Articles | Volume 12, issue 8
https://doi.org/10.5194/gmd-12-3541-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-12-3541-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The upper-atmosphere extension of the ICON general circulation model (version: ua-icon-1.0)
Sebastian Borchert
CORRESPONDING AUTHOR
Deutscher Wetterdienst, Offenbach am Main, Germany
Guidi Zhou
Max Planck Institute for Meteorology, Hamburg, Germany
currently at: College of Oceanography, Hohai University, Nanjing, China
Michael Baldauf
Deutscher Wetterdienst, Offenbach am Main, Germany
Hauke Schmidt
Max Planck Institute for Meteorology, Hamburg, Germany
Günther Zängl
Deutscher Wetterdienst, Offenbach am Main, Germany
Daniel Reinert
Deutscher Wetterdienst, Offenbach am Main, Germany
Related authors
No articles found.
Abisha Mary Gnanaraj, Jiawei Bao, and Hauke Schmidt
EGUsphere, https://doi.org/10.5194/egusphere-2024-2473, https://doi.org/10.5194/egusphere-2024-2473, 2024
This preprint is open for discussion and under review for Weather and Climate Dynamics (WCD).
Short summary
Short summary
We study how the Coriolis force, caused by a planet's rotation, affects the planet's energy budget and habitability. Using an atmospheric general circulation model in a simplified water-covered planet setup, we look at how different rotation rates change the amount of water vapor and clouds in the atmosphere, impacting the planet's climate. Our results show that slower rotations than Earth make the planet colder, while faster rotations make it warmer, reducing its habitability.
Ravikiran Hegde, Moritz Günther, Hauke Schmidt, and Clarissa Kroll
EGUsphere, https://doi.org/10.5194/egusphere-2024-2221, https://doi.org/10.5194/egusphere-2024-2221, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Using a one-dimensional RCE model, we show that stratospheric aerosol forcing weakens with increasing surface temperature while CO2 forcing varies much less. This effect arises because sulfate aerosol, unlike CO2, absorbs mainly in spectral regions where the atmosphere is optically thin. It thereby masks the surface emission, which increases with warming. This spectral masking also results in weaker radiative feedback when aerosol is present.
Moritz Günther, Hauke Schmidt, Claudia Timmreck, and Matthew Toohey
Atmos. Chem. Phys., 24, 7203–7225, https://doi.org/10.5194/acp-24-7203-2024, https://doi.org/10.5194/acp-24-7203-2024, 2024
Short summary
Short summary
Stratospheric aerosol has been shown to cause pronounced cooling in the tropical Indian and western Pacific oceans. Using a climate model, we show that this arises from enhanced meridional energy export via the stratosphere. The aerosol causes stratospheric heating and thus an acceleration of the Brewer–Dobson circulation that accomplishes this transport. Our findings highlight the importance of circulation adjustments and surface perspectives on forcing for understanding temperature responses.
Justin L. Willson, Kevin A. Reed, Christiane Jablonowski, James Kent, Peter H. Lauritzen, Ramachandran Nair, Mark A. Taylor, Paul A. Ullrich, Colin M. Zarzycki, David M. Hall, Don Dazlich, Ross Heikes, Celal Konor, David Randall, Thomas Dubos, Yann Meurdesoif, Xi Chen, Lucas Harris, Christian Kühnlein, Vivian Lee, Abdessamad Qaddouri, Claude Girard, Marco Giorgetta, Daniel Reinert, Hiroaki Miura, Tomoki Ohno, and Ryuji Yoshida
Geosci. Model Dev., 17, 2493–2507, https://doi.org/10.5194/gmd-17-2493-2024, https://doi.org/10.5194/gmd-17-2493-2024, 2024
Short summary
Short summary
Accurate simulation of tropical cyclones (TCs) is essential to understanding their behavior in a changing climate. One way this is accomplished is through model intercomparison projects, where results from multiple climate models are analyzed to provide benchmark solutions for the wider climate modeling community. This study describes and analyzes the previously developed TC test case for nine climate models in an intercomparison project, providing solutions that aid in model development.
Young-Ha Kim, Georg Sebastian Voelker, Gergely Bölöni, Günther Zängl, and Ulrich Achatz
Atmos. Chem. Phys., 24, 3297–3308, https://doi.org/10.5194/acp-24-3297-2024, https://doi.org/10.5194/acp-24-3297-2024, 2024
Short summary
Short summary
The quasi-biennial oscillation, which governs the tropical stratospheric circulation, is driven primarily by small-scale wave processes. We employ a novel method to realistically represent these wave processes in a global model, thereby revealing an aspect of the oscillation that has not been identified before. We find that the oblique propagation of waves, a process neglected by existing climate models, plays a pivotal role in the stratospheric circulation and its oscillation.
Hauke Schmidt, Sebastian Rast, Jiawei Bao, Amrit Cassim, Shih-Wei Fang, Diego Jimenez-de la Cuesta, Paul Keil, Lukas Kluft, Clarissa Kroll, Theresa Lang, Ulrike Niemeier, Andrea Schneidereit, Andrew I. L. Williams, and Bjorn Stevens
Geosci. Model Dev., 17, 1563–1584, https://doi.org/10.5194/gmd-17-1563-2024, https://doi.org/10.5194/gmd-17-1563-2024, 2024
Short summary
Short summary
A recent development in numerical simulations of the global atmosphere is the increase in horizontal resolution to grid spacings of a few kilometers. However, the vertical grid spacing of these models has not been reduced at the same rate as the horizontal grid spacing. Here, we assess the effects of much finer vertical grid spacings, in particular the impacts on cloud quantities and the atmospheric energy balance.
Sandra Wallis, Hauke Schmidt, and Christian von Savigny
Atmos. Chem. Phys., 23, 7001–7014, https://doi.org/10.5194/acp-23-7001-2023, https://doi.org/10.5194/acp-23-7001-2023, 2023
Short summary
Short summary
Strong volcanic eruptions are able to alter the temperature and the circulation of the middle atmosphere. This study simulates the atmospheric response to an idealized strong tropical eruption and focuses on the impact on the mesosphere. The simulations show a warming of the polar summer mesopause in the first November after the eruption. Our study indicates that this is mainly due to dynamical coupling in the summer hemisphere with a potential contribution from interhemispheric coupling.
Cathy Hohenegger, Peter Korn, Leonidas Linardakis, René Redler, Reiner Schnur, Panagiotis Adamidis, Jiawei Bao, Swantje Bastin, Milad Behravesh, Martin Bergemann, Joachim Biercamp, Hendryk Bockelmann, Renate Brokopf, Nils Brüggemann, Lucas Casaroli, Fatemeh Chegini, George Datseris, Monika Esch, Geet George, Marco Giorgetta, Oliver Gutjahr, Helmuth Haak, Moritz Hanke, Tatiana Ilyina, Thomas Jahns, Johann Jungclaus, Marcel Kern, Daniel Klocke, Lukas Kluft, Tobias Kölling, Luis Kornblueh, Sergey Kosukhin, Clarissa Kroll, Junhong Lee, Thorsten Mauritsen, Carolin Mehlmann, Theresa Mieslinger, Ann Kristin Naumann, Laura Paccini, Angel Peinado, Divya Sri Praturi, Dian Putrasahan, Sebastian Rast, Thomas Riddick, Niklas Roeber, Hauke Schmidt, Uwe Schulzweida, Florian Schütte, Hans Segura, Radomyra Shevchenko, Vikram Singh, Mia Specht, Claudia Christine Stephan, Jin-Song von Storch, Raphaela Vogel, Christian Wengel, Marius Winkler, Florian Ziemen, Jochem Marotzke, and Bjorn Stevens
Geosci. Model Dev., 16, 779–811, https://doi.org/10.5194/gmd-16-779-2023, https://doi.org/10.5194/gmd-16-779-2023, 2023
Short summary
Short summary
Models of the Earth system used to understand climate and predict its change typically employ a grid spacing of about 100 km. Yet, many atmospheric and oceanic processes occur on much smaller scales. In this study, we present a new model configuration designed for the simulation of the components of the Earth system and their interactions at kilometer and smaller scales, allowing an explicit representation of the main drivers of the flow of energy and matter by solving the underlying equations.
Shih-Wei Fang, Claudia Timmreck, Johann Jungclaus, Kirstin Krüger, and Hauke Schmidt
Earth Syst. Dynam., 13, 1535–1555, https://doi.org/10.5194/esd-13-1535-2022, https://doi.org/10.5194/esd-13-1535-2022, 2022
Short summary
Short summary
The early 19th century was the coldest period over the past 500 years, when strong tropical volcanic events and a solar minimum coincided. This study quantifies potential surface cooling from the solar and volcanic forcing in the early 19th century with large ensemble simulations, and identifies the regions that their impacts cannot be simply additive. The cooling perspective of Arctic amplification exists in both solar and post-volcano period with the albedo feedback as the main contribution.
Günther Zängl, Daniel Reinert, and Florian Prill
Geosci. Model Dev., 15, 7153–7176, https://doi.org/10.5194/gmd-15-7153-2022, https://doi.org/10.5194/gmd-15-7153-2022, 2022
Short summary
Short summary
This article describes the implementation of grid refinement in the ICOsahedral Nonhydrostatic (ICON) model, which has been jointly developed at several German institutions and constitutes a unified modeling system for global and regional numerical weather prediction and climate applications. The grid refinement allows using a higher resolution in regional domains and transferring the information back to the global domain by means of a feedback mechanism.
Marco A. Giorgetta, William Sawyer, Xavier Lapillonne, Panagiotis Adamidis, Dmitry Alexeev, Valentin Clément, Remo Dietlicher, Jan Frederik Engels, Monika Esch, Henning Franke, Claudia Frauen, Walter M. Hannah, Benjamin R. Hillman, Luis Kornblueh, Philippe Marti, Matthew R. Norman, Robert Pincus, Sebastian Rast, Daniel Reinert, Reiner Schnur, Uwe Schulzweida, and Bjorn Stevens
Geosci. Model Dev., 15, 6985–7016, https://doi.org/10.5194/gmd-15-6985-2022, https://doi.org/10.5194/gmd-15-6985-2022, 2022
Short summary
Short summary
This work presents a first version of the ICON atmosphere model that works not only on CPUs, but also on GPUs. This GPU-enabled ICON version is benchmarked on two GPU machines and a CPU machine. While the weak scaling is very good on CPUs and GPUs, the strong scaling is poor on GPUs. But the high performance of GPU machines allowed for first simulations of a short period of the quasi-biennial oscillation at very high resolution with explicit convection and gravity wave forcing.
Hélène Bresson, Annette Rinke, Mario Mech, Daniel Reinert, Vera Schemann, Kerstin Ebell, Marion Maturilli, Carolina Viceto, Irina Gorodetskaya, and Susanne Crewell
Atmos. Chem. Phys., 22, 173–196, https://doi.org/10.5194/acp-22-173-2022, https://doi.org/10.5194/acp-22-173-2022, 2022
Short summary
Short summary
Arctic warming is pronounced, and one factor in this is the poleward atmospheric transport of heat and moisture. This study assesses the 4D structure of an Arctic moisture intrusion event which occurred in June 2017. For the first time, high-resolution pan-Arctic ICON simulations are performed and compared with global models, reanalysis, and observations. Results show the added value of high resolution in the event representation and the impact of the intrusion on the surface energy fluxes.
Mohammad M. Khabbazan, Marius Stankoweit, Elnaz Roshan, Hauke Schmidt, and Hermann Held
Earth Syst. Dynam., 12, 1529–1542, https://doi.org/10.5194/esd-12-1529-2021, https://doi.org/10.5194/esd-12-1529-2021, 2021
Short summary
Short summary
We ask for an optimal amount of solar radiation management (SRM) in conjunction with mitigation if global warming is limited to 2 °C and regional precipitation anomalies are confined to an amount ethically compatible with the 2 °C target. Then, compared to a scenario without regional targets, most of the SRM usage is eliminated from the portfolio even if transgressing regional targets are tolerated in terms of 1/10 of the standard deviation of natural variability.
Gunter Stober, Ales Kuchar, Dimitry Pokhotelov, Huixin Liu, Han-Li Liu, Hauke Schmidt, Christoph Jacobi, Kathrin Baumgarten, Peter Brown, Diego Janches, Damian Murphy, Alexander Kozlovsky, Mark Lester, Evgenia Belova, Johan Kero, and Nicholas Mitchell
Atmos. Chem. Phys., 21, 13855–13902, https://doi.org/10.5194/acp-21-13855-2021, https://doi.org/10.5194/acp-21-13855-2021, 2021
Short summary
Short summary
Little is known about the climate change of wind systems in the mesosphere and lower thermosphere at the edge of space at altitudes from 70–110 km. Meteor radars represent a well-accepted remote sensing technique to measure winds at these altitudes. Here we present a state-of-the-art climatological interhemispheric comparison using continuous and long-lasting observations from worldwide distributed meteor radars from the Arctic to the Antarctic and sophisticated general circulation models.
Clarissa Alicia Kroll, Sally Dacie, Alon Azoulay, Hauke Schmidt, and Claudia Timmreck
Atmos. Chem. Phys., 21, 6565–6591, https://doi.org/10.5194/acp-21-6565-2021, https://doi.org/10.5194/acp-21-6565-2021, 2021
Short summary
Short summary
Volcanic forcing is counteracted by stratospheric water vapor (SWV) entering the stratosphere as a consequence of aerosol-induced cold-point warming. We find that depending on the emission strength, aerosol profile height and season of the eruption, up to 4 % of the tropical aerosol forcing can be counterbalanced. A power function relationship between cold-point warming/SWV forcing and AOD in the yearly average is found, allowing us to estimate the SWV forcing for comparable eruptions.
Trang Van Pham, Christian Steger, Burkhardt Rockel, Klaus Keuler, Ingo Kirchner, Mariano Mertens, Daniel Rieger, Günther Zängl, and Barbara Früh
Geosci. Model Dev., 14, 985–1005, https://doi.org/10.5194/gmd-14-985-2021, https://doi.org/10.5194/gmd-14-985-2021, 2021
Short summary
Short summary
A new regional climate model was prepared based on a weather forecast model. Slow processes of the climate system such as ocean state development and greenhouse gas emissions were implemented. A model infrastructure and evaluation tools were also prepared to facilitate long-term simulations and model evalution. The first ICON-CLM results were close to observations and comparable to those from COSMO-CLM, the recommended model being used at the Deutscher Wetterdienst and CLM Community.
Cathy W. Y. Li, Guy P. Brasseur, Hauke Schmidt, and Juan Pedro Mellado
Atmos. Chem. Phys., 21, 483–503, https://doi.org/10.5194/acp-21-483-2021, https://doi.org/10.5194/acp-21-483-2021, 2021
Short summary
Short summary
Intense and localised emissions of pollutants are common in urban environments, in which turbulence cannot mix these segregated pollutants efficiently in the atmosphere. Despite their relatively high resolution, regional models cannot resolve such segregation and assume instantaneous mixing of these pollutants in their model grids, which potentially induces significant error in the subsequent chemical calculation, based on our calculation with a model that explicitly resolves turbulent motions.
Katja Matthes, Arne Biastoch, Sebastian Wahl, Jan Harlaß, Torge Martin, Tim Brücher, Annika Drews, Dana Ehlert, Klaus Getzlaff, Fritz Krüger, Willi Rath, Markus Scheinert, Franziska U. Schwarzkopf, Tobias Bayr, Hauke Schmidt, and Wonsun Park
Geosci. Model Dev., 13, 2533–2568, https://doi.org/10.5194/gmd-13-2533-2020, https://doi.org/10.5194/gmd-13-2533-2020, 2020
Short summary
Short summary
A new Earth system model, the Flexible Ocean and Climate Infrastructure (FOCI), is introduced, consisting of a high-top atmosphere, an ocean model, sea-ice and land surface model components. A unique feature of FOCI is the ability to explicitly resolve small-scale oceanic features, for example, the Agulhas Current and the Gulf Stream. It allows to study the evolution of the climate system on regional and seasonal to (multi)decadal scales and bridges the gap to coarse-resolution climate models.
Andreas Müller, Willem Deconinck, Christian Kühnlein, Gianmarco Mengaldo, Michael Lange, Nils Wedi, Peter Bauer, Piotr K. Smolarkiewicz, Michail Diamantakis, Sarah-Jane Lock, Mats Hamrud, Sami Saarinen, George Mozdzynski, Daniel Thiemert, Michael Glinton, Pierre Bénard, Fabrice Voitus, Charles Colavolpe, Philippe Marguinaud, Yongjun Zheng, Joris Van Bever, Daan Degrauwe, Geert Smet, Piet Termonia, Kristian P. Nielsen, Bent H. Sass, Jacob W. Poulsen, Per Berg, Carlos Osuna, Oliver Fuhrer, Valentin Clement, Michael Baldauf, Mike Gillard, Joanna Szmelter, Enda O'Brien, Alastair McKinstry, Oisín Robinson, Parijat Shukla, Michael Lysaght, Michał Kulczewski, Milosz Ciznicki, Wojciech Piątek, Sebastian Ciesielski, Marek Błażewicz, Krzysztof Kurowski, Marcin Procyk, Pawel Spychala, Bartosz Bosak, Zbigniew P. Piotrowski, Andrzej Wyszogrodzki, Erwan Raffin, Cyril Mazauric, David Guibert, Louis Douriez, Xavier Vigouroux, Alan Gray, Peter Messmer, Alexander J. Macfaden, and Nick New
Geosci. Model Dev., 12, 4425–4441, https://doi.org/10.5194/gmd-12-4425-2019, https://doi.org/10.5194/gmd-12-4425-2019, 2019
Short summary
Short summary
This paper presents an overview of the ESCAPE project. Dwarfs (key patterns in terms of computation and communication) are identified in weather prediction models. They are optimised for different hardware architectures. New algorithms are developed that are specifically designed for better energy efficiency and improved portability through domain-specific languages. Different numerical techniques are compared in terms of energy efficiency and performance for a variety of computing technologies.
Ina Tegen, David Neubauer, Sylvaine Ferrachat, Colombe Siegenthaler-Le Drian, Isabelle Bey, Nick Schutgens, Philip Stier, Duncan Watson-Parris, Tanja Stanelle, Hauke Schmidt, Sebastian Rast, Harri Kokkola, Martin Schultz, Sabine Schroeder, Nikos Daskalakis, Stefan Barthel, Bernd Heinold, and Ulrike Lohmann
Geosci. Model Dev., 12, 1643–1677, https://doi.org/10.5194/gmd-12-1643-2019, https://doi.org/10.5194/gmd-12-1643-2019, 2019
Short summary
Short summary
We describe a new version of the aerosol–climate model ECHAM–HAM and show tests of the model performance by comparing different aspects of the aerosol distribution with different datasets. The updated version of HAM contains improved descriptions of aerosol processes, including updated emission fields and cloud processes. While there are regional deviations between the model and observations, the model performs well overall.
Colin M. Zarzycki, Christiane Jablonowski, James Kent, Peter H. Lauritzen, Ramachandran Nair, Kevin A. Reed, Paul A. Ullrich, David M. Hall, Mark A. Taylor, Don Dazlich, Ross Heikes, Celal Konor, David Randall, Xi Chen, Lucas Harris, Marco Giorgetta, Daniel Reinert, Christian Kühnlein, Robert Walko, Vivian Lee, Abdessamad Qaddouri, Monique Tanguay, Hiroaki Miura, Tomoki Ohno, Ryuji Yoshida, Sang-Hun Park, Joseph B. Klemp, and William C. Skamarock
Geosci. Model Dev., 12, 879–892, https://doi.org/10.5194/gmd-12-879-2019, https://doi.org/10.5194/gmd-12-879-2019, 2019
Short summary
Short summary
We summarize the results of the Dynamical Core Model Intercomparison Project's idealized supercell test case. Supercells are storm-scale weather phenomena that are a key target for next-generation, non-hydrostatic weather prediction models. We show that the dynamical cores of most global numerical models converge between approximately 1 and 0.5 km grid spacing for this test, although differences in final solution exist, particularly due to differing grid discretizations and numerical diffusion.
Johannes Eckstein, Roland Ruhnke, Stephan Pfahl, Emanuel Christner, Christopher Diekmann, Christoph Dyroff, Daniel Reinert, Daniel Rieger, Matthias Schneider, Jennifer Schröter, Andreas Zahn, and Peter Braesicke
Geosci. Model Dev., 11, 5113–5133, https://doi.org/10.5194/gmd-11-5113-2018, https://doi.org/10.5194/gmd-11-5113-2018, 2018
Short summary
Short summary
We present ICON-ART-Iso, an extension to the global circulation model ICON, which allows for the simulation of the stable isotopologues of water. The main advantage over other isotope-enabled models is its flexible design with respect to the number of tracers simulated. We compare the results of several simulations to measurements of different scale. ICON-ART-Iso is able to reasonably reproduce the measurements. It is a promising tool to aid in the investigation of the atmospheric water cycle.
Uwe Mikolajewicz, Florian Ziemen, Guido Cioni, Martin Claussen, Klaus Fraedrich, Marvin Heidkamp, Cathy Hohenegger, Diego Jimenez de la Cuesta, Marie-Luise Kapsch, Alexander Lemburg, Thorsten Mauritsen, Katharina Meraner, Niklas Röber, Hauke Schmidt, Katharina D. Six, Irene Stemmler, Talia Tamarin-Brodsky, Alexander Winkler, Xiuhua Zhu, and Bjorn Stevens
Earth Syst. Dynam., 9, 1191–1215, https://doi.org/10.5194/esd-9-1191-2018, https://doi.org/10.5194/esd-9-1191-2018, 2018
Short summary
Short summary
Model experiments show that changing the sense of Earth's rotation has relatively little impact on the globally and zonally averaged energy budgets but leads to large shifts in continental climates and patterns of precipitation. The retrograde world is greener as the desert area shrinks. Deep water formation shifts from the North Atlantic to the North Pacific with subsequent changes in ocean overturning. Over large areas of the Indian Ocean, cyanobacteria dominate over bulk phytoplankton.
Jennifer Schröter, Daniel Rieger, Christian Stassen, Heike Vogel, Michael Weimer, Sven Werchner, Jochen Förstner, Florian Prill, Daniel Reinert, Günther Zängl, Marco Giorgetta, Roland Ruhnke, Bernhard Vogel, and Peter Braesicke
Geosci. Model Dev., 11, 4043–4068, https://doi.org/10.5194/gmd-11-4043-2018, https://doi.org/10.5194/gmd-11-4043-2018, 2018
Short summary
Short summary
In this paper, we introduce the most up-to-date version of the flexible tracer framework for the ICOsahedral Nonhydrostatic model with
Aerosols and Reactive Trace gases (ICON-ART).
We performed multiple simulations using different ICON physics configurations for weather and climate with ART.
The flexible tracer framework within ICON-ART 2.1 suits the demands of a large variety of different applications ranging from numerical weather prediction to climate integrations.
Ben Kravitz, Philip J. Rasch, Hailong Wang, Alan Robock, Corey Gabriel, Olivier Boucher, Jason N. S. Cole, Jim Haywood, Duoying Ji, Andy Jones, Andrew Lenton, John C. Moore, Helene Muri, Ulrike Niemeier, Steven Phipps, Hauke Schmidt, Shingo Watanabe, Shuting Yang, and Jin-Ho Yoon
Atmos. Chem. Phys., 18, 13097–13113, https://doi.org/10.5194/acp-18-13097-2018, https://doi.org/10.5194/acp-18-13097-2018, 2018
Short summary
Short summary
Marine cloud brightening has been proposed as a means of geoengineering/climate intervention, or deliberately altering the climate system to offset anthropogenic climate change. In idealized simulations that highlight contrasts between land and ocean, we find that the globe warms, including the ocean due to transport of heat from land. This study reinforces that no net energy input into the Earth system does not mean that temperature will necessarily remain unchanged.
Amanda C. Maycock, Katja Matthes, Susann Tegtmeier, Hauke Schmidt, Rémi Thiéblemont, Lon Hood, Hideharu Akiyoshi, Slimane Bekki, Makoto Deushi, Patrick Jöckel, Oliver Kirner, Markus Kunze, Marion Marchand, Daniel R. Marsh, Martine Michou, David Plummer, Laura E. Revell, Eugene Rozanov, Andrea Stenke, Yousuke Yamashita, and Kohei Yoshida
Atmos. Chem. Phys., 18, 11323–11343, https://doi.org/10.5194/acp-18-11323-2018, https://doi.org/10.5194/acp-18-11323-2018, 2018
Short summary
Short summary
The 11-year solar cycle is an important driver of climate variability. Changes in incoming solar ultraviolet radiation affect atmospheric ozone, which in turn influences atmospheric temperatures. Constraining the impact of the solar cycle on ozone is therefore important for understanding climate variability. This study examines the representation of the solar influence on ozone in numerical models used to simulate past and future climate. We highlight important differences among model datasets.
J. Federico Conte, Jorge L. Chau, Fazlul I. Laskar, Gunter Stober, Hauke Schmidt, and Peter Brown
Ann. Geophys., 36, 999–1008, https://doi.org/10.5194/angeo-36-999-2018, https://doi.org/10.5194/angeo-36-999-2018, 2018
Short summary
Short summary
Based on comparisons of meteor radar measurements with HAMMONIA model simulations, we show that the differences exhibited by the semidiurnal solar tide (S2) observed at middle and high latitudes of the Northern Hemisphere between equinox times are mainly due to distinct behaviors of the migrating semidiurnal (SW2) and the non-migrating westward-propagating wave number 1 semidiurnal (SW1) tidal components.
Martin G. Schultz, Scarlet Stadtler, Sabine Schröder, Domenico Taraborrelli, Bruno Franco, Jonathan Krefting, Alexandra Henrot, Sylvaine Ferrachat, Ulrike Lohmann, David Neubauer, Colombe Siegenthaler-Le Drian, Sebastian Wahl, Harri Kokkola, Thomas Kühn, Sebastian Rast, Hauke Schmidt, Philip Stier, Doug Kinnison, Geoffrey S. Tyndall, John J. Orlando, and Catherine Wespes
Geosci. Model Dev., 11, 1695–1723, https://doi.org/10.5194/gmd-11-1695-2018, https://doi.org/10.5194/gmd-11-1695-2018, 2018
Short summary
Short summary
The chemistry–climate model ECHAM-HAMMOZ contains a detailed representation of tropospheric and stratospheric reactive chemistry and state-of-the-art parameterizations of aerosols. It thus allows for detailed investigations of chemical processes in the climate system. Evaluation of the model with various observational data yields good results, but the model has a tendency to produce too much OH in the tropics. This highlights the important interplay between atmospheric chemistry and dynamics.
Katharina Meraner and Hauke Schmidt
Atmos. Chem. Phys., 18, 1079–1089, https://doi.org/10.5194/acp-18-1079-2018, https://doi.org/10.5194/acp-18-1079-2018, 2018
Short summary
Short summary
Using a coupled Earth system model and radiative transfer modeling we show that the radiative forcing of a winter polar mesospheric ozone loss due to energetic particle precipitation is negligible. A climate impact of a mesospheric ozone loss as suggested by Andersson et al. (2014, Nature Communications) seems unlikely. A winter polar stratospheric ozone loss due to energetic particle precipitation leads to a small warming of the stratosphere, but only a few statistically significant changes.
Camilla W. Stjern, Helene Muri, Lars Ahlm, Olivier Boucher, Jason N. S. Cole, Duoying Ji, Andy Jones, Jim Haywood, Ben Kravitz, Andrew Lenton, John C. Moore, Ulrike Niemeier, Steven J. Phipps, Hauke Schmidt, Shingo Watanabe, and Jón Egill Kristjánsson
Atmos. Chem. Phys., 18, 621–634, https://doi.org/10.5194/acp-18-621-2018, https://doi.org/10.5194/acp-18-621-2018, 2018
Short summary
Short summary
Marine cloud brightening (MCB) has been proposed to help limit global warming. We present here the first multi-model assessment of idealized MCB simulations from the Geoengineering Model Intercomparison Project. While all models predict a global cooling as intended, there is considerable spread between the models both in terms of radiative forcing and the climate response, largely linked to the substantial differences in the models' representation of clouds.
Ulrike Niemeier and Hauke Schmidt
Atmos. Chem. Phys., 17, 14871–14886, https://doi.org/10.5194/acp-17-14871-2017, https://doi.org/10.5194/acp-17-14871-2017, 2017
Short summary
Short summary
An artificial stratospheric sulfur layer heats the lower stratosphere which impacts stratospheric dynamics and transport. The quasi-biennial oscillation shuts down due to the heated sulfur layer which impacts the meridional transport of the sulfate aerosols. The tropical confinement of the sulfate is stronger and the radiative forcing efficiency of the aerosol layer decreases compared to previous studies, as does the forcing when increasing the injection height.
Paul A. Ullrich, Christiane Jablonowski, James Kent, Peter H. Lauritzen, Ramachandran Nair, Kevin A. Reed, Colin M. Zarzycki, David M. Hall, Don Dazlich, Ross Heikes, Celal Konor, David Randall, Thomas Dubos, Yann Meurdesoif, Xi Chen, Lucas Harris, Christian Kühnlein, Vivian Lee, Abdessamad Qaddouri, Claude Girard, Marco Giorgetta, Daniel Reinert, Joseph Klemp, Sang-Hun Park, William Skamarock, Hiroaki Miura, Tomoki Ohno, Ryuji Yoshida, Robert Walko, Alex Reinecke, and Kevin Viner
Geosci. Model Dev., 10, 4477–4509, https://doi.org/10.5194/gmd-10-4477-2017, https://doi.org/10.5194/gmd-10-4477-2017, 2017
Short summary
Short summary
Atmospheric dynamical cores are a fundamental component of global atmospheric modeling systems and are responsible for capturing the dynamical behavior of the Earth's atmosphere. To better understand modern dynamical cores, this paper aims to provide a comprehensive review of 11 dynamical cores, drawn from modeling centers and groups that participated in the 2016 Dynamical Core Model Intercomparison Project (DCMIP) workshop and summer school.
Johann H. Jungclaus, Edouard Bard, Mélanie Baroni, Pascale Braconnot, Jian Cao, Louise P. Chini, Tania Egorova, Michael Evans, J. Fidel González-Rouco, Hugues Goosse, George C. Hurtt, Fortunat Joos, Jed O. Kaplan, Myriam Khodri, Kees Klein Goldewijk, Natalie Krivova, Allegra N. LeGrande, Stephan J. Lorenz, Jürg Luterbacher, Wenmin Man, Amanda C. Maycock, Malte Meinshausen, Anders Moberg, Raimund Muscheler, Christoph Nehrbass-Ahles, Bette I. Otto-Bliesner, Steven J. Phipps, Julia Pongratz, Eugene Rozanov, Gavin A. Schmidt, Hauke Schmidt, Werner Schmutz, Andrew Schurer, Alexander I. Shapiro, Michael Sigl, Jason E. Smerdon, Sami K. Solanki, Claudia Timmreck, Matthew Toohey, Ilya G. Usoskin, Sebastian Wagner, Chi-Ju Wu, Kok Leng Yeo, Davide Zanchettin, Qiong Zhang, and Eduardo Zorita
Geosci. Model Dev., 10, 4005–4033, https://doi.org/10.5194/gmd-10-4005-2017, https://doi.org/10.5194/gmd-10-4005-2017, 2017
Short summary
Short summary
Climate model simulations covering the last millennium provide context for the evolution of the modern climate and for the expected changes during the coming centuries. They can help identify plausible mechanisms underlying palaeoclimatic reconstructions. Here, we describe the forcing boundary conditions and the experimental protocol for simulations covering the pre-industrial millennium. We describe the PMIP4 past1000 simulations as contributions to CMIP6 and additional sensitivity experiments.
Bernd Funke, William Ball, Stefan Bender, Angela Gardini, V. Lynn Harvey, Alyn Lambert, Manuel López-Puertas, Daniel R. Marsh, Katharina Meraner, Holger Nieder, Sanna-Mari Päivärinta, Kristell Pérot, Cora E. Randall, Thomas Reddmann, Eugene Rozanov, Hauke Schmidt, Annika Seppälä, Miriam Sinnhuber, Timofei Sukhodolov, Gabriele P. Stiller, Natalia D. Tsvetkova, Pekka T. Verronen, Stefan Versick, Thomas von Clarmann, Kaley A. Walker, and Vladimir Yushkov
Atmos. Chem. Phys., 17, 3573–3604, https://doi.org/10.5194/acp-17-3573-2017, https://doi.org/10.5194/acp-17-3573-2017, 2017
Short summary
Short summary
Simulations from eight atmospheric models have been compared to tracer and temperature observations from seven satellite instruments in order to evaluate the energetic particle indirect effect (EPP IE) during the perturbed northern hemispheric (NH) winter 2008/2009. Models are capable to reproduce the EPP IE in dynamically and geomagnetically quiescent NH winter conditions. The results emphasize the need for model improvements in the dynamical representation of elevated stratopause events.
D. Rieger, M. Bangert, I. Bischoff-Gauss, J. Förstner, K. Lundgren, D. Reinert, J. Schröter, H. Vogel, G. Zängl, R. Ruhnke, and B. Vogel
Geosci. Model Dev., 8, 1659–1676, https://doi.org/10.5194/gmd-8-1659-2015, https://doi.org/10.5194/gmd-8-1659-2015, 2015
S. Tilmes, M. J. Mills, U. Niemeier, H. Schmidt, A. Robock, B. Kravitz, J.-F. Lamarque, G. Pitari, and J. M. English
Geosci. Model Dev., 8, 43–49, https://doi.org/10.5194/gmd-8-43-2015, https://doi.org/10.5194/gmd-8-43-2015, 2015
Short summary
Short summary
A new Geoengineering Model Intercomparison Project (GeoMIP) experiment “G4 specified stratospheric aerosols” (G4SSA) is proposed to investigate the impact of stratospheric aerosol geoengineering on atmosphere, chemistry, dynamics, climate, and the environment. In contrast to the earlier G4 GeoMIP experiment, which requires an emission of sulfur dioxide (SO2) into the model, a prescribed aerosol forcing file is provided to the community, to be consistently applied to future model experiments.
S. Studer, K. Hocke, A. Schanz, H. Schmidt, and N. Kämpfer
Atmos. Chem. Phys., 14, 5905–5919, https://doi.org/10.5194/acp-14-5905-2014, https://doi.org/10.5194/acp-14-5905-2014, 2014
P. H. Lauritzen, P. A. Ullrich, C. Jablonowski, P. A. Bosler, D. Calhoun, A. J. Conley, T. Enomoto, L. Dong, S. Dubey, O. Guba, A. B. Hansen, E. Kaas, J. Kent, J.-F. Lamarque, M. J. Prather, D. Reinert, V. V. Shashkin, W. C. Skamarock, B. Sørensen, M. A. Taylor, and M. A. Tolstykh
Geosci. Model Dev., 7, 105–145, https://doi.org/10.5194/gmd-7-105-2014, https://doi.org/10.5194/gmd-7-105-2014, 2014
H. Wan, M. A. Giorgetta, G. Zängl, M. Restelli, D. Majewski, L. Bonaventura, K. Fröhlich, D. Reinert, P. Rípodas, L. Kornblueh, and J. Förstner
Geosci. Model Dev., 6, 735–763, https://doi.org/10.5194/gmd-6-735-2013, https://doi.org/10.5194/gmd-6-735-2013, 2013
Related subject area
Atmospheric sciences
Exploring the footprint representation of microwave radiance observations in an Arctic limited-area data assimilation system
Analysis of model error in forecast errors of extended atmospheric Lorenz 05 systems and the ECMWF system
Description and validation of Vehicular Emissions from Road Traffic (VERT) 1.0, an R-based framework for estimating road transport emissions from traffic flows
AeroMix v1.0.1: a Python package for modeling aerosol optical properties and mixing states
Impact of ITCZ width on global climate: ITCZ-MIP
Deep-learning-driven simulations of boundary layer clouds over the Southern Great Plains
Mixed-precision computing in the GRIST dynamical core for weather and climate modelling
A conservative immersed boundary method for the multi-physics urban large-eddy simulation model uDALES v2.0
RCEMIP-II: mock-Walker simulations as phase II of the radiative–convective equilibrium model intercomparison project
Objective identification of meteorological fronts and climatologies from ERA-Interim and ERA5
TAMS: a tracking, classifying, and variable-assigning algorithm for mesoscale convective systems in simulated and satellite-derived datasets
Development of the adjoint of the unified tropospheric–stratospheric chemistry extension (UCX) in GEOS-Chem adjoint v36
New explicit formulae for the settling speed of prolate spheroids in the atmosphere: theoretical background and implementation in AerSett v2.0.2
ZJU-AERO V0.5: an Accurate and Efficient Radar Operator designed for CMA-GFS/MESO with the capability to simulate non-spherical hydrometeors
The Year of Polar Prediction site Model Intercomparison Project (YOPPsiteMIP) phase 1: project overview and Arctic winter forecast evaluation
Evaluating CHASER V4.0 global formaldehyde (HCHO) simulations using satellite, aircraft, and ground-based remote-sensing observations
Global variable-resolution simulations of extreme precipitation over Henan, China, in 2021 with MPAS-Atmosphere v7.3
The CHIMERE chemistry-transport model v2023r1
tobac v1.5: introducing fast 3D tracking, splits and mergers, and other enhancements for identifying and analysing meteorological phenomena
Merged Observatory Data Files (MODFs): an integrated observational data product supporting process-oriented investigations and diagnostics
Simulation of marine stratocumulus using the super-droplet method: numerical convergence and comparison to a double-moment bulk scheme using SCALE-SDM 5.2.6-2.3.1
WRF-Comfort: simulating microscale variability in outdoor heat stress at the city scale with a mesoscale model
Representing effects of surface heterogeneity in a multi-plume eddy diffusivity mass flux boundary layer parameterization
Can TROPOMI NO2 satellite data be used to track the drop in and resurgence of NOx emissions in Germany between 2019–2021 using the multi-source plume method (MSPM)?
A spatiotemporally separated framework for reconstructing the sources of atmospheric radionuclide releases
A parameterization scheme for the floating wind farm in a coupled atmosphere–wave model (COAWST v3.7)
RoadSurf 1.1: open-source road weather model library
Calibrating and validating the Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) urban cooling model: case studies in France and the United States
The ddeq Python library for point source quantification from remote sensing images (version 1.0)
Incorporating Oxygen Isotopes of Oxidized Reactive Nitrogen in the Regional Atmospheric Chemistry Mechanism, version 2 (ICOIN-RACM2)
A general comprehensive evaluation method for cross-scale precipitation forecasts
Implementation of a Simple Actuator Disk for Large-Eddy Simulation in the Weather Research and Forecasting Model (WRF-SADLES v1.2) for wind turbine wake simulation
WRF-PDAF v1.0: implementation and application of an online localized ensemble data assimilation framework
Implementation and evaluation of diabatic advection in the Lagrangian transport model MPTRAC 2.6
An improved and extended parameterization of the CO2 15 µm cooling in the middle and upper atmosphere (CO2_cool_fort-1.0)
Development of a multiphase chemical mechanism to improve secondary organic aerosol formation in CAABA/MECCA (version 4.7.0)
Application of regional meteorology and air quality models based on the microprocessor without interlocked piped stages (MIPS) and LoongArch CPU platforms
Investigating ground-level ozone pollution in semi-arid and arid regions of Arizona using WRF-Chem v4.4 modeling
An objective identification technique for potential vorticity structures associated with African easterly waves
Importance of microphysical settings for climate forcing by stratospheric SO2 injections as modeled by SOCOL-AERv2
Assessment of surface ozone products from downscaled CAMS reanalysis and CAMS daily forecast using urban air quality monitoring stations in Iran
Open boundary conditions for atmospheric large-eddy simulations and their implementation in DALES4.4
Efficient and stable coupling of the SuperdropNet deep-learning-based cloud microphysics (v0.1.0) with the ICON climate and weather model (v2.6.5)
Three-dimensional variational assimilation with a multivariate background error covariance for the Model for Prediction Across Scales – Atmosphere with the Joint Effort for Data assimilation Integration (JEDI-MPAS 2.0.0-beta)
FUME 2.0 – Flexible Universal processor for Modeling Emissions
DEUCE v1.0: a neural network for probabilistic precipitation nowcasting with aleatoric and epistemic uncertainties
Evaluation of multi-season convection-permitting atmosphere – mixed-layer ocean simulations of the Maritime Continent
RASCAL v1.0.0: An Open Source Tool for Climatological Time Series Reconstruction and Extension
Selecting CMIP6 GCMs for CORDEX Dynamical Downscaling over Southeast Asia Using a Standardised Benchmarking Framework
Investigating the impact of coupling HARMONIE-WINS50 (cy43) meteorology to LOTOS-EUROS (v2.2.002) on a simulation of NO2 concentrations over the Netherlands
Máté Mile, Stephanie Guedj, and Roger Randriamampianina
Geosci. Model Dev., 17, 6571–6587, https://doi.org/10.5194/gmd-17-6571-2024, https://doi.org/10.5194/gmd-17-6571-2024, 2024
Short summary
Short summary
Satellite observations provide crucial information about atmospheric constituents in a global distribution that helps to better predict the weather over sparsely observed regions like the Arctic. However, the use of satellite data is usually conservative and imperfect. In this study, a better spatial representation of satellite observations is discussed and explored by a so-called footprint function or operator, highlighting its added value through a case study and diagnostics.
Hynek Bednář and Holger Kantz
Geosci. Model Dev., 17, 6489–6511, https://doi.org/10.5194/gmd-17-6489-2024, https://doi.org/10.5194/gmd-17-6489-2024, 2024
Short summary
Short summary
The forecast error growth of atmospheric phenomena is caused by initial and model errors. When studying the initial error growth, it may turn out that small-scale phenomena, which contribute little to the forecast product, significantly affect the ability to predict this product. With a negative result, we investigate in the extended Lorenz (2005) system whether omitting these phenomena will improve predictability. A theory explaining and describing this behavior is developed.
Giorgio Veratti, Alessandro Bigi, Sergio Teggi, and Grazia Ghermandi
Geosci. Model Dev., 17, 6465–6487, https://doi.org/10.5194/gmd-17-6465-2024, https://doi.org/10.5194/gmd-17-6465-2024, 2024
Short summary
Short summary
In this study, we present VERT (Vehicular Emissions from Road Traffic), an R package designed to estimate transport emissions using traffic estimates and vehicle fleet composition data. Compared to other tools available in the literature, VERT stands out for its user-friendly configuration and flexibility of user input. Case studies demonstrate its accuracy in both urban and regional contexts, making it a valuable tool for air quality management and transport scenario planning.
Sam P. Raj, Puna Ram Sinha, Rohit Srivastava, Srinivas Bikkina, and Damu Bala Subrahamanyam
Geosci. Model Dev., 17, 6379–6399, https://doi.org/10.5194/gmd-17-6379-2024, https://doi.org/10.5194/gmd-17-6379-2024, 2024
Short summary
Short summary
A Python successor to the aerosol module of the OPAC model, named AeroMix, has been developed, with enhanced capabilities to better represent real atmospheric aerosol mixing scenarios. AeroMix’s performance in modeling aerosol mixing states has been evaluated against field measurements, substantiating its potential as a versatile aerosol optical model framework for next-generation algorithms to infer aerosol mixing states and chemical composition.
Angeline G. Pendergrass, Michael P. Byrne, Oliver Watt-Meyer, Penelope Maher, and Mark J. Webb
Geosci. Model Dev., 17, 6365–6378, https://doi.org/10.5194/gmd-17-6365-2024, https://doi.org/10.5194/gmd-17-6365-2024, 2024
Short summary
Short summary
The width of the tropical rain belt affects many aspects of our climate, yet we do not understand what controls it. To better understand it, we present a method to change it in numerical model experiments. We show that the method works well in four different models. The behavior of the width is unexpectedly simple in some ways, such as how strong the winds are as it changes, but in other ways, it is more complicated, especially how temperature increases with carbon dioxide.
Tianning Su and Yunyan Zhang
Geosci. Model Dev., 17, 6319–6336, https://doi.org/10.5194/gmd-17-6319-2024, https://doi.org/10.5194/gmd-17-6319-2024, 2024
Short summary
Short summary
Using 2 decades of field observations over the Southern Great Plains, this study developed a deep-learning model to simulate the complex dynamics of boundary layer clouds. The deep-learning model can serve as the cloud parameterization within reanalysis frameworks, offering insights into improving the simulation of low clouds. By quantifying biases due to various meteorological factors and parameterizations, this deep-learning-driven approach helps bridge the observation–modeling divide.
Siyuan Chen, Yi Zhang, Yiming Wang, Zhuang Liu, Xiaohan Li, and Wei Xue
Geosci. Model Dev., 17, 6301–6318, https://doi.org/10.5194/gmd-17-6301-2024, https://doi.org/10.5194/gmd-17-6301-2024, 2024
Short summary
Short summary
This study explores strategies and techniques for implementing mixed-precision code optimization within an atmosphere model dynamical core. The coded equation terms in the governing equations that are sensitive (or insensitive) to the precision level have been identified. The performance of mixed-precision computing in weather and climate simulations was analyzed.
Sam O. Owens, Dipanjan Majumdar, Chris E. Wilson, Paul Bartholomew, and Maarten van Reeuwijk
Geosci. Model Dev., 17, 6277–6300, https://doi.org/10.5194/gmd-17-6277-2024, https://doi.org/10.5194/gmd-17-6277-2024, 2024
Short summary
Short summary
Designing cities that are resilient, sustainable, and beneficial to health requires an understanding of urban climate and air quality. This article presents an upgrade to the multi-physics numerical model uDALES, which can simulate microscale airflow, heat transfer, and pollutant dispersion in urban environments. This upgrade enables it to resolve realistic urban geometries more accurately and to take advantage of the resources available on current and future high-performance computing systems.
Allison A. Wing, Levi G. Silvers, and Kevin A. Reed
Geosci. Model Dev., 17, 6195–6225, https://doi.org/10.5194/gmd-17-6195-2024, https://doi.org/10.5194/gmd-17-6195-2024, 2024
Short summary
Short summary
This paper presents the experimental design for a model intercomparison project to study tropical clouds and climate. It is a follow-up from a prior project that used a simplified framework for tropical climate. The new project adds one new component – a specified pattern of sea surface temperatures as the lower boundary condition. We provide example results from one cloud-resolving model and one global climate model and test the sensitivity to the experimental parameters.
Philip G. Sansom and Jennifer L. Catto
Geosci. Model Dev., 17, 6137–6151, https://doi.org/10.5194/gmd-17-6137-2024, https://doi.org/10.5194/gmd-17-6137-2024, 2024
Short summary
Short summary
Weather fronts bring a lot of rain and strong winds to many regions of the mid-latitudes. We have developed an updated method of identifying these fronts in gridded data that can be used on new datasets with small grid spacing. The method can be easily applied to different datasets due to the use of open-source software for its development and shows improvements over similar previous methods. We present an updated estimate of the average frequency of fronts over the past 40 years.
Kelly M. Núñez Ocasio and Zachary L. Moon
Geosci. Model Dev., 17, 6035–6049, https://doi.org/10.5194/gmd-17-6035-2024, https://doi.org/10.5194/gmd-17-6035-2024, 2024
Short summary
Short summary
TAMS is an open-source Python-based package for tracking and classifying mesoscale convective systems that can be used to study observed and simulated systems. Each step of the algorithm is described in this paper with examples showing how to make use of visualization and post-processing tools within the package. A unique and valuable feature of this tracker is its support for unstructured grids in the identification stage and grid-independent tracking.
Irene C. Dedoussi, Daven K. Henze, Sebastian D. Eastham, Raymond L. Speth, and Steven R. H. Barrett
Geosci. Model Dev., 17, 5689–5703, https://doi.org/10.5194/gmd-17-5689-2024, https://doi.org/10.5194/gmd-17-5689-2024, 2024
Short summary
Short summary
Atmospheric model gradients provide a meaningful tool for better understanding the underlying atmospheric processes. Adjoint modeling enables computationally efficient gradient calculations. We present the adjoint of the GEOS-Chem unified chemistry extension (UCX). With this development, the GEOS-Chem adjoint model can capture stratospheric ozone and other processes jointly with tropospheric processes. We apply it to characterize the Antarctic ozone depletion potential of active halogen species.
Sylvain Mailler, Sotirios Mallios, Arineh Cholakian, Vassilis Amiridis, Laurent Menut, and Romain Pennel
Geosci. Model Dev., 17, 5641–5655, https://doi.org/10.5194/gmd-17-5641-2024, https://doi.org/10.5194/gmd-17-5641-2024, 2024
Short summary
Short summary
We propose two explicit expressions to calculate the settling speed of solid atmospheric particles with prolate spheroidal shapes. The first formulation is based on theoretical arguments only, while the second one is based on computational fluid dynamics calculations. We show that the first method is suitable for virtually all atmospheric aerosols, provided their shape can be adequately described as a prolate spheroid, and we provide an implementation of the first method in AerSett v2.0.2.
Hejun Xie, Lei Bi, and Wei Han
Geosci. Model Dev., 17, 5657–5688, https://doi.org/10.5194/gmd-17-5657-2024, https://doi.org/10.5194/gmd-17-5657-2024, 2024
Short summary
Short summary
A radar operator plays a crucial role in utilizing radar observations to enhance numerical weather forecasts. However, developing an advanced radar operator is challenging due to various complexities associated with the wave scattering by non-spherical hydrometeors, radar beam propagation, and multiple platforms. In this study, we introduce a novel radar operator named the Accurate and Efficient Radar Operator developed by ZheJiang University (ZJU-AERO) which boasts several unique features.
Jonathan J. Day, Gunilla Svensson, Barbara Casati, Taneil Uttal, Siri-Jodha Khalsa, Eric Bazile, Elena Akish, Niramson Azouz, Lara Ferrighi, Helmut Frank, Michael Gallagher, Øystein Godøy, Leslie M. Hartten, Laura X. Huang, Jareth Holt, Massimo Di Stefano, Irene Suomi, Zen Mariani, Sara Morris, Ewan O'Connor, Roberta Pirazzini, Teresa Remes, Rostislav Fadeev, Amy Solomon, Johanna Tjernström, and Mikhail Tolstykh
Geosci. Model Dev., 17, 5511–5543, https://doi.org/10.5194/gmd-17-5511-2024, https://doi.org/10.5194/gmd-17-5511-2024, 2024
Short summary
Short summary
The YOPP site Model Intercomparison Project (YOPPsiteMIP), which was designed to facilitate enhanced weather forecast evaluation in polar regions, is discussed here, focussing on describing the archive of forecast data and presenting a multi-model evaluation at Arctic supersites during February and March 2018. The study highlights an underestimation in boundary layer temperature variance that is common across models and a related inability to forecast cold extremes at several of the sites.
Hossain Mohammed Syedul Hoque, Kengo Sudo, Hitoshi Irie, Yanfeng He, and Md Firoz Khan
Geosci. Model Dev., 17, 5545–5571, https://doi.org/10.5194/gmd-17-5545-2024, https://doi.org/10.5194/gmd-17-5545-2024, 2024
Short summary
Short summary
Using multi-platform observations, we validated global formaldehyde (HCHO) simulations from a chemistry transport model. HCHO is a crucial intermediate in the chemical catalytic cycle that governs the ozone formation in the troposphere. The model was capable of replicating the observed spatiotemporal variability in HCHO. In a few cases, the model's capability was limited. This is attributed to the uncertainties in the observations and the model parameters.
Zijun Liu, Li Dong, Zongxu Qiu, Xingrong Li, Huiling Yuan, Dongmei Meng, Xiaobin Qiu, Dingyuan Liang, and Yafei Wang
Geosci. Model Dev., 17, 5477–5496, https://doi.org/10.5194/gmd-17-5477-2024, https://doi.org/10.5194/gmd-17-5477-2024, 2024
Short summary
Short summary
In this study, we completed a series of simulations with MPAS-Atmosphere (version 7.3) to study the extreme precipitation event of Henan, China, during 20–22 July 2021. We found the different performance of two built-in parameterization scheme suites (mesoscale and convection-permitting suites) with global quasi-uniform and variable-resolution meshes. This study holds significant implications for advancing the understanding of the scale-aware capability of MPAS-Atmosphere.
Laurent Menut, Arineh Cholakian, Romain Pennel, Guillaume Siour, Sylvain Mailler, Myrto Valari, Lya Lugon, and Yann Meurdesoif
Geosci. Model Dev., 17, 5431–5457, https://doi.org/10.5194/gmd-17-5431-2024, https://doi.org/10.5194/gmd-17-5431-2024, 2024
Short summary
Short summary
A new version of the CHIMERE model is presented. This version contains both computational and physico-chemical changes. The computational changes make it easy to choose the variables to be extracted as a result, including values of maximum sub-hourly concentrations. Performance tests show that the model is 1.5 to 2 times faster than the previous version for the same setup. Processes such as turbulence, transport schemes and dry deposition have been modified and updated.
G. Alexander Sokolowsky, Sean W. Freeman, William K. Jones, Julia Kukulies, Fabian Senf, Peter J. Marinescu, Max Heikenfeld, Kelcy N. Brunner, Eric C. Bruning, Scott M. Collis, Robert C. Jackson, Gabrielle R. Leung, Nils Pfeifer, Bhupendra A. Raut, Stephen M. Saleeby, Philip Stier, and Susan C. van den Heever
Geosci. Model Dev., 17, 5309–5330, https://doi.org/10.5194/gmd-17-5309-2024, https://doi.org/10.5194/gmd-17-5309-2024, 2024
Short summary
Short summary
Building on previous analysis tools developed for atmospheric science, the original release of the Tracking and Object-Based Analysis (tobac) Python package, v1.2, was open-source, modular, and insensitive to the type of gridded input data. Here, we present the latest version of tobac, v1.5, which substantially improves scientific capabilities and computational efficiency from the previous version. These enhancements permit new uses for tobac in atmospheric science and potentially other fields.
Taneil Uttal, Leslie M. Hartten, Siri Jodha Khalsa, Barbara Casati, Gunilla Svensson, Jonathan Day, Jareth Holt, Elena Akish, Sara Morris, Ewan O'Connor, Roberta Pirazzini, Laura X. Huang, Robert Crawford, Zen Mariani, Øystein Godøy, Johanna A. K. Tjernström, Giri Prakash, Nicki Hickmon, Marion Maturilli, and Christopher J. Cox
Geosci. Model Dev., 17, 5225–5247, https://doi.org/10.5194/gmd-17-5225-2024, https://doi.org/10.5194/gmd-17-5225-2024, 2024
Short summary
Short summary
A Merged Observatory Data File (MODF) format to systematically collate complex atmosphere, ocean, and terrestrial data sets collected by multiple instruments during field campaigns is presented. The MODF format is also designed to be applied to model output data, yielding format-matching Merged Model Data Files (MMDFs). MODFs plus MMDFs will augment and accelerate the synergistic use of model results with observational data to increase understanding and predictive skill.
Chongzhi Yin, Shin-ichiro Shima, Lulin Xue, and Chunsong Lu
Geosci. Model Dev., 17, 5167–5189, https://doi.org/10.5194/gmd-17-5167-2024, https://doi.org/10.5194/gmd-17-5167-2024, 2024
Short summary
Short summary
We investigate numerical convergence properties of a particle-based numerical cloud microphysics model (SDM) and a double-moment bulk scheme for simulating a marine stratocumulus case, compare their results with model intercomparison project results, and present possible explanations for the different results of the SDM and the bulk scheme. Aerosol processes can be accurately simulated using SDM, and this may be an important factor affecting the behavior and morphology of marine stratocumulus.
Alberto Martilli, Negin Nazarian, E. Scott Krayenhoff, Jacob Lachapelle, Jiachen Lu, Esther Rivas, Alejandro Rodriguez-Sanchez, Beatriz Sanchez, and José Luis Santiago
Geosci. Model Dev., 17, 5023–5039, https://doi.org/10.5194/gmd-17-5023-2024, https://doi.org/10.5194/gmd-17-5023-2024, 2024
Short summary
Short summary
Here, we present a model that quantifies the thermal stress and its microscale variability at a city scale with a mesoscale model. This tool can have multiple applications, from early warnings of extreme heat to the vulnerable population to the evaluation of the effectiveness of heat mitigation strategies. It is the first model that includes information on microscale variability in a mesoscale model, something that is essential for fully evaluating heat stress.
Nathan P. Arnold
Geosci. Model Dev., 17, 5041–5056, https://doi.org/10.5194/gmd-17-5041-2024, https://doi.org/10.5194/gmd-17-5041-2024, 2024
Short summary
Short summary
Earth system models often represent the land surface at smaller scales than the atmosphere, but surface–atmosphere coupling uses only aggregated surface properties. This study presents a method to allow heterogeneous surface properties to modify boundary layer updrafts. The method is tested in single column experiments. Updraft properties are found to reasonably covary with surface conditions, and simulated boundary layer variability is enhanced over more heterogeneous land surfaces.
Enrico Dammers, Janot Tokaya, Christian Mielke, Kevin Hausmann, Debora Griffin, Chris McLinden, Henk Eskes, and Renske Timmermans
Geosci. Model Dev., 17, 4983–5007, https://doi.org/10.5194/gmd-17-4983-2024, https://doi.org/10.5194/gmd-17-4983-2024, 2024
Short summary
Short summary
Nitrogen dioxide (NOx) is produced by sources such as industry and traffic and is directly linked to negative impacts on health and the environment. The current construction of emission inventories to keep track of NOx emissions is slow and time-consuming. Satellite measurements provide a way to quickly and independently estimate emissions. In this study, we apply a consistent methodology to derive NOx emissions over Germany and illustrate the value of having such a method for fast projections.
Yuhan Xu, Sheng Fang, Xinwen Dong, and Shuhan Zhuang
Geosci. Model Dev., 17, 4961–4982, https://doi.org/10.5194/gmd-17-4961-2024, https://doi.org/10.5194/gmd-17-4961-2024, 2024
Short summary
Short summary
Recent atmospheric radionuclide leakages from unknown sources have posed a new challenge in nuclear emergency assessment. Reconstruction via environmental observations is the only feasible way to identify sources, but simultaneous reconstruction of the source location and release rate yields high uncertainties. We propose a spatiotemporally separated reconstruction strategy that avoids these uncertainties and outperforms state-of-the-art methods with respect to accuracy and uncertainty ranges.
Shaokun Deng, Shengmu Yang, Shengli Chen, Daoyi Chen, Xuefeng Yang, and Shanshan Cui
Geosci. Model Dev., 17, 4891–4909, https://doi.org/10.5194/gmd-17-4891-2024, https://doi.org/10.5194/gmd-17-4891-2024, 2024
Short summary
Short summary
Global offshore wind power development is moving from offshore to deeper waters, where floating offshore wind turbines have an advantage over bottom-fixed turbines. However, current wind farm parameterization schemes in mesoscale models are not applicable to floating turbines. We propose a floating wind farm parameterization scheme that accounts for the attenuation of the significant wave height by floating turbines. The results indicate that it has a significant effect on the power output.
Virve Eveliina Karsisto
Geosci. Model Dev., 17, 4837–4853, https://doi.org/10.5194/gmd-17-4837-2024, https://doi.org/10.5194/gmd-17-4837-2024, 2024
Short summary
Short summary
RoadSurf is an open-source library that contains functions from the Finnish Meteorological Institute’s road weather model. The evaluation of the library shows that it is well suited for making road surface temperature forecasts. The evaluation was done by making forecasts for about 400 road weather stations in Finland with the library. Accurate forecasts help road authorities perform salting and plowing operations at the right time and keep roads safe for drivers.
Perrine Hamel, Martí Bosch, Léa Tardieu, Aude Lemonsu, Cécile de Munck, Chris Nootenboom, Vincent Viguié, Eric Lonsdorf, James A. Douglass, and Richard P. Sharp
Geosci. Model Dev., 17, 4755–4771, https://doi.org/10.5194/gmd-17-4755-2024, https://doi.org/10.5194/gmd-17-4755-2024, 2024
Short summary
Short summary
The InVEST Urban Cooling model estimates the cooling effect of vegetation in cities. We further developed an algorithm to facilitate model calibration and evaluation. Applying the algorithm to case studies in France and in the United States, we found that nighttime air temperature estimates compare well with reference datasets. Estimated change in temperature from a land cover scenario compares well with an alternative model estimate, supporting the use of the model for urban planning decisions.
Gerrit Kuhlmann, Erik Koene, Sandro Meier, Diego Santaren, Grégoire Broquet, Frédéric Chevallier, Janne Hakkarainen, Janne Nurmela, Laia Amorós, Johanna Tamminen, and Dominik Brunner
Geosci. Model Dev., 17, 4773–4789, https://doi.org/10.5194/gmd-17-4773-2024, https://doi.org/10.5194/gmd-17-4773-2024, 2024
Short summary
Short summary
We present a Python software library for data-driven emission quantification (ddeq). It can be used to determine the emissions of hot spots (cities, power plants and industry) from remote sensing images using different methods. ddeq can be extended for new datasets and methods, providing a powerful community tool for users and developers. The application of the methods is shown using Jupyter notebooks included in the library.
Wendell W. Walters, Masayuki Takeuchi, Nga L. Ng, and Meredith G. Hastings
Geosci. Model Dev., 17, 4673–4687, https://doi.org/10.5194/gmd-17-4673-2024, https://doi.org/10.5194/gmd-17-4673-2024, 2024
Short summary
Short summary
The study introduces a novel chemical mechanism for explicitly tracking oxygen isotope transfer in oxidized reactive nitrogen and odd oxygen using the Regional Atmospheric Chemistry Mechanism, version 2. This model enhances our ability to simulate and compare oxygen isotope compositions of reactive nitrogen, revealing insights into oxidation chemistry. The approach shows promise for improving atmospheric chemistry models and tropospheric oxidation capacity predictions.
Bing Zhang, Mingjian Zeng, Anning Huang, Zhengkun Qin, Couhua Liu, Wenru Shi, Xin Li, Kefeng Zhu, Chunlei Gu, and Jialing Zhou
Geosci. Model Dev., 17, 4579–4601, https://doi.org/10.5194/gmd-17-4579-2024, https://doi.org/10.5194/gmd-17-4579-2024, 2024
Short summary
Short summary
By directly analyzing the proximity of precipitation forecasts and observations, a precipitation accuracy score (PAS) method was constructed. This method does not utilize a traditional contingency-table-based classification verification; however, it can replace the threat score (TS), equitable threat score (ETS), and other skill score methods, and it can be used to calculate the accuracy of numerical models or quantitative precipitation forecasts.
Hai Bui, Mostafa Bakhoday-Paskyabi, and Mohammadreza Mohammadpour-Penchah
Geosci. Model Dev., 17, 4447–4465, https://doi.org/10.5194/gmd-17-4447-2024, https://doi.org/10.5194/gmd-17-4447-2024, 2024
Short summary
Short summary
We developed a new wind turbine wake model, the Simple Actuator Disc for Large Eddy Simulation (SADLES), integrated with the widely used Weather Research and Forecasting (WRF) model. WRF-SADLES accurately simulates wind turbine wakes at resolutions of a few dozen meters, aligning well with idealized simulations and observational measurements. This makes WRF-SADLES a promising tool for wind energy research, offering a balance between accuracy, computational efficiency, and ease of implementation.
Changliang Shao and Lars Nerger
Geosci. Model Dev., 17, 4433–4445, https://doi.org/10.5194/gmd-17-4433-2024, https://doi.org/10.5194/gmd-17-4433-2024, 2024
Short summary
Short summary
This paper introduces and evaluates WRF-PDAF, a fully online-coupled ensemble data assimilation (DA) system. A key advantage of the WRF-PDAF configuration is its ability to concurrently integrate all ensemble states, eliminating the need for time-consuming distribution and collection of ensembles during the coupling communication. The extra time required for DA amounts to only 20.6 % per cycle. Twin experiment results underscore the effectiveness of the WRF-PDAF system.
Jan Clemens, Lars Hoffmann, Bärbel Vogel, Sabine Grießbach, and Nicole Thomas
Geosci. Model Dev., 17, 4467–4493, https://doi.org/10.5194/gmd-17-4467-2024, https://doi.org/10.5194/gmd-17-4467-2024, 2024
Short summary
Short summary
Lagrangian transport models simulate the transport of air masses in the atmosphere. For example, one model (CLaMS) is well suited to calculating transport as it uses a special coordinate system and special vertical wind. However, it only runs inefficiently on modern supercomputers. Hence, we have implemented the benefits of CLaMS into a new model (MPTRAC), which is already highly efficient on modern supercomputers. Finally, in extensive tests, we showed that CLaMS and MPTRAC agree very well.
Manuel López-Puertas, Federico Fabiano, Victor Fomichev, Bernd Funke, and Daniel R. Marsh
Geosci. Model Dev., 17, 4401–4432, https://doi.org/10.5194/gmd-17-4401-2024, https://doi.org/10.5194/gmd-17-4401-2024, 2024
Short summary
Short summary
The radiative infrared cooling of CO2 in the middle atmosphere is crucial for computing its thermal structure. It requires one however to include non-local thermodynamic equilibrium processes which are computationally very expensive, which cannot be afforded by climate models. In this work, we present an updated, efficient, accurate and very fast (~50 µs) parameterization of that cooling able to cope with CO2 abundances from half the pre-industrial values to 10 times the current abundance.
Felix Wieser, Rolf Sander, Changmin Cho, Hendrik Fuchs, Thorsten Hohaus, Anna Novelli, Ralf Tillmann, and Domenico Taraborrelli
Geosci. Model Dev., 17, 4311–4330, https://doi.org/10.5194/gmd-17-4311-2024, https://doi.org/10.5194/gmd-17-4311-2024, 2024
Short summary
Short summary
The chemistry scheme of the atmospheric box model CAABA/MECCA is expanded to achieve an improved aerosol formation from emitted organic compounds. In addition to newly added reactions, temperature-dependent partitioning of all new species between the gas and aqueous phases is estimated and included in the pre-existing scheme. Sensitivity runs show an overestimation of key compounds from isoprene, which can be explained by a lack of aqueous-phase degradation reactions and box model limitations.
Zehua Bai, Qizhong Wu, Kai Cao, Yiming Sun, and Huaqiong Cheng
Geosci. Model Dev., 17, 4383–4399, https://doi.org/10.5194/gmd-17-4383-2024, https://doi.org/10.5194/gmd-17-4383-2024, 2024
Short summary
Short summary
There is relatively limited research on the application of scientific computing on RISC CPU platforms. The MIPS architecture CPUs, a type of RISC CPUs, have distinct advantages in energy efficiency and scalability. The air quality modeling system can run stably on the MIPS and LoongArch platforms, and the experiment results verify the stability of scientific computing on the platforms. The work provides a technical foundation for the scientific application based on MIPS and LoongArch.
Yafang Guo, Chayan Roychoudhury, Mohammad Amin Mirrezaei, Rajesh Kumar, Armin Sorooshian, and Avelino F. Arellano
Geosci. Model Dev., 17, 4331–4353, https://doi.org/10.5194/gmd-17-4331-2024, https://doi.org/10.5194/gmd-17-4331-2024, 2024
Short summary
Short summary
This research focuses on surface ozone (O3) pollution in Arizona, a historically air-quality-challenged arid and semi-arid region in the US. The unique characteristics of this kind of region, e.g., intense heat, minimal moisture, and persistent desert shrubs, play a vital role in comprehending O3 exceedances. Using the WRF-Chem model, we analyzed O3 levels in the pre-monsoon month, revealing the model's skill in capturing diurnal and MDA8 O3 levels.
Christoph Fischer, Andreas H. Fink, Elmar Schömer, Marc Rautenhaus, and Michael Riemer
Geosci. Model Dev., 17, 4213–4228, https://doi.org/10.5194/gmd-17-4213-2024, https://doi.org/10.5194/gmd-17-4213-2024, 2024
Short summary
Short summary
This study presents a method for identifying and tracking 3-D potential vorticity structures within African easterly waves (AEWs). Each identified structure is characterized by descriptors, including its 3-D position and orientation, which have been validated through composite comparisons. A trough-centric perspective on the descriptors reveals the evolution and distinct characteristics of AEWs. These descriptors serve as valuable statistical inputs for the study of AEW-related phenomena.
Sandro Vattioni, Andrea Stenke, Beiping Luo, Gabriel Chiodo, Timofei Sukhodolov, Elia Wunderlin, and Thomas Peter
Geosci. Model Dev., 17, 4181–4197, https://doi.org/10.5194/gmd-17-4181-2024, https://doi.org/10.5194/gmd-17-4181-2024, 2024
Short summary
Short summary
We investigate the sensitivity of aerosol size distributions in the presence of strong SO2 injections for climate interventions or after volcanic eruptions to the call sequence and frequency of the routines for nucleation and condensation in sectional aerosol models with operator splitting. Using the aerosol–chemistry–climate model SOCOL-AERv2, we show that the radiative and chemical outputs are sensitive to these settings at high H2SO4 supersaturations and how to obtain reliable results.
Najmeh Kaffashzadeh and Abbas-Ali Aliakbari Bidokhti
Geosci. Model Dev., 17, 4155–4179, https://doi.org/10.5194/gmd-17-4155-2024, https://doi.org/10.5194/gmd-17-4155-2024, 2024
Short summary
Short summary
This paper assesses the capability of two state-of-the-art global datasets in simulating surface ozone over Iran using a new methodology. It is found that the global model data need to be downscaled for regulatory purposes or policy applications at local scales. The method can be useful not only for the evaluation but also for the prediction of other chemical species, such as aerosols.
Franciscus Liqui Lung, Christian Jakob, A. Pier Siebesma, and Fredrik Jansson
Geosci. Model Dev., 17, 4053–4076, https://doi.org/10.5194/gmd-17-4053-2024, https://doi.org/10.5194/gmd-17-4053-2024, 2024
Short summary
Short summary
Traditionally, high-resolution atmospheric models employ periodic boundary conditions, which limit simulations to domains without horizontal variations. In this research open boundary conditions are developed to replace the periodic boundary conditions. The implementation is tested in a controlled setup, and the results show minimal disturbances. Using these boundary conditions, high-resolution models can be forced by a coarser model to study atmospheric phenomena in realistic background states.
Caroline Arnold, Shivani Sharma, Tobias Weigel, and David S. Greenberg
Geosci. Model Dev., 17, 4017–4029, https://doi.org/10.5194/gmd-17-4017-2024, https://doi.org/10.5194/gmd-17-4017-2024, 2024
Short summary
Short summary
In atmospheric models, rain formation is simplified to be computationally efficient. We trained a machine learning model, SuperdropNet, to emulate warm-rain formation based on super-droplet simulations. Here, we couple SuperdropNet with an atmospheric model in a warm-bubble experiment and find that the coupled simulation runs stable and produces reasonable results, making SuperdropNet a viable ML proxy for droplet simulations. We also present a comprehensive benchmark for coupling architectures.
Byoung-Joo Jung, Benjamin Ménétrier, Chris Snyder, Zhiquan Liu, Jonathan J. Guerrette, Junmei Ban, Ivette Hernández Baños, Yonggang G. Yu, and William C. Skamarock
Geosci. Model Dev., 17, 3879–3895, https://doi.org/10.5194/gmd-17-3879-2024, https://doi.org/10.5194/gmd-17-3879-2024, 2024
Short summary
Short summary
We describe the multivariate static background error covariance (B) for the JEDI-MPAS 3D-Var data assimilation system. With tuned B parameters, the multivariate B gives physically balanced analysis increment fields in the single-observation test framework. In the month-long cycling experiment with a global 60 km mesh, 3D-Var with static B performs stably. Due to its simple workflow and minimal computational requirements, JEDI-MPAS 3D-Var can be useful for the research community.
Michal Belda, Nina Benešová, Jaroslav Resler, Peter Huszár, Ondřej Vlček, Pavel Krč, Jan Karlický, Pavel Juruš, and Kryštof Eben
Geosci. Model Dev., 17, 3867–3878, https://doi.org/10.5194/gmd-17-3867-2024, https://doi.org/10.5194/gmd-17-3867-2024, 2024
Short summary
Short summary
For modeling atmospheric chemistry, it is necessary to provide data on emissions of pollutants. These can come from various sources and in various forms, and preprocessing of the data to be ingestible by chemistry models can be quite challenging. We developed the FUME processor to use a database layer that internally transforms all input data into a rigid structure, facilitating further processing to allow for emission processing from the continental to the street scale.
Bent Harnist, Seppo Pulkkinen, and Terhi Mäkinen
Geosci. Model Dev., 17, 3839–3866, https://doi.org/10.5194/gmd-17-3839-2024, https://doi.org/10.5194/gmd-17-3839-2024, 2024
Short summary
Short summary
Probabilistic precipitation nowcasting (local forecasting for 0–6 h) is crucial for reducing damage from events like flash floods. For this goal, we propose the DEUCE neural-network-based model which uses data and model uncertainties to generate an ensemble of potential precipitation development scenarios for the next hour. Trained and evaluated with Finnish precipitation composites, DEUCE was found to produce more skillful and reliable nowcasts than established models.
Emma Howard, Steven Woolnough, Nicholas Klingaman, Daniel Shipley, Claudio Sanchez, Simon C. Peatman, Cathryn E. Birch, and Adrian J. Matthews
Geosci. Model Dev., 17, 3815–3837, https://doi.org/10.5194/gmd-17-3815-2024, https://doi.org/10.5194/gmd-17-3815-2024, 2024
Short summary
Short summary
This paper describes a coupled atmosphere–mixed-layer ocean simulation setup that will be used to study weather processes in Southeast Asia. The set-up has been used to compare high-resolution simulations, which are able to partially resolve storms, to coarser simulations, which cannot. We compare the model performance at representing variability of rainfall and sea surface temperatures across length scales between the coarse and fine models.
Álvaro González-Cervera and Luis Durán
EGUsphere, https://doi.org/10.5194/egusphere-2024-958, https://doi.org/10.5194/egusphere-2024-958, 2024
Short summary
Short summary
RASCAL is an open-source Python tool designed for reconstructing daily climate observations, especially in regions with complex local phenomena. It merges large-scale weather patterns with local weather using the Analog Method. Evaluations in central Spain show that RASCAL outperforms ERA20C reanalysis in reconstructing precipitation and temperature. RASCAL offers opportunities of broad scientific applications, from short-term forecasts to local-scale climate change scenarios.
Phuong Loan Nguyen, Lisa V. Alexander, Marcus J. Thatcher, Son C. H. Truong, Rachael N. Isphording, and John L. McGregor
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-84, https://doi.org/10.5194/gmd-2024-84, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
We apply a comprehensive approach to select a subset of CMIP6 that is suitable for dynamical downscaling over Southeast Asia by considering model performance, model independence, data availability, and future climate change spread. The standardised benchmarking framework is applied to identify a subset of models through two stages of assessment: statistical-based and process-based metrics. We finalize a sub-set of two independent models for dynamical downscaling over Southeast Asia.
Andrés Yarce Botero, Michiel van Weele, Arjo Segers, Pier Siebesma, and Henk Eskes
Geosci. Model Dev., 17, 3765–3781, https://doi.org/10.5194/gmd-17-3765-2024, https://doi.org/10.5194/gmd-17-3765-2024, 2024
Short summary
Short summary
HARMONIE WINS50 reanalysis data with 0.025° × 0.025° resolution from 2019 to 2021 were coupled with the LOTOS-EUROS Chemical Transport Model. HARMONIE and ECMWF meteorology configurations against Cabauw observations (52.0° N, 4.9° W) were evaluated as simulated NO2 concentrations with ground-level sensors. Differences in crucial meteorological input parameters (boundary layer height, vertical diffusion coefficient) between the hydrostatic and non-hydrostatic models were analysed.
Cited articles
Baldauf, M. and Brdar, S.: An analytic solution for linear gravity waves in a
channel as a test for numerical models using the non-hydrostatic,
compressible Euler equations, Q. J. Roy. Meteor. Soc., 139, 1977–1989,
https://doi.org/10.1002/qj.2105, 2014. a
Baldauf, M. and Brdar, S.: 3D diffusion in terrain-following coordinates:
testing and stability of horizontally explicit, vertically implicit
discretizations, Q. J. Roy. Meteor. Soc., 142, 2087–2101,
https://doi.org/10.1002/qj.2805, 2016. a
Becker, E.: Sensitivity of the upper mesosphere to the Lorenz energy cycle of
the troposphere, J. Atmos. Sci., 66, 647–666, https://doi.org/10.1175/2008JAS2735.1,
2009. a
Becker, E. and Vadas, S. L.: Secondary gravity waves in the winter mesosphere:
Results from a high-resolution global circulation model, J. Geophys.
Res.-Atmos., 123, 2605–2627, https://doi.org/10.1002/2017JD027460, 2018. a
Bonaventura, L. and Ringler, T.: Analysis of discrete shallow-water models on
geodesic Delaunay grids with C-type staggering, Mon. Weather Rev., 133,
2351–2373, https://doi.org/10.1175/MWR2986.1, 2005. a
Charlton-Perez, A. J., Baldwin, M. P., Birner, T., Black, R. X., Butler, A. H.,
and Calvo, N.: On the lack of stratospheric dynamical variability in low-top
versions of the CMIP5 models, J. Geophys. Res.-Atmos., 118, 2494–2505,
https://doi.org/10.1002/jgrd.50125, 2013. a
Crueger, T., Giorgetta, M. A., Brokopf, R., Esch, M., Fiedler, S., Hohenegger,
C., Kornblueh, L., Mauritsen, T., Nam, C., Naumann, A. K., Peters, K., Rast,
S., Roeckner, E., Sakradzija, M., Schmidt, H., Vial, J., Vogel, R., and
Stevens, B.: ICON-A, the atmosphere component of the ICON Earth system
model: II. Model evaluation, J. Adv. Model. Earth Sy., 10, 1638–1662,
https://doi.org/10.1029/2017MS001233, 2018. a, b, c, d, e
Davies, T., Cullen, M., Malcolm, A., Mawson, M., Staniforth, A., White, A., and
Wood, N.: A new dynamical core for the Met Office's global and regional
modelling of the atmosphere, Q. J. Roy. Meteor. Soc., 131, 1759–1782,
https://doi.org/10.1256/qj.04.101, 2005. a
Dawkins, E. C. M., Feofilov, A., Rezac, L., Kutepov, A. A., Janches, D.,
Höffner, J., Chu, X., Lu, X., Mlynczak, M. G., and Russell, J.:
Validation of SABER v2.0 operational temperature data with ground-based
lidars in the mesosphere-lower thermosphere region (75–105 km), J. Geophys.
Res.-Atmos., 123, 9916–9934, https://doi.org/10.1029/2018JD028742, 2018. a
Dipankar, A., Stevens, B., Heinze, R., Moseley, C., Zängl, G., Giorgetta,
M. A., and Brdar, S.: Large eddy simulation using the general circulation
model ICON, J. Adv. Model. Earth Sy., 7, 963–986,
https://doi.org/10.1002/2015MS000431, 2015. a, b
Fomichev, V. I. and Blanchet, J.-P.: Development of the new CCC/GCM longwave
radiation model for extension into the middle atmosphere, Atmos. Ocean, 33,
513–529, https://doi.org/10.1080/07055900.1995.9649543, 1995. a, b
Fomichev, V. I., Ward, W. E., Beagley, S. R., McLandress, C., McConnell, J. C.,
McFarlane, N. A., and Shepherd, T. G.: Extended Canadian Middle
Atmosphere Model: Zonal-mean climatology and physical
parameterizations, J. Geophys. Res., 107, 4087, https://doi.org/10.1029/2001JD000479,
2002. a
Fritts, D. C. and Alexander, M. J.: Gravity wave dynamics and effects in the
middle atmosphere, Rev. Geophys., 41, 1003, https://doi.org/10.1029/2001RG000106, 2003. a
Gassmann, A.: Inspection of hexagonal and triangular C-grid discretizations
of the shallow water equations, J. Comput. Phys., 230, 2706–2721,
https://doi.org/10.1016/j.jcp.2011.01.014, 2011. a
Gassmann, A.: Discretization of generalized Coriolis and friction terms on
the deformed hexagonal C-grid, Q. J. Roy. Meteor. Soc., 144, 2038–2053,
https://doi.org/10.1002/qj.3294, 2018. a
Giorgetta, M. A., Brokopf, R., Crueger, T., Esch, M., Fiedler, S., Helmert, J.,
Hohenegger, C., Kornblueh, L., Köhler, M., Manzini, E., Mauritsen, T.,
Nam, C., Raddatz, T., Rast, S., Reinert, D., Sakradzija, M., Schmidt, H.,
Schneck, R., Schnur, R., Silvers, L., Wan, H., Zängl, G., and Stevens,
B.: ICON-A, the atmosphere component of the ICON Earth system model:
I. Model description, J. Adv. Model. Earth Sy., 10, 1613–1637,
https://doi.org/10.1029/2017MS001242, 2018. a, b, c, d, e
Heinze, R., Dipankar, A., Henken, C. C., Moseley, C., Sourdeval, O.,
Trömel, S., Xie, X., Adamidis, P., Ament, F., Baars, H., Barthlott, C.,
Behrendt, A., Blahak, U., Bley, S., Brdar, S., Brueck, M., Crewell, S.,
Deneke, H., Di Girolamo, P., Evaristo, R., Fischer, J., Frank, C.,
Friederichs, P., Göcke, T., Gorges, K., Hande, L., Hanke, M., Hansen, A.,
Hege, H.-C., Hoose, C., Jahns, T., Kalthoff, N., Klocke, D., Kneifel, S.,
Knippertz, P., Kuhn, A., van Laar, T., Macke, A., Maurer, V., Mayer, B.,
Meyer, C. I., Muppa, S. K., Neggers, R. A. J., Orlandi, E., Pantillon, F.,
Pospichal, B., Röber, N., Scheck, L., Seifert, A., Seifert, P., Senf, F.,
Siligam, P., Simmer, C., Steinke, S., Stevens, B., Wapler, K., Weniger, M.,
Wulfmeyer, V., Zängl, G., Zhang, D., and Quaas, J.: Large-eddy
simulations over Germany using ICON: a comprehensive evaluation, Q. J.
Roy. Meteor. Soc., 143, 69–100, https://doi.org/10.1002/qj.2947, 2017. a
Hines, C. O.: Doppler-spread parameterization of gravity-wave momentum
deposition in the middle atmosphere. Part 1: Basic formulation, J. Atmos.
Sol.-Terr. Phy., 59, 371–386, https://doi.org/10.1016/S1364-6826(96)00079-X,
1997a. a, b
Hines, C. O.: Doppler-spread parameterization of gravity-wave momentum
deposition in the middle atmosphere. Part 2: Broad and quasi monochromatic
spectra, and implementation, J. Atmos. Sol.-Terr. Phy., 59, 387–400,
https://doi.org/10.1016/S1364-6826(96)00079-X, 1997b. a, b, c
Hong, S.-S. and Lindzen, R. S.: Solar Semidiurnal Tide in the Thermosphere, J.
Atmos. Sci., 33, 135–153,
https://doi.org/10.1175/1520-0469(1976)033<0135:SSTITT>2.0.CO;2, 1976. a, b
Iacono, M. J., Delamere, J. S., Mlawer, E. J., Shephard, M. W., Clough, S. A.,
and Collins, W. D.: Radiative forcing by long-lived greenhouse gases:
Calculations with the AER radiative transfer models, J. Geophys.
Res.-Atmos., 113, d13103, https://doi.org/10.1029/2008JD009944, 2008. a
ICON developers: ICON : Icosahedral Nonhydrostatic Weather and Climate Model, available at: https://code.mpimet.mpg.de/projects/iconpublic, last access: 14 November 2018. a
Jablonowski, C. and Williamson, D. L.: A baroclinic instability test case for
atmospheric model dynamical cores, Q. J. Roy. Meteor. Soc., 132, 2943–2975,
https://doi.org/10.1256/qj.06.12, 2006. a, b
Kasahara, A.: The roles of the horizontal component of the Earth's angular
velocity in nonhydrostatic linear models, J. Atmos. Sci., 60, 1085–1095,
https://doi.org/10.1175/1520-0469(2003)60<1085:TROTHC>2.0.CO;2, 2003. a, b
Kim, Y.-J., Eckermann, S. D., and Chun, H.-Y.: An overview of the past, present
and future of gravity-wave drag parametrization for numerical climate and
weather prediciton models, Atmos. Ocean, 40, 65–98, https://doi.org/10.3137/ao.410105,
2003. a
Kinne, S., O'Donnel, D., Stier, P., Kloster, S., Zhang, K., Schmidt, H., Rast,
S., Giorgetta, M., Eck, T. F., and Stevens, B.: MAC-v1: A new global aerosol
climatology for climate studies, J. Adv. Model. Earth Sy., 5, 704–740,
https://doi.org/10.1002/jame.20035, 2013. a
Kinnison, D. E., Brasseur, G. P., Walters, S., Garcia, R. R., Marsh, D. R.,
Sassi, F., Harvey, V. L., Randall, C. E., Emmons, L., Lamarque, J. F., Hess,
P., Orlando, J. J., Tie, X. X., Randel, W., Pan, L. L., Gettelman, A.,
Granier, C., Diehl, T., Niemeier, U., and Simmons, A. J.: Sensitivity of
chemical tracers to meteorological parameters in the MOZART-3 chemical
transport model, J. Geophys. Res.-Atmos., 112, D20302,
https://doi.org/10.1029/2006JD007879, 2007. a
Kirchhoff, G.: Vorlesung über mathematische Physik: Mechanik, B. G.
Teubner, Leipzig, 1876. a
Klemp, J. B., Dudhia, J., and Hassiotis, A. D.: An upper gravity-wave absorbing
layer for NWP applications, Mon. Weather Rev., 136, 3987–4004,
https://doi.org/10.1175/2008MWR2596.1, 2008. a
Kockarts, G.: Nitric oxide cooling in the terrestrial thermosphere, Geophys.
Res. Lett., 7, 137–140, https://doi.org/10.1029/GL007i002p00137, 1980. a, b
Läuter, M., Handorf, D., and Dethloff, K.: Unsteady analytical solutions of
the spherical shallow water equations, J. Comput. Phys., 210, 535–553,
https://doi.org/10.1016/j.jcp.2005.04.022, 2005. a, b, c, d
Liu, H.-L., Bardeen, C. G., Foster, B. T., Lauritzen, P., Liu, J., Lu, G.,
Marsh, D. R., Maute, A., McInerney, J. M., Pedatella, N. M., Qian, L.,
Richmond, A. D., Roble, R. G., Solomon, S. C., Vitt, F. M., and Wang, W.:
Development and validation of the Whole Atmosphere Community Climate
Model with thermosphere and ionosphere extension (WACCM-X 2.0), J. Adv.
Model. Earth Sy., 10, 381–402, https://doi.org/10.1002/2017MS001232, 2018. a
Manzini, E. and McFarlane, N. A.: The effect of varying the source spectrum of
a gravity wave parameterization in a middle atmosphere general circulation
model, J. Geophys. Res., 103, 31523–31539, https://doi.org/10.1029/98JD02274, 1998. a
Manzini, E., McFarlane, N. A., and McLandress, C.: Impact of the Doppler
spread parameterization on the simulation of the middle atmosphere
circulation using the MA/ECHAM4 general circulation model, J. Geophys.
Res., 102, 25751–25762, https://doi.org/10.1029/97JD01096, 1997. a
Miyahara, S., Yoshida, Y., and Miyoshi, Y.: Dynamic coupling between the lower
and upper atmosphere by tides and gravity waves, J. Atmos. Terr. Phys., 55,
1039–1053, https://doi.org/10.1016/0021-9169(93)90096-H, 1993. a
Mlawer, E. J., Taubman, S. J., Brown, P. D., Iacono, M. J., and Clough, S. A.:
Radiative transfer for inhomogeneous atmospheres: RRTM, a validated
correlated-k model for the longwave, J. Geophys. Res.-Atmos., 102,
16663–16682, https://doi.org/10.1029/97JD00237, 1997. a
Mlynczak, M. G. and Solomon, S.: A detailed evaluation of the heating
efficiency in the middle atmosphere, J. Geophys. Res., 98, 10517–10541,
https://doi.org/10.1029/93JD00315, 1993. a, b
Ogibalov, V. and Fomichev, V.: Parameterization of solar heating by the near
IR CO2 bands in the mesosphere, Adv. Space Res., 32, 759–764,
https://doi.org/10.1016/S0273-1177(03)80069-8, 2003. a, b
Pincus, R. and Stevens, B.: Paths to accuracy for radiation parameterizations
in atmospheric models, J. Adv. Model. Earth Sy., 5, 225–233,
https://doi.org/10.1002/jame.20027, 2013. a
Richards, P. G., Torr, M. R., and Torr, D. G.: The seasonal effect of nitric
oxide cooling on the thermospheric U.V. heat budget, Planet. Space Sci.,
30, 515–518, https://doi.org/10.1016/0032-0633(82)90062-9, 1982. a
Richards, P. G., Fennelly, J. A., and Torr, D. G.: EUVAC: A solar EUV Flux
Model for aeronomic calculations, J. Geophys. Res.-Space., 99, 8981–8992,
https://doi.org/10.1029/94JA00518, 1994. a, b
Richter, J. H., Sassi, F., Garcia, R. R., Matthes, K., and Fischer, C. A.:
Dynamics of the middle atmosphere as simulated by the Whole Atmosphere
Community Climate Model, version 3 (WACCM3), J. Geophys. Res.-Atmos.,
113, D08101, https://doi.org/10.1029/2007JD009269, 2008. a
Roble, R. G.: Energetics of the Mesosphere and Thermosphere,
American Geophysical Union, 1–21, 1995. a
Roeckner, E., Brokopf, R., Esch, M., Giorgetta, M. A., Hagemann, S., Kornblueh,
L., Manzini, E., Schlese, U., and Schulzweida, U.: Sensitivity of simulated
climate to horizontal and vertical resolution in the ECHAM5 atmosphere
model, J. Climate, 19, 3771–3791, https://doi.org/10.1175/JCLI3824.1, 2006. a
Sadourny, R.: Conservative finite-difference approximations of the primitve
equations on quasi-uniform spherical grids, Mon. Weather Rev., 100, 136–144,
1972. a
Scaife, A. A., Spangehl, T., Fereday, D. R., and Cubasch, U.: Climate change
projections and stratosphere-troposphere interaction, Clim. Dynam., 38,
2089–2097, https://doi.org/10.1007/s00382-011-1080-7, 2012. a
Schmidt, H., Brasseur, G. P., Charron, M., Manzini, E., Giorgetta, M. A.,
Diehl, T., Fomichev, V. I., Kinnison, D., Marsh, D., and Walters, S.: The
HAMMONIA chemistry climate model: sensitivity of the mesopause region to
the 11-year solar cycle and CO2 doubling, J. Climate, 19, 3903–3931,
https://doi.org/10.1175/JCLI3829.1, 2006. a, b, c
Shepherd, T. G., Semeniuk, K., and Koshyk, J. N.: Sponge layer feedbacks in
middle-atmosphere models, J. Geophys. Res., 101, 23447–23464,
https://doi.org/10.1029/96JD01994, 1996. a
Skamarock, W. C. and Klemp, J. B.: A time-split nonhydrostatic atmospheric
model for weather research and forecasting applications, J. Comput. Phys.,
227, 3465–3485, https://doi.org/10.1016/j.jcp.2007.01.037, 2008. a
Smolarkiewicz, P. K., Deconinck, W., Hamrud, M., Kühnlein, C., Mozdzynski,
G., Szmelter, J., and Wedi, N. P.: A finite-volume module for simulating
global all-scale atmospheric flows, J. Comput. Phys., 314, 287–304,
https://doi.org/10.1016/j.jcp.2016.03.015, 2016. a
Staniforth, A. and White, A. A.: Unsteady exact solutions of the flow equations
for three-dimensional spherical atmospheres, Q. J. Roy. Meteor. Soc., 134,
1615–1626, https://doi.org/10.1002/qj.300, 2008. a, b
Staniforth, A. and Wood, N.: The deep-atmosphere Euler equations in a
generalized vertical coordinate, Mon. Weather Rev., 131, 1931–1938,
https://doi.org/10.1175//2564.1, 2003. a, b
Staniforth, A. and Wood, N.: Aspects of the dynamical core of a nonhydrostatic,
deep-atmosphere, unified weather and climate-prediction model, J. Comput.
Phys., 227, 3445–3464, https://doi.org/10.1016/j.jcp.2006.11.009, 2008. a, b, c
Stevens, B., Giorgetta, M., Esch, M., Mauritsen, T., Crueger, T., Rast, S.,
Salzmann, M., Schmidt, H., Bader, J., Block, K., Brokopf, R., Fast, I.,
Kinne, S., Kornblueh, L., Lohmann, U., Pincus, R., Reichler, T., and
Roeckner, E.: Atmospheric component of the MPI-M Earth System Model:
ECHAM6, J. Adv. Model. Earth Sy., 5, 146–172, https://doi.org/10.1002/jame.20015,
2013. a
Strobel, D. F.: Parameterization of the atmospheric heating rate from 15 to
120 km due to O2 and O3 absorption of solar radiation, J. Geophys. Res., 83,
6225–6230, https://doi.org/10.1029/JC083iC12p06225, 1978. a, b
Swinbank, R. and Ortland, D. A.: Compilation of wind data for the Upper
Atmosphere Research Satellite (UARS) reference atmosphere project, J.
Geophys. Res.-Atmos., 108, 4615, https://doi.org/10.1029/2002JD003135, 2003. a
Taylor, K. E., Williamson, D., and Zwiers, F.: The sea surface temperature and
sea-ice concentration boundary conditions for AMIP II simulations, Tech.
Rep. PCMDI Report No. 60, Program for Climate Model Diagnosis and
Intercomparison, Lawrence Livermore National Laboratory, Livermore, Ca, 1998. a
Thompson, D. W. J., Baldwin, M. P., and Wallace, J. M.: Stratospheric
connection to northern hemisphere wintertime weather: implications for
prediction, J. Climate, 15, 1421–1428,
https://doi.org/10.1175/1520-0442(2002)015<1421:SCTNHW>2.0.CO;2, 2002. a
Thuburn, J. and White, A. A.: A geometrical view of the shallow-atmosphere
approximation, with application to the semi-Lagrangian departure point
calculation, Q. J. Roy. Meteor. Soc., 139, 261–268, https://doi.org/10.1002/qj.1962,
2013. a, b
Thuburn, J., Wood, N., and Staniforth, A.: Normal modes of deep atmospheres.
I: Spherical geometry, Q. J. Roy. Meteor. Soc., 128, 1771–1792,
https://doi.org/10.1256/003590002320603403, 2002a. a
Thuburn, J., Wood, N., and Staniforth, A.: Normal modes of deep atmospheres.
II: f–F-plane geometry, Q. J. Roy. Meteor. Soc., 128, 1793–1806,
https://doi.org/10.1256/003590002320603412, 2002b. a
Tomita, H. and Satoh, M.: A new dynamical framework of nonhydrostatic global
model using the icosahedral grid, Fluid Dyn. Res., 34, 357–400,
https://doi.org/10.1016/j.fluiddyn.2004.03.003, 2004. a
Tort, M. and Dubos, T.: Dynamically consistent shallow-atmosphere equations
with a complete Coriolis force, Q. J. Roy. Meteor. Soc., 140, 2388–2392,
https://doi.org/10.1002/qj.2274, 2014. a
Ullrich, P. A. and Jablonowski, C.: MCore: A non-hydrostatic atmospheric
dynamical core utilizing high-order finite-volume methods, J. Comput. Phys.,
231, 5078–5108, https://doi.org/10.1016/j.jcp.2012.04.024, 2012. a
Ullrich, P. A., Jablonowski, C., Kent, J., Lauritzen, P. H., Nair, R., Reed, K. A., Zarzycki, C. M., Hall, D. M., Dazlich, D., Heikes, R., Konor, C., Randall, D., Dubos, T., Meurdesoif, Y., Chen, X., Harris, L., Kühnlein, C., Lee, V., Qaddouri, A., Girard, C., Giorgetta, M., Reinert, D., Klemp, J., Park, S.-H., Skamarock, W., Miura, H., Ohno, T., Yoshida, R., Walko, R., Reinecke, A., and Viner, K.: DCMIP2016: a review of non-hydrostatic dynamical core design and intercomparison of participating models, Geosci. Model Dev., 10, 4477–4509, https://doi.org/10.5194/gmd-10-4477-2017, 2017. a, b
Walko, R. L. and Avissar, R.: The Ocean-Land-Atmosphere Model (OLAM).
Part II: Formulation and tests of the nonhydrostatic dynamic core, Mon.
Weather Rev., 136, 4045–4062, https://doi.org/10.1175/2008MWR2523.1, 2008. a
Wan, H., Giorgetta, M. A., Zängl, G., Restelli, M., Majewski, D., Bonaventura, L., Fröhlich, K., Reinert, D., Rípodas, P., Kornblueh, L., and Förstner, J.: The ICON-1.2 hydrostatic atmospheric dynamical core on triangular grids – Part 1: Formulation and performance of the baseline version, Geosci. Model Dev., 6, 735–763, https://doi.org/10.5194/gmd-6-735-2013, 2013. a, b
Watanabe, S. and Miyahara, S.: Quantifiaction of the gravity wave forcing of
the migrating diurnal tide in a gravity wave-resolving general circulation
model, J. Geophys. Res., 114, D07110, https://doi.org/10.1029/2008JD011218, 2009.
a, b
Watanabe, S., Kawatani, Y., Tomikawa, Y., Miyazaki, K., Takahashi, M., and
Sato, K.: General aspects of a T213L256 middle atmosphere general
circulation model, J. Geophys. Res., 113, D12110,
https://doi.org/10.1029/2008JD010026, 2008. a
Watanabe, S., Sato, K., Kawatani, Y., and Takahashi, M.: Vertical resolution dependence of gravity wave momentum flux simulated by an atmospheric general circulation model, Geosci. Model Dev., 8, 1637–1644, https://doi.org/10.5194/gmd-8-1637-2015, 2015. a
Wedi, N. P. and Smolarkiewicz, P. K.: A framework for the testing global
non-hydrostatic models, Q. J. Roy. Meteor. Soc., 135, 469–484,
https://doi.org/10.1002/qj.377, 2009. a, b, c
White, A. A., Hoskins, B. J., Roulstone, I., and Staniforth, A.: Consistent
approximate models of the global atmosphere: shallow, deep, hydrostatic,
quasi-hydrostatic and non-hydrostatic, Q. J. Roy. Meteor. Soc., 131,
2081–2107, https://doi.org/10.1256/qj.04.49, 2005. a, b, c, d
Wood, N. and Staniforth, A.: The deep-atmosphere Euler equations with a
mass-based vertical coordinate, Q. J. Roy. Meteor. Soc., 129, 1289–1300,
https://doi.org/10.1256/qj.02.153, 2003. a, b
Wood, N., Staniforth, A., White, A., Allen, T., Diamantakis, M., Gross, M.,
Melvin, T., Smith, C., Vosper, S., Zerroukat, M., and Thuburn, J.: An
inherently mass-conserving semi-implicit semi-Lagrangian discretization of
the deep-atmosphere global non-hydrostatic equations, Q. J. Roy. Meteor.
Soc., 140, 1505–1520, https://doi.org/10.1002/qj.2235, 2014. a, b, c
Zängl, G.: Extending the numerical stability limit of terrain-following
coordinate models over steep slopes, Mon. Weather Rev., 140, 3722–3733,
https://doi.org/10.1175/MWR-D-12-00049.1, 2012. a
Short summary
We present an upper-atmosphere extension of the ICOsahedral Non-hydrostatic (ICON) model.
This includes an extension of the model dynamics from a shallow to a deep atmosphere
and the implementation of upper-atmosphere physics parameterizations.
Idealized test cases and climate simulations are performed in order to evaluate this new configuration, named UA-ICON.
We present an upper-atmosphere extension of the ICOsahedral Non-hydrostatic (ICON) model.
This...