Articles | Volume 11, issue 3
https://doi.org/10.5194/gmd-11-1181-2018
https://doi.org/10.5194/gmd-11-1181-2018
Methods for assessment of models
 | 
29 Mar 2018
Methods for assessment of models |  | 29 Mar 2018

Error assessment of biogeochemical models by lower bound methods (NOMMA-1.0)

Volkmar Sauerland, Ulrike Löptien, Claudine Leonhard, Andreas Oschlies, and Anand Srivastav

Related authors

Calibrating a global three-dimensional biogeochemical ocean model (MOPS-1.0)
Iris Kriest, Volkmar Sauerland, Samar Khatiwala, Anand Srivastav, and Andreas Oschlies
Geosci. Model Dev., 10, 127–154, https://doi.org/10.5194/gmd-10-127-2017,https://doi.org/10.5194/gmd-10-127-2017, 2017
Short summary

Related subject area

Biogeosciences
Lambda-PFLOTRAN 1.0: a workflow for incorporating organic matter chemistry informed by ultra high resolution mass spectrometry into biogeochemical modeling
Katherine A. Muller, Peishi Jiang, Glenn Hammond, Tasneem Ahmadullah, Hyun-Seob Song, Ravi Kukkadapu, Nicholas Ward, Madison Bowe, Rosalie K. Chu, Qian Zhao, Vanessa A. Garayburu-Caruso, Alan Roebuck, and Xingyuan Chen
Geosci. Model Dev., 17, 8955–8968, https://doi.org/10.5194/gmd-17-8955-2024,https://doi.org/10.5194/gmd-17-8955-2024, 2024
Short summary
An improved model for air–sea exchange of elemental mercury in MITgcm-ECCOv4-Hg: the role of surfactants and waves
Ling Li, Peipei Wu, Peng Zhang, Shaojian Huang, and Yanxu Zhang
Geosci. Model Dev., 17, 8683–8695, https://doi.org/10.5194/gmd-17-8683-2024,https://doi.org/10.5194/gmd-17-8683-2024, 2024
Short summary
BOATSv2: new ecological and economic features improve simulations of high seas catch and effort
Jerome Guiet, Daniele Bianchi, Kim J. N. Scherrer, Ryan F. Heneghan, and Eric D. Galbraith
Geosci. Model Dev., 17, 8421–8454, https://doi.org/10.5194/gmd-17-8421-2024,https://doi.org/10.5194/gmd-17-8421-2024, 2024
Short summary
A dynamical process-based model for quantifying global agricultural ammonia emissions – AMmonia–CLIMate v1.0 (AMCLIM v1.0) – Part 1: Land module for simulating emissions from synthetic fertilizer use
Jize Jiang, David S. Stevenson, and Mark A. Sutton
Geosci. Model Dev., 17, 8181–8222, https://doi.org/10.5194/gmd-17-8181-2024,https://doi.org/10.5194/gmd-17-8181-2024, 2024
Short summary
Simulating Ips typographus L. outbreak dynamics and their influence on carbon balance estimates with ORCHIDEE r8627
Guillaume Marie, Jina Jeong, Hervé Jactel, Gunnar Petter, Maxime Cailleret, Matthew J. McGrath, Vladislav Bastrikov, Josefine Ghattas, Bertrand Guenet, Anne Sofie Lansø, Kim Naudts, Aude Valade, Chao Yue, and Sebastiaan Luyssaert
Geosci. Model Dev., 17, 8023–8047, https://doi.org/10.5194/gmd-17-8023-2024,https://doi.org/10.5194/gmd-17-8023-2024, 2024
Short summary

Cited articles

Anderson, T.: Plankton functional type modelling: running before we can walk?, J. Plankton Res., 27, 1073–1081, https://doi.org/10.1093/plankt/fbi076, 2005.
Aumont, O., Ethé, C., Tagliabue, A., Bopp, L., and Gehlen, M.: PISCES-v2: an ocean biogeochemical model for carbon and ecosystem studies, Geosci. Model Dev., 8, 2465–2513, https://doi.org/10.5194/gmd-8-2465-2015, 2015.
Barlow, R. E., Bartholomew, D. J., Bremner, J. M., and Brunk, H. D.: Statistical Inference under Order Restrictions, Theory and Application of Isotonic Regression, Wiley Series in Probability and Mathematical Statistics, John Wiley & Sons, London, https://doi.org/10.1111/j.1467-9574.1973.tb00228.x, 1972.
Boyd, S. and Vandenberghe, L.: Convex optimization, Cambridge University Press, 2004.
Brovkin, V., Petoukhov, V., Claussen, M., Bauer, E., Archer, D., and Jaeger, C.: Geoengineering climate by stratospheric sulfur injections: Earth system vulnerability to technological failure, Climatic Change, 92, 243–259, https://doi.org/10.1007/s10584-008-9490-1, 2009.
Download
Short summary
We present a concept to prove that a parametric model is well calibrated, i.e., that changes of its free parameters cannot lead to a much better model–data misfit anymore. The intention is motivated by the fact that calibrating global biogeochemical ocean models is important for assessment and inter-model comparison but computationally expensive.