Articles | Volume 13, issue 9
Geosci. Model Dev., 13, 3905–3923, 2020
https://doi.org/10.5194/gmd-13-3905-2020

Special issue: The Lund–Potsdam–Jena managed Land (LPJmL) dynamic...

Geosci. Model Dev., 13, 3905–3923, 2020
https://doi.org/10.5194/gmd-13-3905-2020

Development and technical paper 01 Sep 2020

Development and technical paper | 01 Sep 2020

The importance of management information and soil moisture representation for simulating tillage effects on N2O emissions in LPJmL5.0-tillage

Femke Lutz et al.

Related authors

Simulating the effect of tillage practices with the global ecosystem model LPJmL (version 5.0-tillage)
Femke Lutz, Tobias Herzfeld, Jens Heinke, Susanne Rolinski, Sibyll Schaphoff, Werner von Bloh, Jetse J. Stoorvogel, and Christoph Müller
Geosci. Model Dev., 12, 2419–2440, https://doi.org/10.5194/gmd-12-2419-2019,https://doi.org/10.5194/gmd-12-2419-2019, 2019
Short summary

Related subject area

Biogeosciences
Addressing biases in Arctic–boreal carbon cycling in the Community Land Model Version 5
Leah Birch, Christopher R. Schwalm, Sue Natali, Danica Lombardozzi, Gretchen Keppel-Aleks, Jennifer Watts, Xin Lin, Donatella Zona, Walter Oechel, Torsten Sachs, Thomas Andrew Black, and Brendan M. Rogers
Geosci. Model Dev., 14, 3361–3382, https://doi.org/10.5194/gmd-14-3361-2021,https://doi.org/10.5194/gmd-14-3361-2021, 2021
Short summary
Cutting out the middleman: calibrating and validating a dynamic vegetation model (ED2-PROSPECT5) using remotely sensed surface reflectance
Alexey N. Shiklomanov, Michael C. Dietze, Istem Fer, Toni Viskari, and Shawn P. Serbin
Geosci. Model Dev., 14, 2603–2633, https://doi.org/10.5194/gmd-14-2603-2021,https://doi.org/10.5194/gmd-14-2603-2021, 2021
Short summary
Ecosystem age-class dynamics and distribution in the LPJ-wsl v2.0 global ecosystem model
Leonardo Calle and Benjamin Poulter
Geosci. Model Dev., 14, 2575–2601, https://doi.org/10.5194/gmd-14-2575-2021,https://doi.org/10.5194/gmd-14-2575-2021, 2021
Short summary
CLASSIC v1.0: the open-source community successor to the Canadian Land Surface Scheme (CLASS) and the Canadian Terrestrial Ecosystem Model (CTEM) – Part 2: Global benchmarking
Christian Seiler, Joe R. Melton, Vivek K. Arora, and Libo Wang
Geosci. Model Dev., 14, 2371–2417, https://doi.org/10.5194/gmd-14-2371-2021,https://doi.org/10.5194/gmd-14-2371-2021, 2021
Short summary
How to reconstruct aerosol-induced diffuse radiation scenario for simulating GPP in land surface models? An evaluation of reconstruction methods with ORCHIDEE_DFv1.0_DFforc
Yuan Zhang, Olivier Boucher, Philippe Ciais, Laurent Li, and Nicolas Bellouin
Geosci. Model Dev., 14, 2029–2039, https://doi.org/10.5194/gmd-14-2029-2021,https://doi.org/10.5194/gmd-14-2029-2021, 2021
Short summary

Cited articles

Alvarez, C., Costantini, A., Alvarez, C. R., Alves, B. J., Jantalia, C. P., Martellotto, E. E., and Urquiaga, S.: Soil nitrous oxide emissions under different management practices in the semiarid region of the Argentinian Pampas, Nutr. Cycl. Agroecosyst., 94, 209–220, https://doi.org/10.1007/s10705-012-9534-9, 2012. a
Álvaro-Fuentes, J., Morell, F. J., Plaza-Bonilla, D., Arrúe, J. L., and Cantero-Martínez, C.: Modelling tillage and nitrogen fertilization effects on soil organic carbon dynamics, Soil Till. Res., 120, 32–39, https://doi.org/10.1016/j.still.2012.01.009, 2012. a
Barton, L., Wolf, B., Rowlings, D., Scheer, C., Kiese, R., Grace, P., Stefanova, K., and Butterbach-Bahl, K.: Sampling frequency affects estimates of annual nitrous oxide fluxes, Sci. Rep., 5, 1–9, https://doi.org/10.1038/srep15912, 2015. a
Begum, K., Kuhnert, M., Yeluripati, J. B., Ogle, S. M., Parton, W. J., Williams, S. A., Pan, G., Cheng, K., Ali, M. A., and Smith, P.: Modelling greenhouse gas emissions and mitigation potentials in fertilized paddy rice fields in Bangladesh, Geoderma, 341, 206–215, https://doi.org/10.1016/j.geoderma.2019.01.047, 2019. a
Bessou, C., Mary, B., Léonard, J., Roussel, M., Gréhan, E., and Gabrielle, B.: Modelling soil compaction impacts on nitrous oxide emissions in arable fields, Eur. J. Soil Sci., 61, 348–363, https://doi.org/10.1111/j.1365-2389.2010.01243.x, 2010. a
Download
Short summary
Previous findings have shown deviations between the LPJmL5.0-tillage model and results from meta-analyses on global estimates of tillage effects on N2O emissions. By comparing model results with observational data of four experimental sites and outputs from field-scale DayCent model simulations, we show that advancing information on agricultural management, as well as the representation of soil moisture dynamics, improves LPJmL5.0-tillage and the estimates of tillage effects on N2O emissions.