Articles | Volume 11, issue 1
https://doi.org/10.5194/gmd-11-61-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/gmd-11-61-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Impacts of microtopographic snow redistribution and lateral subsurface processes on hydrologic and thermal states in an Arctic polygonal ground ecosystem: a case study using ELM-3D v1.0
Climate & Ecosystem Sciences Division, Lawrence Berkeley National
Laboratory,1 Cyclotron Road, Berkeley, CA 94720, USA
William J. Riley
Climate & Ecosystem Sciences Division, Lawrence Berkeley National
Laboratory,1 Cyclotron Road, Berkeley, CA 94720, USA
Haruko M. Wainwright
Climate & Ecosystem Sciences Division, Lawrence Berkeley National
Laboratory,1 Cyclotron Road, Berkeley, CA 94720, USA
Baptiste Dafflon
Climate & Ecosystem Sciences Division, Lawrence Berkeley National
Laboratory,1 Cyclotron Road, Berkeley, CA 94720, USA
Fengming Yuan
Environmental Sciences Division, Oak Ridge National Laboratory, Oak
Ridge, TN 37831-6301, USA
Vladimir E. Romanovsky
Geophysical Institute, University of Alaska Fairbanks, Fairbanks, AK
99775, USA
Related authors
Zeli Tan, Donghui Xu, Sourav Taraphdar, Jiangqin Ma, Gautam Bisht, and L. Ruby Leung
Hydrol. Earth Syst. Sci., 29, 3833–3852, https://doi.org/10.5194/hess-29-3833-2025, https://doi.org/10.5194/hess-29-3833-2025, 2025
Short summary
Short summary
Flow depth and velocity determine various river functions, but their high-resolution simulations are expensive. Here, we developed a downscaling approach that can provide fast and accurate estimation of high-resolution river hydrodynamics. The 84-fold acceleration achieved by the method makes reliable flood risk analysis that needs hundreds or thousands of model runs feasible. More importantly, it provides an opportunity to couple large-scale hydrodynamics with local processes in river models.
Katherine M. Smith, Alice M. Barthel, LeAnn M. Conlon, Luke P. Van Roekel, Anthony Bartoletti, Jean-Christophe Golaz, Chengzhu Zhang, Carolyn Branecky Begeman, James J. Benedict, Gautam Bisht, Yan Feng, Walter Hannah, Bryce E. Harrop, Nicole Jeffery, Wuyin Lin, Po-Lun Ma, Mathew E. Maltrud, Mark R. Petersen, Balwinder Singh, Qi Tang, Teklu Tesfa, Jonathan D. Wolfe, Shaocheng Xie, Xue Zheng, Karthik Balaguru, Oluwayemi Garuba, Peter Gleckler, Aixue Hu, Jiwoo Lee, Ben Moore-Maley, and Ana C. Ordoñez
Geosci. Model Dev., 18, 1613–1633, https://doi.org/10.5194/gmd-18-1613-2025, https://doi.org/10.5194/gmd-18-1613-2025, 2025
Short summary
Short summary
Version 2.1 of the U.S. Department of Energy's Energy Exascale Earth System Model (E3SM) adds the Fox-Kemper et al. (2011) mixed-layer eddy parameterization, which restratifies the ocean surface layer through an overturning streamfunction. Results include surface layer bias reduction in temperature, salinity, and sea ice extent in the North Atlantic; a small strengthening of the Atlantic meridional overturning circulation; and improvements to many atmospheric climatological variables.
Huilin Huang, Yun Qian, Gautam Bisht, Jiali Wang, Tirthankar Chakraborty, Dalei Hao, Jianfeng Li, Travis Thurber, Balwinder Singh, Zhao Yang, Ye Liu, Pengfei Xue, William J. Sacks, Ethan Coon, and Robert Hetland
Geosci. Model Dev., 18, 1427–1443, https://doi.org/10.5194/gmd-18-1427-2025, https://doi.org/10.5194/gmd-18-1427-2025, 2025
Short summary
Short summary
We integrate the E3SM Land Model (ELM) with the WRF model through the Lightweight Infrastructure for Land Atmosphere Coupling (LILAC) Earth System Modeling Framework (ESMF). This framework includes a top-level driver, LILAC, for variable communication between WRF and ELM and ESMF caps for ELM initialization, execution, and finalization. The LILAC–ESMF framework maintains the integrity of the ELM's source code structure and facilitates the transfer of future ELM model developments to WRF-ELM.
Dongyu Feng, Zeli Tan, Darren Engwirda, Jonathan D. Wolfe, Donghui Xu, Chang Liao, Gautam Bisht, James J. Benedict, Tian Zhou, Mithun Deb, Hong-Yi Li, and L. Ruby Leung
EGUsphere, https://doi.org/10.5194/egusphere-2024-2785, https://doi.org/10.5194/egusphere-2024-2785, 2024
Short summary
Short summary
Our study explores how riverine and coastal flooding during hurricanes is influenced by the interaction of atmosphere, land, river and ocean conditions. Using an advanced Earth system model, we simulate Hurricane Irene to evaluate how meteorological and hydrological uncertainties affect flood modeling. Our findings reveal the importance of a multi-component modeling system, how hydrological conditions play critical roles in flood modeling, and greater flood risks if multiple factors are present.
Lingcheng Li, Gautam Bisht, Dalei Hao, and L. Ruby Leung
Earth Syst. Sci. Data, 16, 2007–2032, https://doi.org/10.5194/essd-16-2007-2024, https://doi.org/10.5194/essd-16-2007-2024, 2024
Short summary
Short summary
This study fills a gap to meet the emerging needs of kilometer-scale Earth system modeling by developing global 1 km land surface parameters for land use, vegetation, soil, and topography. Our demonstration simulations highlight the substantial impacts of these parameters on spatial variability and information loss in water and energy simulations. Using advanced explainable machine learning methods, we identified influential factors driving spatial variability and information loss.
Donghui Xu, Gautam Bisht, Zeli Tan, Chang Liao, Tian Zhou, Hong-Yi Li, and L. Ruby Leung
Geosci. Model Dev., 17, 1197–1215, https://doi.org/10.5194/gmd-17-1197-2024, https://doi.org/10.5194/gmd-17-1197-2024, 2024
Short summary
Short summary
We aim to disentangle the hydrological and hydraulic controls on streamflow variability in a fully coupled earth system model. We found that calibrating only one process (i.e., traditional calibration procedure) will result in unrealistic parameter values and poor performance of the water cycle, while the simulated streamflow is improved. To address this issue, we further proposed a two-step calibration procedure to reconcile the impacts from hydrological and hydraulic processes on streamflow.
Han Qiu, Gautam Bisht, Lingcheng Li, Dalei Hao, and Donghui Xu
Geosci. Model Dev., 17, 143–167, https://doi.org/10.5194/gmd-17-143-2024, https://doi.org/10.5194/gmd-17-143-2024, 2024
Short summary
Short summary
We developed and validated an inter-grid-cell lateral groundwater flow model for both saturated and unsaturated zone in the ELMv2.0 framework. The developed model was benchmarked against PFLOTRAN, a 3D subsurface flow and transport model and showed comparable performance with PFLOTRAN. The developed model was also applied to the Little Washita experimental watershed. The spatial pattern of simulated groundwater table depth agreed well with the global groundwater table benchmark dataset.
Qi Tang, Jean-Christophe Golaz, Luke P. Van Roekel, Mark A. Taylor, Wuyin Lin, Benjamin R. Hillman, Paul A. Ullrich, Andrew M. Bradley, Oksana Guba, Jonathan D. Wolfe, Tian Zhou, Kai Zhang, Xue Zheng, Yunyan Zhang, Meng Zhang, Mingxuan Wu, Hailong Wang, Cheng Tao, Balwinder Singh, Alan M. Rhoades, Yi Qin, Hong-Yi Li, Yan Feng, Yuying Zhang, Chengzhu Zhang, Charles S. Zender, Shaocheng Xie, Erika L. Roesler, Andrew F. Roberts, Azamat Mametjanov, Mathew E. Maltrud, Noel D. Keen, Robert L. Jacob, Christiane Jablonowski, Owen K. Hughes, Ryan M. Forsyth, Alan V. Di Vittorio, Peter M. Caldwell, Gautam Bisht, Renata B. McCoy, L. Ruby Leung, and David C. Bader
Geosci. Model Dev., 16, 3953–3995, https://doi.org/10.5194/gmd-16-3953-2023, https://doi.org/10.5194/gmd-16-3953-2023, 2023
Short summary
Short summary
High-resolution simulations are superior to low-resolution ones in capturing regional climate changes and climate extremes. However, uniformly reducing the grid size of a global Earth system model is too computationally expensive. We provide an overview of the fully coupled regionally refined model (RRM) of E3SMv2 and document a first-of-its-kind set of climate production simulations using RRM at an economic cost. The key to this success is our innovative hybrid time step method.
Dalei Hao, Gautam Bisht, Karl Rittger, Timbo Stillinger, Edward Bair, Yu Gu, and L. Ruby Leung
The Cryosphere, 17, 673–697, https://doi.org/10.5194/tc-17-673-2023, https://doi.org/10.5194/tc-17-673-2023, 2023
Short summary
Short summary
We comprehensively evaluated the snow simulations in E3SM land model over the western United States in terms of spatial patterns, temporal correlations, interannual variabilities, elevation gradients, and change with forest cover of snow properties and snow phenology. Our study underscores the need for diagnosing model biases and improving the model representations of snow properties and snow phenology in mountainous areas for more credible simulation and future projection of mountain snowpack.
Dalei Hao, Gautam Bisht, Karl Rittger, Edward Bair, Cenlin He, Huilin Huang, Cheng Dang, Timbo Stillinger, Yu Gu, Hailong Wang, Yun Qian, and L. Ruby Leung
Geosci. Model Dev., 16, 75–94, https://doi.org/10.5194/gmd-16-75-2023, https://doi.org/10.5194/gmd-16-75-2023, 2023
Short summary
Short summary
Snow with the highest albedo of land surface plays a vital role in Earth’s surface energy budget and water cycle. This study accounts for the impacts of snow grain shape and mixing state of light-absorbing particles with snow on snow albedo in the E3SM land model. The findings advance our understanding of the role of snow grain shape and mixing state of LAP–snow in land surface processes and offer guidance for improving snow simulations and radiative forcing estimates in Earth system models.
Dongyu Feng, Zeli Tan, Darren Engwirda, Chang Liao, Donghui Xu, Gautam Bisht, Tian Zhou, Hong-Yi Li, and L. Ruby Leung
Hydrol. Earth Syst. Sci., 26, 5473–5491, https://doi.org/10.5194/hess-26-5473-2022, https://doi.org/10.5194/hess-26-5473-2022, 2022
Short summary
Short summary
Sea level rise, storm surge and river discharge can cause coastal backwater effects in downstream sections of rivers, creating critical flood risks. This study simulates the backwater effects using a large-scale river model on a coastal-refined computational mesh. By decomposing the backwater drivers, we revealed their relative importance and long-term variations. Our analysis highlights the increasing strength of backwater effects due to sea level rise and more frequent storm surge.
Yilin Fang, L. Ruby Leung, Charles D. Koven, Gautam Bisht, Matteo Detto, Yanyan Cheng, Nate McDowell, Helene Muller-Landau, S. Joseph Wright, and Jeffrey Q. Chambers
Geosci. Model Dev., 15, 7879–7901, https://doi.org/10.5194/gmd-15-7879-2022, https://doi.org/10.5194/gmd-15-7879-2022, 2022
Short summary
Short summary
We develop a model that integrates an Earth system model with a three-dimensional hydrology model to explicitly resolve hillslope topography and water flow underneath the land surface to understand how local-scale hydrologic processes modulate vegetation along water availability gradients. Our coupled model can be used to improve the understanding of the diverse impact of local heterogeneity and water flux on nutrient availability and plant communities.
Meng Huang, Po-Lun Ma, Nathaniel W. Chaney, Dalei Hao, Gautam Bisht, Megan D. Fowler, Vincent E. Larson, and L. Ruby Leung
Geosci. Model Dev., 15, 6371–6384, https://doi.org/10.5194/gmd-15-6371-2022, https://doi.org/10.5194/gmd-15-6371-2022, 2022
Short summary
Short summary
The land surface in one grid cell may be diverse in character. This study uses an explicit way to account for that subgrid diversity in a state-of-the-art Earth system model (ESM) and explores its implications for the overlying atmosphere. We find that the shallow clouds are increased significantly with the land surface diversity. Our work highlights the importance of accurately representing the land surface and its interaction with the atmosphere in next-generation ESMs.
Lingcheng Li, Gautam Bisht, and L. Ruby Leung
Geosci. Model Dev., 15, 5489–5510, https://doi.org/10.5194/gmd-15-5489-2022, https://doi.org/10.5194/gmd-15-5489-2022, 2022
Short summary
Short summary
Land surface heterogeneity plays a critical role in the terrestrial water, energy, and biogeochemical cycles. Our study systematically quantified the effects of four dominant heterogeneity sources on water and energy partitioning via Sobol' indices. We found that atmospheric forcing and land use land cover are the most dominant heterogeneity sources in determining spatial variability of water and energy partitioning. Our findings can help prioritize the future development of land surface models.
Donghui Xu, Gautam Bisht, Khachik Sargsyan, Chang Liao, and L. Ruby Leung
Geosci. Model Dev., 15, 5021–5043, https://doi.org/10.5194/gmd-15-5021-2022, https://doi.org/10.5194/gmd-15-5021-2022, 2022
Short summary
Short summary
The runoff outputs in Earth system model simulations involve high uncertainty, which needs to be constrained by parameter calibration. In this work, we used a surrogate-assisted Bayesian framework to efficiently calibrate the runoff-generation processes in the Energy Exascale Earth System Model v1 at a global scale. The model performance was improved compared to the default parameter after calibration, and the associated parametric uncertainty was significantly constrained.
Dalei Hao, Gautam Bisht, Yu Gu, Wei-Liang Lee, Kuo-Nan Liou, and L. Ruby Leung
Geosci. Model Dev., 14, 6273–6289, https://doi.org/10.5194/gmd-14-6273-2021, https://doi.org/10.5194/gmd-14-6273-2021, 2021
Short summary
Short summary
Topography exerts significant influence on the incoming solar radiation at the land surface. This study incorporated a well-validated sub-grid topographic parameterization in E3SM land model (ELM) version 1.0. The results demonstrate that sub-grid topography has non-negligible effects on surface energy budget, snow cover, and surface temperature over the Tibetan Plateau and that the ELM simulations are sensitive to season, elevation, and spatial scale.
Zeli Tan, Donghui Xu, Sourav Taraphdar, Jiangqin Ma, Gautam Bisht, and L. Ruby Leung
Hydrol. Earth Syst. Sci., 29, 3833–3852, https://doi.org/10.5194/hess-29-3833-2025, https://doi.org/10.5194/hess-29-3833-2025, 2025
Short summary
Short summary
Flow depth and velocity determine various river functions, but their high-resolution simulations are expensive. Here, we developed a downscaling approach that can provide fast and accurate estimation of high-resolution river hydrodynamics. The 84-fold acceleration achieved by the method makes reliable flood risk analysis that needs hundreds or thousands of model runs feasible. More importantly, it provides an opportunity to couple large-scale hydrodynamics with local processes in river models.
Jonathan Bachman, John Lamb, Craig Ulrich, Neslihan Taş, and Baptiste Dafflon
EGUsphere, https://doi.org/10.5194/egusphere-2025-2341, https://doi.org/10.5194/egusphere-2025-2341, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
We studied how Arctic landscapes change as the ground thaws by comparing measurements taken ten years apart. We found that some areas sank and new ponds formed, with different patterns depending on the shape of the land. These changes affect how water and carbon flow and cycle through the environment. The results help understand how and where the Arctic is shifting, and highlight the need for repeated observations to track long-term changes.
Xiang Huang, Yu Zhang, Bo Gao, Charles J. Abolt, Ryan L. Crumley, Cansu Demir, Richard P. Fiorella, Bob Busey, Bob Bolton, Scott L. Painter, and Katrina E. Bennett
EGUsphere, https://doi.org/10.5194/egusphere-2025-1753, https://doi.org/10.5194/egusphere-2025-1753, 2025
Short summary
Short summary
Predicting hydrological runoff in Arctic permafrost regions is difficult due to limited observations and complex terrain. We used a detailed physics-based model to improve runoff estimates in a Earth system land model. Our method improved runoff accuracy and worked well across two different Arctic regions. This helps make climate models more reliable for understanding water flow in permafrost areas under a changing climate.
Marielle Saunois, Adrien Martinez, Benjamin Poulter, Zhen Zhang, Peter A. Raymond, Pierre Regnier, Josep G. Canadell, Robert B. Jackson, Prabir K. Patra, Philippe Bousquet, Philippe Ciais, Edward J. Dlugokencky, Xin Lan, George H. Allen, David Bastviken, David J. Beerling, Dmitry A. Belikov, Donald R. Blake, Simona Castaldi, Monica Crippa, Bridget R. Deemer, Fraser Dennison, Giuseppe Etiope, Nicola Gedney, Lena Höglund-Isaksson, Meredith A. Holgerson, Peter O. Hopcroft, Gustaf Hugelius, Akihiko Ito, Atul K. Jain, Rajesh Janardanan, Matthew S. Johnson, Thomas Kleinen, Paul B. Krummel, Ronny Lauerwald, Tingting Li, Xiangyu Liu, Kyle C. McDonald, Joe R. Melton, Jens Mühle, Jurek Müller, Fabiola Murguia-Flores, Yosuke Niwa, Sergio Noce, Shufen Pan, Robert J. Parker, Changhui Peng, Michel Ramonet, William J. Riley, Gerard Rocher-Ros, Judith A. Rosentreter, Motoki Sasakawa, Arjo Segers, Steven J. Smith, Emily H. Stanley, Joël Thanwerdas, Hanqin Tian, Aki Tsuruta, Francesco N. Tubiello, Thomas S. Weber, Guido R. van der Werf, Douglas E. J. Worthy, Yi Xi, Yukio Yoshida, Wenxin Zhang, Bo Zheng, Qing Zhu, Qiuan Zhu, and Qianlai Zhuang
Earth Syst. Sci. Data, 17, 1873–1958, https://doi.org/10.5194/essd-17-1873-2025, https://doi.org/10.5194/essd-17-1873-2025, 2025
Short summary
Short summary
Methane (CH4) is the second most important human-influenced greenhouse gas in terms of climate forcing after carbon dioxide (CO2). A consortium of multi-disciplinary scientists synthesise and update the budget of the sources and sinks of CH4. This edition benefits from important progress in estimating emissions from lakes and ponds, reservoirs, and streams and rivers. For the 2010s decade, global CH4 emissions are estimated at 575 Tg CH4 yr-1, including ~65 % from anthropogenic sources.
Elsa Abs, Christoph Keuschnig, Pierre Amato, Chris Bowler, Eric Capo, Alexander Chase, Luciana Chavez Rodriguez, Abraham Dabengwa, Thomas Dussarrat, Thomas Guzman, Linnea Honeker, Jenni Hultman, Kirsten Küsel, Zhen Li, Anna Mankowski, William Riley, Scott Saleska, and Lisa Wingate
EGUsphere, https://doi.org/10.5194/egusphere-2025-1716, https://doi.org/10.5194/egusphere-2025-1716, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Meta-omics technologies offer new tools to understand how microbial and plant functional diversity shape biogeochemical cycles across ecosystems. This perspective explores how integrating omics data with ecological and modeling approaches can improve our understanding of greenhouse gas fluxes and nutrient dynamics, from soils to clouds, and from the past to the future. We highlight challenges and opportunities for scaling omics insights from local processes to Earth system models.
Jinyun Tang and William J. Riley
Biogeosciences, 22, 1809–1819, https://doi.org/10.5194/bg-22-1809-2025, https://doi.org/10.5194/bg-22-1809-2025, 2025
Short summary
Short summary
A new mathematical formulation of the dynamic energy budget model is presented for the growth of biological organisms. This new formulation combines mass conservation law and chemical kinetics theory and is computationally faster than the standard formulation of dynamic energy budget models. In simulating the growth of Thalassiosira weissflogii in a nitrogen-limiting chemostat, the new model is as good as the standard dynamic energy budget model using almost the same parameter values.
Ashley Brereton, Zelalem Mekonnen, Bhavna Arora, William Riley, Kunxiaojia Yuan, Yi Xu, Yu Zhang, Qing Zhu, Tyler Anthony, and Adina Paytan
EGUsphere, https://doi.org/10.5194/egusphere-2025-361, https://doi.org/10.5194/egusphere-2025-361, 2025
Short summary
Short summary
Wetlands absorb carbon dioxide (CO2), helping slow climate change, but they also release methane, a potent warming gas. We developed a collection of AI-based models to estimate magnitudes of CO2 and methane exchanged between the land and the atmosphere, for wetlands on a regional scale. This approach helps to inform land-use planning, restoration, and greenhouse gas accounting, while also creating a foundation for future advancements in prediction accuracy.
Katherine M. Smith, Alice M. Barthel, LeAnn M. Conlon, Luke P. Van Roekel, Anthony Bartoletti, Jean-Christophe Golaz, Chengzhu Zhang, Carolyn Branecky Begeman, James J. Benedict, Gautam Bisht, Yan Feng, Walter Hannah, Bryce E. Harrop, Nicole Jeffery, Wuyin Lin, Po-Lun Ma, Mathew E. Maltrud, Mark R. Petersen, Balwinder Singh, Qi Tang, Teklu Tesfa, Jonathan D. Wolfe, Shaocheng Xie, Xue Zheng, Karthik Balaguru, Oluwayemi Garuba, Peter Gleckler, Aixue Hu, Jiwoo Lee, Ben Moore-Maley, and Ana C. Ordoñez
Geosci. Model Dev., 18, 1613–1633, https://doi.org/10.5194/gmd-18-1613-2025, https://doi.org/10.5194/gmd-18-1613-2025, 2025
Short summary
Short summary
Version 2.1 of the U.S. Department of Energy's Energy Exascale Earth System Model (E3SM) adds the Fox-Kemper et al. (2011) mixed-layer eddy parameterization, which restratifies the ocean surface layer through an overturning streamfunction. Results include surface layer bias reduction in temperature, salinity, and sea ice extent in the North Atlantic; a small strengthening of the Atlantic meridional overturning circulation; and improvements to many atmospheric climatological variables.
Huilin Huang, Yun Qian, Gautam Bisht, Jiali Wang, Tirthankar Chakraborty, Dalei Hao, Jianfeng Li, Travis Thurber, Balwinder Singh, Zhao Yang, Ye Liu, Pengfei Xue, William J. Sacks, Ethan Coon, and Robert Hetland
Geosci. Model Dev., 18, 1427–1443, https://doi.org/10.5194/gmd-18-1427-2025, https://doi.org/10.5194/gmd-18-1427-2025, 2025
Short summary
Short summary
We integrate the E3SM Land Model (ELM) with the WRF model through the Lightweight Infrastructure for Land Atmosphere Coupling (LILAC) Earth System Modeling Framework (ESMF). This framework includes a top-level driver, LILAC, for variable communication between WRF and ELM and ESMF caps for ELM initialization, execution, and finalization. The LILAC–ESMF framework maintains the integrity of the ELM's source code structure and facilitates the transfer of future ELM model developments to WRF-ELM.
Claire L. Bachand, Chen Wang, Baptiste Dafflon, Lauren N. Thomas, Ian Shirley, Sarah Maebius, Colleen M. Iversen, and Katrina E. Bennett
The Cryosphere, 19, 393–400, https://doi.org/10.5194/tc-19-393-2025, https://doi.org/10.5194/tc-19-393-2025, 2025
Short summary
Short summary
Temporally continuous snow depth estimates are important for understanding changing snow patterns and impacts on frozen ground in the Arctic. In this work, we developed an approach to predict snow depth from variability in snow–ground interface temperature using small temperature sensors that are cheap and easy to deploy. This new technique enables spatially distributed and temporally continuous snowpack monitoring that has not previously been possible.
Zhen Zhang, Benjamin Poulter, Joe R. Melton, William J. Riley, George H. Allen, David J. Beerling, Philippe Bousquet, Josep G. Canadell, Etienne Fluet-Chouinard, Philippe Ciais, Nicola Gedney, Peter O. Hopcroft, Akihiko Ito, Robert B. Jackson, Atul K. Jain, Katherine Jensen, Fortunat Joos, Thomas Kleinen, Sara H. Knox, Tingting Li, Xin Li, Xiangyu Liu, Kyle McDonald, Gavin McNicol, Paul A. Miller, Jurek Müller, Prabir K. Patra, Changhui Peng, Shushi Peng, Zhangcai Qin, Ryan M. Riggs, Marielle Saunois, Qing Sun, Hanqin Tian, Xiaoming Xu, Yuanzhi Yao, Yi Xi, Wenxin Zhang, Qing Zhu, Qiuan Zhu, and Qianlai Zhuang
Biogeosciences, 22, 305–321, https://doi.org/10.5194/bg-22-305-2025, https://doi.org/10.5194/bg-22-305-2025, 2025
Short summary
Short summary
This study assesses global methane emissions from wetlands between 2000 and 2020 using multiple models. We found that wetland emissions increased by 6–7 Tg CH4 yr-1 in the 2010s compared to the 2000s. Rising temperatures primarily drove this increase, while changes in precipitation and CO2 levels also played roles. Our findings highlight the importance of wetlands in the global methane budget and the need for continuous monitoring to understand their impact on climate change.
Kamal Nyaupane, Umakant Mishra, Feng Tao, Kyongmin Yeo, William J. Riley, Forrest M. Hoffman, and Sagar Gautam
Biogeosciences, 21, 5173–5183, https://doi.org/10.5194/bg-21-5173-2024, https://doi.org/10.5194/bg-21-5173-2024, 2024
Short summary
Short summary
Representing soil organic carbon (SOC) dynamics in Earth system models (ESMs) is a key source of uncertainty in predicting carbon–climate feedbacks. Using machine learning, we develop and compare predictive relationships in observations (Obs) and ESMs. We find different relationships between environmental factors and SOC stocks in Obs and ESMs. SOC prediction in ESMs may be improved by representing the functional relationships of environmental controllers in a way consistent with observations.
Dongyu Feng, Zeli Tan, Darren Engwirda, Jonathan D. Wolfe, Donghui Xu, Chang Liao, Gautam Bisht, James J. Benedict, Tian Zhou, Mithun Deb, Hong-Yi Li, and L. Ruby Leung
EGUsphere, https://doi.org/10.5194/egusphere-2024-2785, https://doi.org/10.5194/egusphere-2024-2785, 2024
Short summary
Short summary
Our study explores how riverine and coastal flooding during hurricanes is influenced by the interaction of atmosphere, land, river and ocean conditions. Using an advanced Earth system model, we simulate Hurricane Irene to evaluate how meteorological and hydrological uncertainties affect flood modeling. Our findings reveal the importance of a multi-component modeling system, how hydrological conditions play critical roles in flood modeling, and greater flood risks if multiple factors are present.
Lingcheng Li, Gautam Bisht, Dalei Hao, and L. Ruby Leung
Earth Syst. Sci. Data, 16, 2007–2032, https://doi.org/10.5194/essd-16-2007-2024, https://doi.org/10.5194/essd-16-2007-2024, 2024
Short summary
Short summary
This study fills a gap to meet the emerging needs of kilometer-scale Earth system modeling by developing global 1 km land surface parameters for land use, vegetation, soil, and topography. Our demonstration simulations highlight the substantial impacts of these parameters on spatial variability and information loss in water and energy simulations. Using advanced explainable machine learning methods, we identified influential factors driving spatial variability and information loss.
Jinyun Tang and William J. Riley
Biogeosciences, 21, 1061–1070, https://doi.org/10.5194/bg-21-1061-2024, https://doi.org/10.5194/bg-21-1061-2024, 2024
Short summary
Short summary
A chemical kinetics theory is proposed to explain the non-monotonic relationship between temperature and biochemical rates. It incorporates the observed thermally reversible enzyme denaturation that is ensured by the ceaseless thermal motion of molecules and ions in an enzyme solution and three well-established theories: (1) law of mass action, (2) diffusion-limited chemical reaction theory, and (3) transition state theory.
Donghui Xu, Gautam Bisht, Zeli Tan, Chang Liao, Tian Zhou, Hong-Yi Li, and L. Ruby Leung
Geosci. Model Dev., 17, 1197–1215, https://doi.org/10.5194/gmd-17-1197-2024, https://doi.org/10.5194/gmd-17-1197-2024, 2024
Short summary
Short summary
We aim to disentangle the hydrological and hydraulic controls on streamflow variability in a fully coupled earth system model. We found that calibrating only one process (i.e., traditional calibration procedure) will result in unrealistic parameter values and poor performance of the water cycle, while the simulated streamflow is improved. To address this issue, we further proposed a two-step calibration procedure to reconcile the impacts from hydrological and hydraulic processes on streamflow.
Han Qiu, Gautam Bisht, Lingcheng Li, Dalei Hao, and Donghui Xu
Geosci. Model Dev., 17, 143–167, https://doi.org/10.5194/gmd-17-143-2024, https://doi.org/10.5194/gmd-17-143-2024, 2024
Short summary
Short summary
We developed and validated an inter-grid-cell lateral groundwater flow model for both saturated and unsaturated zone in the ELMv2.0 framework. The developed model was benchmarked against PFLOTRAN, a 3D subsurface flow and transport model and showed comparable performance with PFLOTRAN. The developed model was also applied to the Little Washita experimental watershed. The spatial pattern of simulated groundwater table depth agreed well with the global groundwater table benchmark dataset.
Nathan Alec Conroy, Jeffrey M. Heikoop, Emma Lathrop, Dea Musa, Brent D. Newman, Chonggang Xu, Rachael E. McCaully, Carli A. Arendt, Verity G. Salmon, Amy Breen, Vladimir Romanovsky, Katrina E. Bennett, Cathy J. Wilson, and Stan D. Wullschleger
The Cryosphere, 17, 3987–4006, https://doi.org/10.5194/tc-17-3987-2023, https://doi.org/10.5194/tc-17-3987-2023, 2023
Short summary
Short summary
This study combines field observations, non-parametric statistical analyses, and thermodynamic modeling to characterize the environmental causes of the spatial variability in soil pore water solute concentrations across two Arctic catchments with varying extents of permafrost. Vegetation type, soil moisture and redox conditions, weathering and hydrologic transport, and mineral solubility were all found to be the primary drivers of the existing spatial variability of some soil pore water solutes.
Qi Tang, Jean-Christophe Golaz, Luke P. Van Roekel, Mark A. Taylor, Wuyin Lin, Benjamin R. Hillman, Paul A. Ullrich, Andrew M. Bradley, Oksana Guba, Jonathan D. Wolfe, Tian Zhou, Kai Zhang, Xue Zheng, Yunyan Zhang, Meng Zhang, Mingxuan Wu, Hailong Wang, Cheng Tao, Balwinder Singh, Alan M. Rhoades, Yi Qin, Hong-Yi Li, Yan Feng, Yuying Zhang, Chengzhu Zhang, Charles S. Zender, Shaocheng Xie, Erika L. Roesler, Andrew F. Roberts, Azamat Mametjanov, Mathew E. Maltrud, Noel D. Keen, Robert L. Jacob, Christiane Jablonowski, Owen K. Hughes, Ryan M. Forsyth, Alan V. Di Vittorio, Peter M. Caldwell, Gautam Bisht, Renata B. McCoy, L. Ruby Leung, and David C. Bader
Geosci. Model Dev., 16, 3953–3995, https://doi.org/10.5194/gmd-16-3953-2023, https://doi.org/10.5194/gmd-16-3953-2023, 2023
Short summary
Short summary
High-resolution simulations are superior to low-resolution ones in capturing regional climate changes and climate extremes. However, uniformly reducing the grid size of a global Earth system model is too computationally expensive. We provide an overview of the fully coupled regionally refined model (RRM) of E3SMv2 and document a first-of-its-kind set of climate production simulations using RRM at an economic cost. The key to this success is our innovative hybrid time step method.
Ian Shirley, Sebastian Uhlemann, John Peterson, Katrina Bennett, Susan S. Hubbard, and Baptiste Dafflon
EGUsphere, https://doi.org/10.5194/egusphere-2023-968, https://doi.org/10.5194/egusphere-2023-968, 2023
Preprint archived
Short summary
Short summary
Snow depth has a strong impact on soil temperatures and carbon cycling in the arctic. Because of this, we want to understand why snow is deeper in some places than others. Using cameras mounted on a drone, we mapped snow depth, vegetation height, and elevation across a watershed in Alaska. In this paper, we develop novel techniques using image processing and machine learning to characterize the influence of topography and shrubs on snow depth in the watershed.
Dalei Hao, Gautam Bisht, Karl Rittger, Timbo Stillinger, Edward Bair, Yu Gu, and L. Ruby Leung
The Cryosphere, 17, 673–697, https://doi.org/10.5194/tc-17-673-2023, https://doi.org/10.5194/tc-17-673-2023, 2023
Short summary
Short summary
We comprehensively evaluated the snow simulations in E3SM land model over the western United States in terms of spatial patterns, temporal correlations, interannual variabilities, elevation gradients, and change with forest cover of snow properties and snow phenology. Our study underscores the need for diagnosing model biases and improving the model representations of snow properties and snow phenology in mountainous areas for more credible simulation and future projection of mountain snowpack.
Fa Li, Qing Zhu, William J. Riley, Lei Zhao, Li Xu, Kunxiaojia Yuan, Min Chen, Huayi Wu, Zhipeng Gui, Jianya Gong, and James T. Randerson
Geosci. Model Dev., 16, 869–884, https://doi.org/10.5194/gmd-16-869-2023, https://doi.org/10.5194/gmd-16-869-2023, 2023
Short summary
Short summary
We developed an interpretable machine learning model to predict sub-seasonal and near-future wildfire-burned area over African and South American regions. We found strong time-lagged controls (up to 6–8 months) of local climate wetness on burned areas. A skillful use of such time-lagged controls in machine learning models results in highly accurate predictions of wildfire-burned areas; this will also help develop relevant early-warning and management systems for tropical wildfires.
Dalei Hao, Gautam Bisht, Karl Rittger, Edward Bair, Cenlin He, Huilin Huang, Cheng Dang, Timbo Stillinger, Yu Gu, Hailong Wang, Yun Qian, and L. Ruby Leung
Geosci. Model Dev., 16, 75–94, https://doi.org/10.5194/gmd-16-75-2023, https://doi.org/10.5194/gmd-16-75-2023, 2023
Short summary
Short summary
Snow with the highest albedo of land surface plays a vital role in Earth’s surface energy budget and water cycle. This study accounts for the impacts of snow grain shape and mixing state of light-absorbing particles with snow on snow albedo in the E3SM land model. The findings advance our understanding of the role of snow grain shape and mixing state of LAP–snow in land surface processes and offer guidance for improving snow simulations and radiative forcing estimates in Earth system models.
Dongyu Feng, Zeli Tan, Darren Engwirda, Chang Liao, Donghui Xu, Gautam Bisht, Tian Zhou, Hong-Yi Li, and L. Ruby Leung
Hydrol. Earth Syst. Sci., 26, 5473–5491, https://doi.org/10.5194/hess-26-5473-2022, https://doi.org/10.5194/hess-26-5473-2022, 2022
Short summary
Short summary
Sea level rise, storm surge and river discharge can cause coastal backwater effects in downstream sections of rivers, creating critical flood risks. This study simulates the backwater effects using a large-scale river model on a coastal-refined computational mesh. By decomposing the backwater drivers, we revealed their relative importance and long-term variations. Our analysis highlights the increasing strength of backwater effects due to sea level rise and more frequent storm surge.
Yilin Fang, L. Ruby Leung, Charles D. Koven, Gautam Bisht, Matteo Detto, Yanyan Cheng, Nate McDowell, Helene Muller-Landau, S. Joseph Wright, and Jeffrey Q. Chambers
Geosci. Model Dev., 15, 7879–7901, https://doi.org/10.5194/gmd-15-7879-2022, https://doi.org/10.5194/gmd-15-7879-2022, 2022
Short summary
Short summary
We develop a model that integrates an Earth system model with a three-dimensional hydrology model to explicitly resolve hillslope topography and water flow underneath the land surface to understand how local-scale hydrologic processes modulate vegetation along water availability gradients. Our coupled model can be used to improve the understanding of the diverse impact of local heterogeneity and water flux on nutrient availability and plant communities.
Meng Huang, Po-Lun Ma, Nathaniel W. Chaney, Dalei Hao, Gautam Bisht, Megan D. Fowler, Vincent E. Larson, and L. Ruby Leung
Geosci. Model Dev., 15, 6371–6384, https://doi.org/10.5194/gmd-15-6371-2022, https://doi.org/10.5194/gmd-15-6371-2022, 2022
Short summary
Short summary
The land surface in one grid cell may be diverse in character. This study uses an explicit way to account for that subgrid diversity in a state-of-the-art Earth system model (ESM) and explores its implications for the overlying atmosphere. We find that the shallow clouds are increased significantly with the land surface diversity. Our work highlights the importance of accurately representing the land surface and its interaction with the atmosphere in next-generation ESMs.
Katrina E. Bennett, Greta Miller, Robert Busey, Min Chen, Emma R. Lathrop, Julian B. Dann, Mara Nutt, Ryan Crumley, Shannon L. Dillard, Baptiste Dafflon, Jitendra Kumar, W. Robert Bolton, Cathy J. Wilson, Colleen M. Iversen, and Stan D. Wullschleger
The Cryosphere, 16, 3269–3293, https://doi.org/10.5194/tc-16-3269-2022, https://doi.org/10.5194/tc-16-3269-2022, 2022
Short summary
Short summary
In the Arctic and sub-Arctic, climate shifts are changing ecosystems, resulting in alterations in snow, shrubs, and permafrost. Thicker snow under shrubs can lead to warmer permafrost because deeper snow will insulate the ground from the cold winter. In this paper, we use modeling to characterize snow to better understand the drivers of snow distribution. Eventually, this work will be used to improve models used to study future changes in Arctic and sub-Arctic snow patterns.
Fadji Z. Maina, Haruko M. Wainwright, Peter James Dennedy-Frank, and Erica R. Siirila-Woodburn
Hydrol. Earth Syst. Sci., 26, 3805–3823, https://doi.org/10.5194/hess-26-3805-2022, https://doi.org/10.5194/hess-26-3805-2022, 2022
Short summary
Short summary
We propose a hillslope clustering approach based on the seasonal changes in groundwater levels and test its performance by comparing it to several common clustering approaches (aridity index, topographic wetness index, elevation, land cover, and machine-learning clustering). The proposed approach is robust as it reasonably categorizes hillslopes with similar elevation, land cover, hydroclimate, land surface processes, and subsurface hydrodynamics, hence a similar hydrologic function.
Lingcheng Li, Gautam Bisht, and L. Ruby Leung
Geosci. Model Dev., 15, 5489–5510, https://doi.org/10.5194/gmd-15-5489-2022, https://doi.org/10.5194/gmd-15-5489-2022, 2022
Short summary
Short summary
Land surface heterogeneity plays a critical role in the terrestrial water, energy, and biogeochemical cycles. Our study systematically quantified the effects of four dominant heterogeneity sources on water and energy partitioning via Sobol' indices. We found that atmospheric forcing and land use land cover are the most dominant heterogeneity sources in determining spatial variability of water and energy partitioning. Our findings can help prioritize the future development of land surface models.
Carlotta Brunetti, John Lamb, Stijn Wielandt, Sebastian Uhlemann, Ian Shirley, Patrick McClure, and Baptiste Dafflon
Earth Surf. Dynam., 10, 687–704, https://doi.org/10.5194/esurf-10-687-2022, https://doi.org/10.5194/esurf-10-687-2022, 2022
Short summary
Short summary
This paper proposes a method to estimate thermal diffusivity and its uncertainty over time, at numerous locations and at an unprecedented vertical spatial resolution from soil temperature time series. We validate and apply this method to synthetic and field case studies. The improved quantification of soil thermal properties is a cornerstone for advancing the indirect estimation of the fraction of soil components needed to predict subsurface storage and fluxes of water, carbon, and nutrients.
Donghui Xu, Gautam Bisht, Khachik Sargsyan, Chang Liao, and L. Ruby Leung
Geosci. Model Dev., 15, 5021–5043, https://doi.org/10.5194/gmd-15-5021-2022, https://doi.org/10.5194/gmd-15-5021-2022, 2022
Short summary
Short summary
The runoff outputs in Earth system model simulations involve high uncertainty, which needs to be constrained by parameter calibration. In this work, we used a surrogate-assisted Bayesian framework to efficiently calibrate the runoff-generation processes in the Energy Exascale Earth System Model v1 at a global scale. The model performance was improved compared to the default parameter after calibration, and the associated parametric uncertainty was significantly constrained.
Qing Zhu, Fa Li, William J. Riley, Li Xu, Lei Zhao, Kunxiaojia Yuan, Huayi Wu, Jianya Gong, and James Randerson
Geosci. Model Dev., 15, 1899–1911, https://doi.org/10.5194/gmd-15-1899-2022, https://doi.org/10.5194/gmd-15-1899-2022, 2022
Short summary
Short summary
Wildfire is a devastating Earth system process that burns about 500 million hectares of land each year. It wipes out vegetation including trees, shrubs, and grasses and causes large losses of economic assets. However, modeling the spatial distribution and temporal changes of wildfire activities at a global scale is challenging. This study built a machine-learning-based wildfire surrogate model within an existing Earth system model and achieved high accuracy.
Baptiste Dafflon, Stijn Wielandt, John Lamb, Patrick McClure, Ian Shirley, Sebastian Uhlemann, Chen Wang, Sylvain Fiolleau, Carlotta Brunetti, Franklin H. Akins, John Fitzpatrick, Samuel Pullman, Robert Busey, Craig Ulrich, John Peterson, and Susan S. Hubbard
The Cryosphere, 16, 719–736, https://doi.org/10.5194/tc-16-719-2022, https://doi.org/10.5194/tc-16-719-2022, 2022
Short summary
Short summary
This study presents the development and validation of a novel acquisition system for measuring finely resolved depth profiles of soil and snow temperature at multiple locations. Results indicate that the system reliably captures the dynamics in snow thickness, as well as soil freezing and thawing depth, enabling advances in understanding the intensity and timing in surface processes and their impact on subsurface thermohydrological regimes.
Jinyun Tang, William J. Riley, and Qing Zhu
Geosci. Model Dev., 15, 1619–1632, https://doi.org/10.5194/gmd-15-1619-2022, https://doi.org/10.5194/gmd-15-1619-2022, 2022
Short summary
Short summary
We here describe version 2 of BeTR, a reactive transport model created to help ease the development of biogeochemical capability in Earth system models that are used for quantifying ecosystem–climate feedbacks. We then coupled BeTR-v2 to the Energy Exascale Earth System Model to quantify how different numerical couplings of plants and soils affect simulated ecosystem biogeochemistry. We found that different couplings lead to significant uncertainty that is not correctable by tuning parameters.
Zexuan Xu, Rebecca Serata, Haruko Wainwright, Miles Denham, Sergi Molins, Hansell Gonzalez-Raymat, Konstantin Lipnikov, J. David Moulton, and Carol Eddy-Dilek
Hydrol. Earth Syst. Sci., 26, 755–773, https://doi.org/10.5194/hess-26-755-2022, https://doi.org/10.5194/hess-26-755-2022, 2022
Short summary
Short summary
Climate change could change the groundwater system and threaten water supply. To quantitatively evaluate its impact on water quality, numerical simulations with chemical and reaction processes are required. With the climate projection dataset, we used the newly developed hydrological and chemical model to investigate the movement of contaminants and assist the management of contamination sites.
Haruko M. Wainwright, Sebastian Uhlemann, Maya Franklin, Nicola Falco, Nicholas J. Bouskill, Michelle E. Newcomer, Baptiste Dafflon, Erica R. Siirila-Woodburn, Burke J. Minsley, Kenneth H. Williams, and Susan S. Hubbard
Hydrol. Earth Syst. Sci., 26, 429–444, https://doi.org/10.5194/hess-26-429-2022, https://doi.org/10.5194/hess-26-429-2022, 2022
Short summary
Short summary
This paper has developed a tractable approach for characterizing watershed heterogeneity and its relationship with key functions such as ecosystem sensitivity to droughts and nitrogen export. We have applied clustering methods to classify hillslopes into
watershed zonesthat have distinct distributions of bedrock-to-canopy properties as well as key functions. This is a powerful approach for guiding watershed experiments and sampling as well as informing hydrological and biogeochemical models.
Jing Tao, Qing Zhu, William J. Riley, and Rebecca B. Neumann
The Cryosphere, 15, 5281–5307, https://doi.org/10.5194/tc-15-5281-2021, https://doi.org/10.5194/tc-15-5281-2021, 2021
Short summary
Short summary
We improved the DOE's E3SM land model (ELMv1-ECA) simulations of soil temperature, zero-curtain period durations, cold-season CH4, and CO2 emissions at several Alaskan Arctic tundra sites. We demonstrated that simulated CH4 emissions during zero-curtain periods accounted for more than 50 % of total emissions throughout the entire cold season (Sep to May). We also found that cold-season CO2 emissions largely offset warm-season net uptake currently and showed increasing trends from 1950 to 2017.
Jiancong Chen, Baptiste Dafflon, Anh Phuong Tran, Nicola Falco, and Susan S. Hubbard
Hydrol. Earth Syst. Sci., 25, 6041–6066, https://doi.org/10.5194/hess-25-6041-2021, https://doi.org/10.5194/hess-25-6041-2021, 2021
Short summary
Short summary
The novel hybrid predictive modeling (HPM) approach uses a long short-term memory recurrent neural network to estimate evapotranspiration (ET) and ecosystem respiration (Reco) with only meteorological and remote-sensing inputs. We developed four use cases to demonstrate the applicability of HPM. The results indicate HPM is capable of providing ET and Reco estimations in challenging mountainous systems and enhances our understanding of watershed dynamics at sparsely monitored watersheds.
Dalei Hao, Gautam Bisht, Yu Gu, Wei-Liang Lee, Kuo-Nan Liou, and L. Ruby Leung
Geosci. Model Dev., 14, 6273–6289, https://doi.org/10.5194/gmd-14-6273-2021, https://doi.org/10.5194/gmd-14-6273-2021, 2021
Short summary
Short summary
Topography exerts significant influence on the incoming solar radiation at the land surface. This study incorporated a well-validated sub-grid topographic parameterization in E3SM land model (ELM) version 1.0. The results demonstrate that sub-grid topography has non-negligible effects on surface energy budget, snow cover, and surface temperature over the Tibetan Plateau and that the ELM simulations are sensitive to season, elevation, and spatial scale.
Qina Yan, Haruko Wainwright, Baptiste Dafflon, Sebastian Uhlemann, Carl I. Steefel, Nicola Falco, Jeffrey Kwang, and Susan S. Hubbard
Earth Surf. Dynam., 9, 1347–1361, https://doi.org/10.5194/esurf-9-1347-2021, https://doi.org/10.5194/esurf-9-1347-2021, 2021
Short summary
Short summary
We develop a hybrid model to estimate the spatial distribution of the thickness of the soil layer, which also provides estimations of soil transport and soil production rates. We apply this model to two examples of hillslopes in the East River watershed in Colorado and validate the model. The results show that the north-facing (NF) hillslope has a deeper soil layer than the south-facing (SF) hillslope and that the hybrid model provides better accuracy than a machine-learning model.
Kyle B. Delwiche, Sara Helen Knox, Avni Malhotra, Etienne Fluet-Chouinard, Gavin McNicol, Sarah Feron, Zutao Ouyang, Dario Papale, Carlo Trotta, Eleonora Canfora, You-Wei Cheah, Danielle Christianson, Ma. Carmelita R. Alberto, Pavel Alekseychik, Mika Aurela, Dennis Baldocchi, Sheel Bansal, David P. Billesbach, Gil Bohrer, Rosvel Bracho, Nina Buchmann, David I. Campbell, Gerardo Celis, Jiquan Chen, Weinan Chen, Housen Chu, Higo J. Dalmagro, Sigrid Dengel, Ankur R. Desai, Matteo Detto, Han Dolman, Elke Eichelmann, Eugenie Euskirchen, Daniela Famulari, Kathrin Fuchs, Mathias Goeckede, Sébastien Gogo, Mangaliso J. Gondwe, Jordan P. Goodrich, Pia Gottschalk, Scott L. Graham, Martin Heimann, Manuel Helbig, Carole Helfter, Kyle S. Hemes, Takashi Hirano, David Hollinger, Lukas Hörtnagl, Hiroki Iwata, Adrien Jacotot, Gerald Jurasinski, Minseok Kang, Kuno Kasak, John King, Janina Klatt, Franziska Koebsch, Ken W. Krauss, Derrick Y. F. Lai, Annalea Lohila, Ivan Mammarella, Luca Belelli Marchesini, Giovanni Manca, Jaclyn Hatala Matthes, Trofim Maximov, Lutz Merbold, Bhaskar Mitra, Timothy H. Morin, Eiko Nemitz, Mats B. Nilsson, Shuli Niu, Walter C. Oechel, Patricia Y. Oikawa, Keisuke Ono, Matthias Peichl, Olli Peltola, Michele L. Reba, Andrew D. Richardson, William Riley, Benjamin R. K. Runkle, Youngryel Ryu, Torsten Sachs, Ayaka Sakabe, Camilo Rey Sanchez, Edward A. Schuur, Karina V. R. Schäfer, Oliver Sonnentag, Jed P. Sparks, Ellen Stuart-Haëntjens, Cove Sturtevant, Ryan C. Sullivan, Daphne J. Szutu, Jonathan E. Thom, Margaret S. Torn, Eeva-Stiina Tuittila, Jessica Turner, Masahito Ueyama, Alex C. Valach, Rodrigo Vargas, Andrej Varlagin, Alma Vazquez-Lule, Joseph G. Verfaillie, Timo Vesala, George L. Vourlitis, Eric J. Ward, Christian Wille, Georg Wohlfahrt, Guan Xhuan Wong, Zhen Zhang, Donatella Zona, Lisamarie Windham-Myers, Benjamin Poulter, and Robert B. Jackson
Earth Syst. Sci. Data, 13, 3607–3689, https://doi.org/10.5194/essd-13-3607-2021, https://doi.org/10.5194/essd-13-3607-2021, 2021
Short summary
Short summary
Methane is an important greenhouse gas, yet we lack knowledge about its global emissions and drivers. We present FLUXNET-CH4, a new global collection of methane measurements and a critical resource for the research community. We use FLUXNET-CH4 data to quantify the seasonality of methane emissions from freshwater wetlands, finding that methane seasonality varies strongly with latitude. Our new database and analysis will improve wetland model accuracy and inform greenhouse gas budgets.
Thomas Schneider von Deimling, Hanna Lee, Thomas Ingeman-Nielsen, Sebastian Westermann, Vladimir Romanovsky, Scott Lamoureux, Donald A. Walker, Sarah Chadburn, Erin Trochim, Lei Cai, Jan Nitzbon, Stephan Jacobi, and Moritz Langer
The Cryosphere, 15, 2451–2471, https://doi.org/10.5194/tc-15-2451-2021, https://doi.org/10.5194/tc-15-2451-2021, 2021
Short summary
Short summary
Climate warming puts infrastructure built on permafrost at risk of failure. There is a growing need for appropriate model-based risk assessments. Here we present a modelling study and show an exemplary case of how a gravel road in a cold permafrost environment in Alaska might suffer from degrading permafrost under a scenario of intense climate warming. We use this case study to discuss the broader-scale applicability of our model for simulating future Arctic infrastructure failure.
Robinson I. Negrón-Juárez, Jennifer A. Holm, Boris Faybishenko, Daniel Magnabosco-Marra, Rosie A. Fisher, Jacquelyn K. Shuman, Alessandro C. de Araujo, William J. Riley, and Jeffrey Q. Chambers
Biogeosciences, 17, 6185–6205, https://doi.org/10.5194/bg-17-6185-2020, https://doi.org/10.5194/bg-17-6185-2020, 2020
Short summary
Short summary
The temporal variability in the Landsat satellite near-infrared (NIR) band captured the dynamics of forest regrowth after disturbances in Central Amazon. This variability was represented by the dynamics of forest regrowth after disturbances were properly represented by the ELM-FATES model (Functionally Assembled Terrestrial Ecosystem Simulator (FATES) in the Energy Exascale Earth System Model (E3SM) Land Model (ELM)).
Kuang-Yu Chang, William J. Riley, Patrick M. Crill, Robert F. Grant, and Scott R. Saleska
Biogeosciences, 17, 5849–5860, https://doi.org/10.5194/bg-17-5849-2020, https://doi.org/10.5194/bg-17-5849-2020, 2020
Short summary
Short summary
Methane (CH4) is a strong greenhouse gas that can accelerate climate change and offset mitigation efforts. A key assumption embedded in many large-scale climate models is that ecosystem CH4 emissions can be estimated by fixed temperature relations. Here, we demonstrate that CH4 emissions cannot be parameterized by emergent temperature response alone due to variability driven by microbial and abiotic interactions. We also provide mechanistic understanding for observed CH4 emission hysteresis.
Haifan Liu, Heng Dai, Jie Niu, Bill X. Hu, Dongwei Gui, Han Qiu, Ming Ye, Xingyuan Chen, Chuanhao Wu, Jin Zhang, and William Riley
Hydrol. Earth Syst. Sci., 24, 4971–4996, https://doi.org/10.5194/hess-24-4971-2020, https://doi.org/10.5194/hess-24-4971-2020, 2020
Short summary
Short summary
It is still challenging to apply the quantitative and comprehensive global sensitivity analysis method to complex large-scale process-based hydrological models because of variant uncertainty sources and high computational cost. This work developed a new tool and demonstrate its implementation to a pilot example for comprehensive global sensitivity analysis of large-scale hydrological modelling. This method is mathematically rigorous and can be applied to other large-scale hydrological models.
Cited articles
Anderson, E. A.: A point energy and mass balance model of a snow cover,
National Weather Service, Silver Spring, MD, 1976.
Atchley, A. L., Painter, S. L., Harp, D. R., Coon, E. T., Wilson, C. J.,
Liljedahl, A. K., and Romanovsky, V. E.: Using field observations to inform
thermal hydrology models of permafrost dynamics with ATS (v0.83), Geosci.
Model Dev., 8, 2701–2722, https://doi.org/10.5194/gmd-8-2701-2015, 2015.
Balay, S., Abhyankar, S., Adams, M. F., Brown, J., Brune, P., Buschelman, K.,
Dalcin, L., Eijkhout, V., Gropp, W. D., Kaushik, D., Knepley, M. G., McInnes,
L. C., Rupp, K., Smith, B. F., Zampini, S., Zhang, H., and Zhang, H.: PETSc
Users Manual, Argonne National Laboratory, ANL-95/11 – Revision 3.7, 1–241,
2016.
Bartelt, P. and Lehning, M.: A physical SNOWPACK model for the Swiss
avalanche warning: Part I: numerical model, Cold Reg. Sci.
Technol., 35, 123–145, 2002.
Borner, A. P., Kielland, K., and Walker, M. D.: Effects of Simulated Climate
Change on Plant Phenology and Nitrogen Mineralization in Alaskan Arctic
Tundra, Arct. Antarct. Alp. Res., 40, 27–38, 2008.
Callaghan, T., Johansson, M., Brown, R., Groisman, P., Labba, N., Radionov,
V., Barry, R., Bulygina, O., Essery, R. H., Frolov, D. M., Golubev, V.,
Grenfell, T., Petrushina, M., Razuvaev, V., Robinson, D., Romanov, P.,
Shindell, D., Shmakin, A., Sokratov, S., Warren, S., and Yang, D.: The
Changing Face of Arctic Snow Cover: A Synthesis of Observed and Projected
Changes, AMBIO, 40, 17–31, 2011a.
Callaghan, T., Johansson, M., Brown, R., Groisman, P., Labba, N., Radionov,
V., Bradley, R., Blangy, S., Bulygina, O., Christensen, T., Colman, J.,
Essery, R. H., Forbes, B., Forchhammer, M., Golubev, V., Honrath, R., Juday,
G., Meshcherskaya, A., Phoenix, G., Pomeroy, J., Rautio, A., Robinson, D.,
Schmidt, N., Serreze, M., Shevchenko, V., Shiklomanov, A., Shmakin, A.,
Sköld, P., Sturm, M., Woo, M.-K., and Wood, E.: Multiple Effects of
Changes in Arctic Snow Cover, AMBIO, 40, 32–45, 2011b.
Clark, M. P., Hendrikx, J., Slater, A. G., Kavetski, D., Anderson, B.,
Cullen, N. J., Kerr, T., Örn Hreinsson, E., and Woods, R. A.:
Representing spatial variability of snow water equivalent in hydrologic and
land-surface models: A review, Water Resour. Res., 47, W07539,
https://doi.org/10.1029/2011WR010745, 2011.
Cox, P. M., Betts, R. A., Jones, C. D., Spall, S. A., and Totterdell, I. J.:
Acceleration of global warming due to carbon-cycle feedbacks in a coupled
climate model, Nature, 408, 184–187, 2000.
Dai, Y. and Zeng, Q.: A land surface model (IAP94) for climate studies part
I: Formulation and validation in off-line experiments, Adv.
Atmos. Sci., 14, 433–460, 1997.
Dufresne, J. L., Fairhead, L., Le Treut, H., Berthelot, M., Bopp, L., Ciais,
P., Friedlingstein, P., and Monfray, P.: On the magnitude of positive
feedback between future climate change and the carbon cycle, Geophys.
Res. Lett., 29, 43-41–43-44, 2002.
Engstrom, R., Hope, A., Kwon, H., Stow, D., and Zamolodchikov, D.: Spatial
distribution of near surface soil moisture and its relationship to
microtopography in the Alaskan Arctic coastal plain, Nord. Hydrol., 36,
219–234, 2005.
Euskirchen, E. S., McGuire, A. D., Chapin, F. S., Yi, S., and Thompson, C.
C.: Changes in vegetation in northern Alaska under scenarios of climate
change, 2003–2100: implications for climate feedbacks, Ecol.
Appl., 19, 1022–1043, 2009.
Frey, S. and Holzmann, H.: A conceptual, distributed snow redistribution
model, Hydrol. Earth Syst. Sci., 19, 4517–4530,
https://doi.org/10.5194/hess-19-4517-2015, 2015.
Friedlingstein, P., Bopp, L., Ciais, P., Dufresne, J.-L., Fairhead, L.,
LeTreut, H., Monfray, P., and Orr, J.: Positive feedback between future
climate change and the carbon cycle, Geophys. Res. Lett., 28, 1543–1546,
2001.
Friedlingstein, P., Cox, P., Betts, R., Bopp, L., von Bloh, W., Brovkin, V.,
Cadule, P., Doney, S., Eby, M., Fung, I., Bala, G., John, J., Jones, C.,
Joos, F., Kato, T., Kawamiya, M., Knorr, W., Lindsay, K., Matthews, H. D.,
Raddatz, T., Rayner, P., Reick, C., Roeckner, E., Schnitzler, K. G., Schnur,
R., Strassmann, K., Weaver, A. J., Yoshikawa, C., and Zeng, N.:
Climate–Carbon Cycle Feedback Analysis: Results from the C4MIP Model
Intercomparison, J. Climate, 19, 3337–3353, 2006.
Fung, I. Y., Doney, S. C., Lindsay, K., and John, J.: Evolution of carbon
sinks in a changing climate, P. Natl. Acad. Sci. USA, 102, 11201–11206,
2005.
Galen, C. and Stanton, M. L.: Responses of Snowbed Plant Species to Changes
in Growing-Season Length, Ecology, 76, 1546–1557, 1995.
Ghimire, B., Riley, W. J., Koven, C. D., Mu, M., and Randerson, J. T.:
Representing leaf and root physiological traits in CLM improves global carbon
and nitrogen cycling predictions, J. Adv. Model. Earth Sy., 8, 598–613,
2016.
Govindasamy, B., Thompson, S., Mirin, A., Wickett, M., Caldeira, K., and
Delire, C.: Increase of carbon cycle feedback with climate sensitivity:
results from a coupled climate and carbon cycle model, Tellus B, 57,
153–163, https://doi.org/10.1111/j.1600-0889.2005.00135.x, 2011.
Grant, R. F., Humphreys, E. R., and Lafleur, P. M.: Ecosystem CO2 and
CH4 exchange in a mixed tundra and a fen within a hydrologically diverse
Arctic landscape: 1. Modeling versus measurements, J. Geophys. Res.-Biogeo.,
120, 1366–1387, https://doi.org/10.1002/2014JG002888, 2015.
Groendahl, L., Friborg, T., and Soegaard, H.: Temperature and snow-melt
controls on interannual variability in carbon exchange in the high Arctic,
Theor. Appl. Climatol., 88, 111–125, 2007.
Grogan, P. and Chapin III, F. S.: Arctic Soil Respiration: Effects of Climate
and Vegetation Depend on Season, Ecosystems, 2, 451–459, 1999.
Harp, D. R., Atchley, A. L., Painter, S. L., Coon, E. T., Wilson, C. J.,
Romanovsky, V. E., and Rowland, J. C.: Effect of soil property uncertainties
on permafrost thaw projections: a calibration-constrained analysis, The
Cryosphere, 10, 341–358, https://doi.org/10.5194/tc-10-341-2016, 2016.
Hartman, M. D., Baron, J. S., Lammers, R. B., Cline, D. W., Band, L. E.,
Liston, G. E., and Tague, C.: Simulations of snow distribution and hydrology
in a mountain basin, Water Resour. Res., 35, 1587–1603, 1999.
Helfricht, K., Schöber, J., Seiser, B., Fischer, A., Stötter, J., and
Kuhn, M.: Snow accumulation of a high alpine catchment derived from LiDAR
measurements, Adv. Geosci., 32, 31–39, 2012.
Hinkel, K. M., Eisner, W. R., Bockheim, J. G., Nelson, F. E., Peterson, K.
M., and Dai, X.: Spatial Extent, Age, and Carbon Stocks in Drained Thaw Lake
Basins on the Barrow Peninsula, Alaska, Arct. Antarct. Alp. Res., 35,
291–300, 2003.
Hinkel, K. M., Frohn, R. C., Nelson, F. E., Eisner, W. R., and Beck, R. A.:
Morphometric and spatial analysis of thaw lakes and drained thaw lake basins
in the western Arctic Coastal Plain, Alaska, Permafrost Periglac., 16,
327–341, 2005.
Hinzman, L. D. and Kane, D. L.: Potential repsonse of an Arctic watershed
during a period of global warming, J. Geophys. Res.-Atmos., 97, 2811–2820,
1992.
Holland, M. M. and Bitz, C. M.: Polar amplification of climate change in
coupled models, Clim. Dynam., 21, 221–232, 2003.
Jiang, D., Zhang, Y., and Lang, X.: Vegetation feedback under future global
warming, Theor. Appl. Climatol., 106, 211–227, 2011.
Jones, C. D., Cox, P. M., Essery, R. L. H., Roberts, D. L., and Woodage, M.
J.: Strong carbon cycle feedbacks in a climate model with interactive
CO2 and sulphate aerosols, Geophys. Res. Lett., 30, 1479,
https://doi.org/10.1029/2003GL016867, 2003.
Jones, H. G.: The ecology of snow-covered systems: a brief overview of
nutrient cycling and life in the cold, Hydrol. Process., 13, 2135–2147,
1999.
Jordan, R. E.: One-dimensional temperature model for a snow cover: technical
documentation for SNTHERM.89, Cold Regions Research and Engineering
Laboratory (U.S.) Engineer Research and Development Center (U.S.), 1991.
Jorgenson, M. T., Shur, Y. L., and Pullman, E. R.: Abrupt increase in
permafrost degradation in Arctic Alaska, Geophys. Res. Lett., 33, L02503,
https://doi.org/10.1029/2005GL024960, 2006.
Koven, C. D., Riley, W. J., Subin, Z. M., Tang, J. Y., Torn, M. S., Collins,
W. D., Bonan, G. B., Lawrence, D. M., and Swenson, S. C.: The effect of
vertically resolved soil biogeochemistry and alternate soil C and N models on
C dynamics of CLM4, Biogeosciences, 10, 7109–7131,
https://doi.org/10.5194/bg-10-7109-2013, 2013.
Koven, C. D., Ringeval, B., Friedlingstein, P., Ciais, P., Cadule, P.,
Khvorostyanov, D., Krinner, G., and Tarnocai, C.: Permafrost carbon-climate
feedbacks accelerate global warming, P. Natl. Acad. Sci. USA, 108,
14769–14774, 2011.
Koven, C. D., Lawrence, D. M., and Riley, W. J.: Permafrost carbon-climate
feedback is sensitive to deep soil carbon decomposability but not deep soil
nitrogen dynamics, P. Natl. Acad. Sci. USA, 112, 3752–3757, 2015.
Kumar, J., Collier, N., Bisht, G., Mills, R. T., Thornton, P. E., Iversen, C.
M., and Romanovsky, V.: Modeling the spatiotemporal variability in subsurface
thermal regimes across a low-relief polygonal tundra landscape, The
Cryosphere, 10, 2241–2274, https://doi.org/10.5194/tc-10-2241-2016, 2016.
Lawrence, D. M. and Swenson, S. C.: Permafrost response to increasing Arctic
shrub abundance depends on the relative influence of shrubs on local soil
cooling versus large-scale climate warming, Environ. Res. Lett., 6, 045504,
https://doi.org/10.1088/1748-9326/6/4/045504, 2011.
Liljedahl, A. K., Boike, J., Daanen, R. P., Fedorov, A. N., Frost, G. V.,
Grosse, G., Hinzman, L. D., Iijma, Y., Jorgenson, J. C., and Matveyeva, N.:
Pan-Arctic ice-wedge degradation in warming permafrost and its influence on
tundra hydrology, Nat. Geosci., 9, 312–318, 2016.
Liston, G. E. and Elder, K.: A Distributed Snow-Evolution Modeling System
(SnowModel), J. Hydrometeorol., 7, 1259–1276, 2006.
Liston, G. E., Haehnel, R. B., Sturm, M., Hiemstra, C. A., Berezovskaya, S.,
and Tabler, R. D.: Instruments and Methods Simulating complex snow
distributions in windy environments using SnowTran-3D, J. Glaciol., 53,
241–256, 2007.
Liu, S., Shao, Y., Kunoth, A., and Simmer, C.: Impact of
surface-heterogeneity on atmosphere and land-surface interactions, Environ.
Modell. Softw., 88, 35–47, https://doi.org/10.1016/j.envsoft.2016.11.006, 2017.
López-Moreno, J. I., Fassnacht, S. R., Beguería, S., and Latron, J.
B. P.: Variability of snow depth at the plot scale: implications for mean
depth estimation and sampling strategies, The Cryosphere, 5, 617–629,
https://doi.org/10.5194/tc-5-617-2011, 2011.
López-Moreno, J. I., Revuelto, J., Fassnacht, S. R., Azorín-Molina,
C., Vicente-Serrano, S. M., Morán-Tejeda, E., and Sexstone, G. A.:
Snowpack variability across various spatio-temporal resolutions, Hydrol.
Process., 29, 1213–1224, https://doi.org/10.1002/hyp.10245, 2015.
Luce, C. H., Tarboton, D. G., and Cooley, K. R.: The influence of the spatial
distribution of snow on basin-averaged snowmelt, Hydrol. Process., 12,
1671–1683, 1998.
Lundquist, J. D. and Dettinger, M. D.: How snowpack heterogeneity affects
diurnal streamflow timing, Water Resour. Res., 41, W05007,
https://doi.org/10.1029/2004WR003649, 2005.
Matthews, H. D., Weaver, A. J., and Meissner, K. J.: Terrestrial Carbon Cycle
Dynamics under Recent and Future Climate Change, J. Climate, 18, 1609–1628,
2005.
Matthews, H. D., Eby, M., Ewen, T., Friedlingstein, P., and Hawkins, B. J.:
What determines the magnitude of carbon cycle-climate feedbacks?, Global
Biogeochem. Cy., 21, GB2012, https://doi.org/10.1029/2006GB002733, 2007.
McFadden, J. P., Chapin, F. S., and Hollinger, D. Y.: Subgrid-scale
variability in the surface energy balance of arctic tundra, J. Geophys.
Res.-Atmos., 103, 28947–28961, 1998.
McGuire, A. D., Clein, J. S., Melillo, J. M., Kicklighter, D. W., Meier, R.
A., Vorosmarty, C. J., and Serreze, M. C.: Modelling carbon responses of
tundra ecosystems to historical and projected climate: sensitivity of
pan-Arctic carbon storage to temporal and spatial variation in climate, Glob.
Change Biol., 6, 141–159, 2000.
Mefford, T. K., Bieniulis, M., Halter, B., and Peterson. J.: Meteorological
Measurements. In CMDL Summary Report 1994–1995, No. 23, 17 pp., 1996.
Miller, P. C., Stoner, W. A., and Tieszen, L. L.: A Model of Stand
Photosynthesis for the Wet Meadow Tundra at Barrow, Alaska, Ecology, 57,
411–430, 1976.
Morgner, E., Elberling, B., Strebel, D., and Cooper, E. J.: The importance of
winter in annual ecosystem respiration in the High Arctic: effects of snow
depth in two vegetation types, Polar Res., 29, 58–74, 2010.
Montaldo, N. and Albertson, J. D.: Temporal dynamics of soil moisture
variability: 2. Implications for land surface models, Water Resour. Res., 39,
https://doi.org/10.1029/2002WR001618, 2003.
Nobrega, S. and Grogan, P.: Deeper Snow Enhances Winter Respiration from Both
Plant-associated and Bulk Soil Carbon Pools in Birch Hummock Tundra,
Ecosystems, 10, 419–431, 2007.
Oberbauer, S. F., Tenhunen, J. D., and Reynolds, J. F.: Environmental Effects
on CO2 Efflux from Water Track and Tussock Tundra in Arctic Alaska,
U.S.A, Arctic Alpine Res., 23, 162–169, 1991.
Oechel, W. C., Hastings, S. J., Vourlrtis, G., Jenkins, M., Riechers, G., and
Grulke, N.: Recent change of Arctic tundra ecosystems from a net carbon
dioxide sink to a source, Nature, 361, 520–523, 1993.
Oleson, K. W., Lawrence, D. M., Bonan, G. B., Drewniak, B., Huang, M., Koven,
C. D., Levis, S., Li, F., Riley, W. J., Subin, Z. M., Swenson, S. C.,
Thornton, P. E., Bozbiyik, A., Fisher, R., Kluzek, E., Lamarque, J.-F.,
Lawrence, P. J., Leung, L. R., Lipscomb, W., Muszala, S., Ricciuto, D. M.,
Sacks, W., Sun, Y., Tang, J., and Yang, Z.-L.: Technical Description of
version 4.5 of the Community Land Model (CLM), National Center for
Atmospheric Research, Boulder, CO, 422 pp., 2013.
Pau, G. S. H., Bisht, G., and Riley, W. J.: A reduced-order modeling approach
to represent subgrid-scale hydrological dynamics for land-surface
simulations: application in a polygonal tundra landscape, Geosci. Model Dev.,
7, 2091–2105, https://doi.org/10.5194/gmd-7-2091-2014, 2014.
Randerson, J. T., Lindsay, K., Munoz, E., Fu, W., Moore, J. K., Hoffman, F.
M., Mahowald, N. M., and Doney, S. C.: Multicentury changes in ocean and land
contributions to the climate-carbon feedback, Global Biogeochem. Cy., 29,
744–759, 2015.
Rogers, M. C., Sullivan, P. F., and Welker, J. M.: Evidence of Nonlinearity
in the Response of Net Ecosystem CO2 Exchange to Increasing Levels of
Winter Snow Depth in the High Arctic of Northwest Greenland, Arct. Antarct.
Alp. Res., 43, 95–106, 2011.
Rohrbough, J. A., Davis, D. R., and Bales, R. C.: Spatial variability of snow
chemistry in an alpine snowpack, southern Wyoming, Water Resour. Res., 39,
1190, https://doi.org/10.1029/2003WR002067, 2003.
Schaefer, K., Zhang, T., Bruhwiler, L., and Barrett, A. P.: Amount and timing
of permafrost carbon release in response to climate warming, Tellus B, 63,
165–180, 2011.
Schimel, J. P., Bilbrough, C., and Welker, J. M.: Increased snow depth
affects microbial activity and nitrogen mineralization in two Arctic tundra
communities, Soil Biol. Biochem., 36, 217–227, 2004.
Schuur, E. A. G. and Abbott, B.: Climate change: High risk of permafrost
thaw, Nature, 480, 32–33, 2011.
Schuur, E. A. G., Bockheim, J., Canadell, J. G., Euskirchen, E., Field, C.
B., Goryachkin, S. V., Hagemann, S., Kuhry, P., Lafleur, P. M., Lee, H.,
Mazhitova, G., Nelson, F. E., Rinke, A., Romanovsky, V. E., Shiklomanov, N.,
Tarnocai, C., Venevsky, S., Vogel, J. G., and Zimov, S. A.: Vulnerability of
Permafrost Carbon to Climate Change: Implications for the Global Carbon
Cycle, BioScience, 58, 701–714, 2008.
Sellmann, P. V., Brown, J., I. Lewellen, R., McKim, H. L., and Merry, C. J.:
The Classification and Geomorphic Implications of Thaw Lakes on the Arctic
Coastal Plain, Alaska, 28 pp., 1975.
Seppala, M., Gray, J., and Ricard, J.: Development of low–centred ice–wedge
polygons in the northernmost Ungava Peninsual, Queébec, Canada, Boreas,
20, 259–285, 1991.
Sexstone, G. A. and Fassnacht, S. R.: What drives basin scale spatial
variability of snowpack properties in northern Colorado?, The Cryosphere, 8,
329–344, https://doi.org/10.5194/tc-8-329-2014, 2014.
Sitch, S., Huntingford, C., Gedney, N., Levy, P. E., Lomas, M., Piao, S. L.,
Betts, R., Ciais, P., Cox, P., Friedlingstein, P., Jones, C. D., Prentice, I.
C., and Woodward, F. I.: Evaluation of the terrestrial carbon cycle, future
plant geography and climate-carbon cycle feedbacks using five Dynamic Global
Vegetation Models (DGVMs), Glob. Change Biol., 14, 2015–2039, 2008.
Smith, L. C., Sheng, Y., MacDonald, G. M., and Hinzman, L. D.: Disappearing
Arctic Lakes, Science, 308, 1429–1429, 2005.
Smith, M. B., Koren, V., Reed, S., Zhang, Z., Zhang, Y., Moreda, F., Cui, Z.,
Mizukami, N., Anderson, E. A., and Cosgrove, B. A.: The distributed model
intercomparison project – Phase 2: Motivation and design of the Oklahoma
experiments, J. Hydrol., 418, 3–16, 2012.
Smith, N. V., Saatchi, S. S., and Randerson, J. T.: Trends in high northern
latitude soil freeze and thaw cycles from 1988 to 2002, J. Geophy.
Res.-Atmos., 109, D12101, https://doi.org/10.1029/2003JD004472, 2004.
Sturm, M., Racine, C., and Tape, K.: Increasing shrub abundance in the
Arctic, Nature, 411, 546–547, https://doi.org/10.1038/35079180, 2001.
Sturm, M., Douglas, T., Racine, C., and Liston, G. E.: Changing snow and
shrub conditions affect albedo with global implications, J. Geophys.
Res.-Biogeo., 110, G01004, https://doi.org/10.1029/2005JG000013, 2005.
Sullivan, P.: Snow distribution, soil temperature and late winter CO2 efflux
from soils near the Arctic treeline in northwest Alaska, Biogeochemistry, 99,
65–77, 2010.
Swenson, S. C. and Lawrence, D. M.: A new fractional snow-covered area
parameterization for the Community Land Model and its effect on the surface
energy balance, J. Geophys. Res.-Atmos., 117, https://doi.org/10.1029/2012JD018178,
2012.
Tang, J. and Riley, W. J.: Large uncertainty in ecosystem carbon dynamics
resulting from ambiguous numerical coupling of carbon and nitrogen
biogeochemistry: A demonstration with the ACME land model, Biogeosciences
Discuss., https://doi.org/10.5194/bg-2016-233, 2016.
Tape, K. E. N., Sturm, M., and Racine, C.: The evidence for shrub expansion
in Northern Alaska and the Pan-Arctic, Glob. Change Biol., 12, 686–702,
2006.
Tarnocai, C., Canadell, J. G., Schuur, E. A. G., Kuhry, P., Mazhitova, G.,
and Zimov, S.: Soil organic carbon pools in the northern circumpolar
permafrost region, Global Biogeochem. Cy., 23, GB2023,
https://doi.org/10.1029/2008GB003327, 2009.
Thompson, S. L., Govindasamy, B., Mirin, A., Caldeira, K., Delire, C.,
Milovich, J., Wickett, M., and Erickson, D.: Quantifying the effects of
CO2-fertilized vegetation on future global climate and carbon dynamics,
Geophys. Res. Lett., 31, L23211, https://doi.org/10.1029/2004GL021239, 2004.
Wadham, J. L., Hallam, K. R., Hawkins, J., and O'Connor, A.: Enhancement of
snowpack inorganic nitrogen by aerosol debris, Tellus B, 58, 229–241, 2006.
Wahren, C. H. A., Walker, M. D., and Bret-Harte, M. S.: Vegetation responses
in Alaskan arctic tundra after 8 years of a summer warming and winter snow
manipulation experiment, Glob. Change Biol., 11, 537–552, 2005.
Wainwright, H. M., Dafflon, B., Smith, L. J., Hahn, M. S., Curtis, J. B., Wu,
Y., Ulrich, C., Peterson, J. E., Torn, M. S., and Hubbard, S. S.: Identifying
multiscale zonation and assessing the relative importance of polygon
geomorphology on carbon fluxes in an Arctic tundra ecosystem, J. Geophys.
Res.-Biogeo., 120, 788–808, 2015.
Walker, D. A., Raynolds, M. K., Daniëls, F. J. A., Einarsson, E.,
Elvebakk, A., Gould, W. A., Katenin, A. E., Kholod, S. S., Markon, C. J.,
Melnikov, E. S., Moskalenko, N. G., Talbot, S. S., Yurtsev, B. A., and The
other members of the CAVM Team: The Circumpolar Arctic vegetation map, J.
Veg. Sci., 16, 267–282, https://doi.org/10.1111/j.1654-1103.2005.tb02365.x, 2005.
Warscher, M., Strasser, U., Kraller, G., Marke, T., Franz, H., and Kunstmann,
H.: Performance of complex snow cover descriptions in a distributed
hydrological model system: A case study for the high Alpine terrain of the
Berchtesgaden Alps, Water Resour. Res., 49, 2619–2637, 2013.
Welker, J. M., Fahnestock, J. T., and Jones, M. H.: Annual CO2 Flux in
Dry and Moist Arctic Tundra: Field Responses to Increases in Summer
Temperatures and Winter Snow Depth, Climatic Change, 44, 139–150, 2000.
Wiggins, I. L.: The distribution of vascular plants on polygonal ground near
Point Barrow, Alaska, Stanford University Contributions of the Dudley
Herbarium, 4, 41–52, 1951.
Williams, M. W., Hood, E., and Caine, N.: Role of organic nitrogen in the
nitrogen cycle of a high-elevation catchment, Colorado Front Range, Water
Resour. Res., 37, 2569–2581, 2001.
Williams, T. and Flanagan, L.: Effect of changes in water content on
photosynthesis, transpiration and discrimination against 13CO2 and
C18O16O in Pleurozium and Sphagnum, Oecologia, 108, 38–46, 1996.
Wu, Y., Hubbard, S. S., Ulrich, C., and Wullschleger, S. D.: Remote
Monitoring of Freeze–Thaw Transitions in Arctic Soils Using the Complex
Resistivity Method, Vadose Zone J., 12, https://doi.org/10.2136/vzj2012.0062, 2013.
Xu, X., Riley, W. J., Koven, C. D., Billesbach, D. P., Chang, R. Y.-W.,
Commane, R., Euskirchen, E. S., Hartery, S., Harazono, Y., Iwata, H.,
McDonald, K. C., Miller, C. E., Oechel, W. C., Poulter, B., Raz-Yaseef, N.,
Sweeney, C., Torn, M., Wofsy, S. C., Zhang, Z., and Zona, D.: A multi-scale
comparison of modeled and observed seasonal methane emissions in northern
wetlands, Biogeosciences, 13, 5043–5056,
https://doi.org/10.5194/bg-13-5043-2016, 2016.
Zeng, N., Qian, H., Munoz, E., and Iacono, R.: How strong is carbon
cycle-climate feedback under global warming?, Geophys. Res. Lett., 31,
L20203, https://doi.org/10.1029/2004GL020904, 2004.
Zeng, X. and Decker, M.: Improving the Numerical Solution of Soil
Moisture–Based Richards Equation for Land Models with a Deep or Shallow
Water Table, J. Hydrometeorol., 10, 308–319, 2009.
Zhu, Q. and Riley, W. J.: Improved modelling of soil nitrogen losses, Nature
Clim. Change, 5, 705–706, 2015.
Zhu, Q., Iversen, C. M., Riley, W. J., Slette, I. J., and Vander Stel, H. M.:
Root traits explain observed tundra vegetation nitrogen uptake patterns:
Implications for trait-based land models, J. Geophys. Res.-Biogeo., 121,
3101–3112, 2016.
Zona, D., Lipson, D. A., Zulueta, R. C., Oberbauer, S. F., and Oechel, W. C.:
Microtopographic controls on ecosystem functioning in the Arctic Coastal
Plain, J. Geophys. Res.-Biogeo., 116, G00I08, https://doi.org/10.1029/2009JG001241,
2011.
Short summary
The land model integrated into the Energy Exascale Earth System Model was extended to include snow redistribution (SR) and lateral subsurface hydrologic and thermal processes. Simulation results at a polygonal tundra site near Barrow, Alaska, showed that inclusion of SR resulted in a better agreement with observations. Excluding lateral subsurface processes had a small impact on mean states but caused a large overestimation of spatial variability in soil moisture and temperature.
The land model integrated into the Energy Exascale Earth System Model was extended to include...