condie,
S., Dambacher, J. M., Dowideit, S., Fulton, E. A., Gorton, R., Herzfeld, M.,
Hodge, J., Hoshino, E., Kenna, E., Ocampo, D., van Putten, C. I., Rizwi, F.,
Skerratt, J., Steven, A., Thomas, L., Tickell, S., Vaquero, P., Wild, D., and
Wild-Allen, K.: SIMA Austral: An operational information system for managing
the Chilean aquaculture industry with international application, J.
Oper. Oceanogr., 12, S29–S46, 2019a. a
Steven, A. D. L., Baird, M. E., Brinkman, R., Car, N. J., Cox, S. J., Herzfeld,
M., Hodge, J., Jones, E., King, E., Margvelashvili, N., Robillot, C., Robson,
B., Schroeder, T., Skerratt, J., Tuteja, N., Wild-Allen, K., and Yu, J.: An
operational information system for managing the Great Barrier Reef: eReefs,
J. Oper. Oceanogr., 12, S12–S28, https://doi.org/10.1080/1755876X.2019.1650589,
2019b. a
Stock, C. A., Powell, T. M., and Levin, S. A.: Bottom-up and top-down forcing
in a simple size-structured plankton dynamics model, J. Marine Syst., 74,
134–152, 2008. a
Suggett, D. J., Warner, M. E., Smith, D. J., Davey, P., Hennige, S., and Baker,
N. R.: Photosynthesis and production of hydrogen peroxide by
Symbiodinium (Pyrrhophyta) phylotypes with different thermal
tolerances, J. Phycol., 44, 948–956, 2008. a
Thompson, P. A., Baird, M. E., Ingleton, T., and Doblin, M. A.: Long-term
changes in temperate Australian coastal waters and implications for
phytoplankton, Mar. Ecol. Prog. Ser., 394, 1–19, 2009. a
Vermaat, J. E., Agawin, N. S. R., Duarte, C. M., Fortes, M. D., Marba, N., and
Uri, J. S.: Meadow maintenance, growth and productivity of a mixed
Philippine seagrass bed, Mar. Ecol. Prog. Ser., 124, 215–225, 1995. a
von Liebig, J.: Chemistry in its Application to Agriculture and Physiology,
Taylor and Walton, London, 1840. a
Weiss, R.: The solubility of nitrogen, oxygen and argon in water and seawater,
Deep Sea Res., 17, 721–735, 1970. a
Wild-Allen, K. A., Thompson, P. A., Volkman, J., and Parslow, J.: Use of a
coastal biogeochemical model to select environmental monitoring sites, J.
Marine Syst., 88, 120–127, 2011. a
Willmott, C. J., Ackleson, S. G., Davis, R. E., Feddema, J. J., Klink, K. M.,
Legates, D. R., O'Donnell, J., and Rowe, C. M.: Statistics for the evaluation
and comparison of models, J. Geophys. Res., 90, 8995–9005, 1985. a
Wojtasiewicz, B. and Stoń-Egiert, J.: Bio-optical characterization of
selected cyanobacteria strains present in marine and freshwater ecosystems,
J. Appl. Phycol., 28, 2299–2314, 2016. a
Wright, S., Thomas, D., Marchant, H., Higgins, H., Mackey, M., and Mackey, D.:
Analysis of phytoplankton of the Australian sector of the Southern
Ocean:comparisons of microscopy and size frequency data with interpretations
of pigment HPLC data using the “CHEMTAX” matrix factorisation program,
Mar. Ecol. Prog. Ser., 144, 285–98, 1996. a
Wyatt, A. S. J., Lowe, R. J., Humphries, S., and Waite, A. M.: Particulate
nutrient fluxes over a fringing coral reef: relevant scales of phytoplankton
production and mechanisms of supply, Mar. Ecol. Prog. Ser., 405, 113–130,
2010. a
Yonge, C. M.: A Year on the Great Barrier Reef: The Story of Corals and of the
Greatest of their Creations, Putham, London, 1930. a
Yool, A.: The Dynamics of Open-Ocean Plankton Ecosystem Models, PhD thesis,
Dept. of Biological Sciences, University of Warwick, 1997. a
Yool, A. and Fasham, M. J. R.: An examination of the “continental shelf pump”
in an open ocean general circulation model, Global Biogeochem. Cy., 15,
831–844, 2001. a
Short summary
For 20+ years, the Commonwealth Science Industry and Research Organisation (CSIRO) has been developing a biogeochemical (BGC) model for coupling with a hydrodynamic and sediment model for application in estuaries, coastal waters and shelf seas. This paper provides a full mathematical description (equations, parameters), model evaluation and access to the numerical code. The model is particularly suited to applications in shallow waters where benthic processes are critical to ecosystem function.
For 20+ years, the Commonwealth Science Industry and Research Organisation (CSIRO) has been...