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Abstract. Biogeochemical models, capturing the major feed-
backs of the pelagic ecosystem of the world ocean, are today
often embedded into Earth system models which are increas-
ingly used for decision making regarding climate policies.
These models contain poorly constrained parameters (e.g.,
maximum phytoplankton growth rate), which are typically
adjusted until the model shows reasonable behavior. System-
atic approaches determine these parameters by minimizing
the misfit between the model and observational data. In most
common model approaches, however, the underlying func-
tions mimicking the biogeochemical processes are nonlinear
and non-convex. Thus, systematic optimization algorithms
are likely to get trapped in local minima and might lead to
non-optimal results. To judge the quality of an obtained pa-
rameter estimate, we propose determining a preferably large
lower bound for the global optimum that is relatively easy
to obtain and that will help to assess the quality of an opti-
mum, generated by an optimization algorithm. Due to the un-
avoidable noise component in all observations, such a lower
bound is typically larger than zero. We suggest deriving such
lower bounds based on typical properties of biogeochemical
models (e.g., a limited number of extremes and a bounded
time derivative). We illustrate the applicability of the method
with two real-world examples. The first example uses real-
world observations of the Baltic Sea in a box model setup.
The second example considers a three-dimensional coupled
ocean circulation model in combination with satellite chloro-
phyll a.

1 Introduction

Earth system models are widely used to assess the conse-
quences of climate change and explore climate engineering
options (e.g., Brovkin et al., 2009; Keller et al., 2014; Mengis
et al., 2015; Cao and Caldeira, 2008, 2010, and many more to
follow). In order to capture the development of climate rele-
vant greenhouse gases such as CO2 and N2O a pelagic bio-
geochemical component, embedded into a numerical ocean
model, is essential.

In contrast to ocean physics, which is derived from first
principles, current biogeochemical modules are based on em-
pirical relationships. Thus, several studies compare models
of different complexities (e.g., Friedrichs et al., 2006). Still
there is no consensus yet which complexity is needed to cap-
ture the major processes and how exactly the model should
be formulated (e.g., Anderson, 2005; Löptien, 2011). To-
day, various model formulations exist. Popular examples are
the BLING model with four prognostic variables only (Gal-
braith et al., 2010) versus the PICES model, containing 24
prognostic variables (Aumont et al., 2015). Another related
major problem, besides model complexity, is generally the
multitude of poorly known model parameters which exert
crucial control on the model behavior (e.g., Kriest et al.,
2010; Löptien and Dietze, 2017). To assess and compare the
quality of the different model formulations, it is crucial to
chose these parameters such that the fit to observations is as
good as possible. Due to the large computational expenses of
three-dimensional coupled biogeochemical ocean models, it
is common practice to adjust a few parameters “by hand”
until the model shows “reasonable” agreement with some
observations. More advanced approaches use automatized
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optimization techniques to estimate the optimal model pa-
rameters. These techniques require an objective metric (e.g.,
Evans, 2003) that measures the model–data misfit and can
be minimized automatically. Due to computational limita-
tions, various studies estimate the model parameters at sin-
gular stations and adopt these for the full model (e.g., Kane
et al., 2011; Kaufman et al., 2017; Matear, 1995; Schartau
and Oschlies, 2003). For this approach, it can be problem-
atic to determine a single parameter set for several sites (e.g.,
Kidston et al., 2011). Thus, other studies use fast approxima-
tions (Kennedy et al., 2006; Khatiwala, 2007) to be able to
optimize certain parameters for full three-dimensional mod-
els. A drawback is that the latter approaches are generally
restricted to the estimation of few parameters only (e.g., Mat-
tern et al., 2012; Kriest et al., 2017; Prieß et al., 2013a, b; Pi-
wonski and Slawig, 2016; Rückelt et al., 2010). In addition,
limited data availability (e.g., Lawson et al., 1996) and a de-
ficient representation of certain processes in the underlying
ocean circulation model (e.g., Dietze and Löptien, 2013) en-
cumber the optimization process. In summary, the systematic
optimization of a 3-D coupled biogeochemical ocean model
remains a difficult task and requires the advancement in ex-
isting methods (Schartau et al., 2017).

Biogeochemical processes are nonlinear, non-convex, and
complexly entangled. Therefore, as stressed by several fore-
going studies, associated model–data misfit measures com-
prise an unknown number of local optima and the results of
an optimization provide no proof whether an obtained pa-
rameter set is globally optimal or not (e.g., Faugeras et al.,
2003; Hurtt and Armstrong, 1996). Many parameter opti-
mization studies invoke deterministic methods that use gra-
dient information about the objective function (the model–
data misfit measure) to iteratively approach a locally opti-
mal set of parameters in an efficient way, starting from some
initial guess. Most of these studies calculate gradient infor-
mation by the adjoint method (introduced for biogeochem-
ical models by Lawson et al., 1995, since it is efficient if
there are more parameters than model states) and use the gra-
dient to determine a direction and an efficient step size to
change the parameters, often by applying a quasi-Newtonian
method (e.g., Fennel et al., 2001; Friedrichs, 2001, 2002;
Spitz et al., 1998; Tjiputra et al., 2007; Xiao and Friedrichs,
2014). Other attempts focus on stochastic search algorithms
which rely on random decisions. Examples for stochastic
search algorithms that have been applied to optimize pa-
rameters of biogeochemical models are simulated anneal-
ing (e.g., Hurtt and Armstrong, 1996, 1999; Matear, 1995;
Kidston et al., 2011), genetic algorithms (e.g., Hemmings
and Challenor, 2012; Kaufman et al., 2017; Schartau and Os-
chlies, 2003), and estimation of distribution algorithms (Kri-
est et al., 2017). Vallino (2000) compares the performance
of a couple of optimization algorithms of both types, tun-
ing the parameters of an ecosystem model against mesocosm
data. Stochastic search algorithms require more model sim-
ulations (computation time) than gradient-based methods to

converge but are less likely to get trapped in a “first avail-
able” local optimum (see Vallino, 2000), which might possi-
bly be far off the global optimum. On the other hand, several
contributions which focus on gradient-based methods aim to
increase confidence in the quality of an obtained parame-
ter set by repeating the optimization procedure many times
(20–600), while using various random starting points (e.g.,
Garcia-Gorriz et al., 2003; Hemmings et al., 2004; Schartau
et al., 2001). This approach also increases the number of re-
quired simulations considerably.

Still, it is crucial to find a global optimum to assess the
quality of a certain model formulation. Lacking a proof on
the global optimality of chosen parameters, it is difficult to
determine whether a model–data misfit is mainly caused by
the parameter choice or attributed to other sources of un-
certainty, like those concerning model equations or obser-
vational data (see, e.g., Faugeras et al., 2003; Spitz et al.,
1998; Schartau et al., 2001). Facing this situation, we have a
strong interest to estimate the deviation of a model–data mis-
fit for a given parameter set relative to the unknown global
optimum. As the minimal accomplishable model–data misfit
(i.e., the global optimum) is unknown, a good (i.e., preferably
large) and easy-to-obtain lower bound on that value would
help to judge the quality of a minimum obtained by an au-
tomated optimization algorithm. Provided that such a lower
bound is close to the obtained model–data misfit, a contin-
uation of the parameter optimization process would not be
necessary. In the present study, we introduce an approach to
determine such lower bounds. We suggest considering a sur-
rogate formulation that is easier to solve and determining the
global optimum based on this “relaxed” problem. Our ap-
proach is based on certain properties of typical biogeochem-
ical models which are likewise fulfilled by non-parametric
functions. We propose searching for the best fit to the obser-
vations among these functions – which is a much easier and
faster optimization problem than minimizing the model–data
misfit based on the full biogeochemical model. Optimizing
these non-parametric functions provides the desired bounds
on the lowest possible misfit of the actual model, since the
properties we choose to constrain the generalized optimiza-
tion problems are satisfied by each solution of the original
problem.

The following section focuses on some typical properties
of biogeochemical models which lead to the relaxed prob-
lems described above. The choice of the respective model
properties is also based on the fact that efficient tailored algo-
rithms for solving the associated relaxed problems are read-
ily available. In Sect. 3, we examine the proposed method
with regard to both characteristics of observational data: their
noise level and coverage. For this purpose, we generate syn-
thetic observations by adding random Gaussian noise to sam-
ples of a parameterized exemplary model trajectory. In the
next step, we compare the results with our lower bound
approaches, i.e., with the global optima of the correspond-
ing easier optimization problems. We systematically exam-
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ine the relation between both values depending on sparse-
ness of the observational data and noise level. We further
consider two real-world applications. The first application is
based on a box model and investigates a common nutrients–
phytoplankton–zooplankton–detritus (NPZD) biogeochemi-
cal model in combination with phytoplankton observations
in the Baltic Sea. Our second example is based on global
satellite observations of chlorophyll a and a coupled biogeo-
chemical ocean general circulation model.

2 Methods

Comparing model output to observational data requires a cri-
terion to measure the misfit between both data sets. To apply
an automated optimization algorithm, such a measure needs
to be reduced to a single real number. We provide commonly
used measures in the following subsection. In Sect. 2.2, we
introduce mathematical notation for the optimization prob-
lem based on the given measure for the model–data misfit.
Additionally, we provide a mathematical formulation for the
(simplified) non-parametric approach. We then give specifi-
cations of the non-parametric data-fit problem based on fre-
quency limits on the parameterized models (Sect. 2.3 and
2.4), bounds on their derivatives (Sect. 2.5), and the combi-
nation of both (Sect. 2.6). These non-parametric relaxations
will be used to calculate lower misfit bounds as outlined
above.

2.1 Model–data misfit

A quality assessment of biogeochemical models usu-
ally compares available observational data o= (o1, . . .,oN )

with corresponding model output (model predictions) p =

(p1, . . .,pN ).
For the sake of simplicity, we will consider scalar data in

the following, assuming that both o and p are univariate. Ac-
tually, comprehensive global ocean models and observational
data sets both comprise multiple quantities of interest on spa-
tial grids. The presented lower bound methods can be utilized
for that multi-variate case by applying them chunk-wise, for
each quantity, and summing up the obtained results, option-
ally using weights for the single terms.

Objective judgment about the differences between obser-
vational data and model output requires an associated mea-
sure ferr that assigns a real number to the model–data misfit.
Furthermore, such an objective model–data misfit measure
ferr has the advantage that it allows applying mathematical
optimization algorithms to parametric models, where oth-
erwise only manual parameter tuning can be done until the
model output shows reasonable behavior.

There are several possible measures for the model–data
misfit that have been used to evaluate biogeochemical mod-
els (see, e.g., Evans, 2003; Gregg et al., 2009; Stow et al.,
2009). Common measures are the mean absolute error

(MAE),

fmae(p,o)=
1
N

N∑
i=1
|pi − oi |,

and the root mean square error (RMSE),

frmse(p,o)=

√√√√ 1
N

N∑
i=1
(pi − oi)

2.

It is sufficient to consider the following expression (sum of
squared errors),

N∑
i=1
(pi − oi)

2,

instead of RMSE as this transformation does not change the
ranking of considered model outputs p. We will exemplarily
work with RMSE which is the most commonly used misfit
measure for biogeochemical models. However, our approach
and the corresponding algorithms are transferable to other
misfit measures like MAE.

2.2 The optimization problem

As mentioned above, we consider scalar observations o=

(o1, . . .,oN ) taken at times t1 < t2 < · · ·< tN . Moreover, we
introduce a scalar parametric model function ϕ : S×R→ R,
where the set S ⊆ Rn is the domain of the free parameters of
the model. For a given parameter vector s ∈ S, the model pre-
diction p(s)= (p(s)1, . . .,p(s)N ) at times t1 < t2 < · · ·< tN
is given by p(s)i = ϕ(s; ti). So, in order to determine opti-
mal model parameters, we want to minimize the model–data
misfit measure

min
∑N

i=1
(ϕ(s; ti)− oi)

2,

subject to s ∈ S,
(1)

that is, we want to determine the minimal sum of squared er-
rors over all possible parameter values. As discussed in the
introduction, for global biogeochemical ocean models a full
scan of the parameter space is hampered by computation-
ally expensive models that would have to be evaluated sev-
eral times for differing parameter sets during the optimiza-
tion. Moreover, we usually know neither if selected param-
eters s ∈ S correspond to a global optimum of the associ-
ated data-fit problem (Eq. 1) nor how good (or bad) these
parameters are in relation to a global optimum of Eq. (1).
Our objective is to find a value as large as possible which
we know to be smaller than the minimum of the optimization
problem (Eq. 1), i.e., a lower bound. Then, if the minimum
obtained by the optimization is close to this value, we may
terminate the procedure. In mathematical terms we seek a
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number α ∈ R>0 which is as large as possible while satisfy-
ing

α ≤

N∑
i=1

(ϕ(s; ti)− oi)
2 for all s ∈ S. (2)

Now, if α satisfies Inequality (2) and it holds for some model
parameters s ∈ S that the corresponding model–data misfit is
close to α, then s is a good parameter set with respect to the
observational data (as well as α is a good lower bound on the
unknown optimal model–data misfit).

In order to find such a lower bound α, our approach is to
replace the parametric optimization problem (1) using a for-
mulation that can be solved more easily. Therefore, we spec-
ify a number of properties of the original model that hold for
all parameter sets s ∈ S and which we require the alterna-
tive formulation to fulfill. The global optimal value of such
a relaxed problem is a lower bound α on the best possible
model–data misfit of the original model. If the relaxed prob-
lem is convex, in contrast to the original optimization task,
its global optimum can be calculated efficiently (see, e.g.,
Boyd and Vandenberghe, 2004). We also refer to the infor-
mation box below. Mathematically, our relaxations are mod-
ifications of the original optimization task (1) in the sense
that the parametric model function ϕ is replaced by a non-
parametric function8 from a classF of all functions that sat-
isfy the considered property. In particular, F contains ϕ(s; ·)
for all s from the parameter domain S of the actual model.
The associated non-parametric optimization problem on the
“extended search space” reads

min
∑N

i=1
(8(ti)− oi)

2,

subject to 8 ∈ F .
(3)

The model–data misfit of a global optimum of the relaxed
problem (3) satisfies Inequality (2), meaning that it is a lower
bound on the model–data misfit for all allowed parameters s

of the original problem (1). We refer to Sect. 3 for thoughts
on how the lower bound is employed in applications to judge
the quality of the optimization outcome. In short, the main
idea of the lower bound method can be summarized as fol-
lows:

– Pick some properties that the model comprises for all
parameters s ∈ S.

– Solve the optimization problem detached from the
parametric model. Precisely, we minimize the sum of
squared errors over all functions 8 ∈ F that fulfill the
selected properties.

– The procedure yields a lower bound for the original op-
timization problem as the set of possible solutions is
larger for the relaxed problem and contains the original
model output.

In the following sections, we give examples of the properties
of the model that we choose.

Terms and background information

Given a function f : Rn→ R and a subset X of Rn, a
general mathematical optimization problem is
(MP) minimize f (x),

subject to x ∈X.

An example is the parameter optimization problem (1).

Convex optimization problem. If f is a convex func-
tion and X is a convex set, then (MP) is a called a con-
vex optimization problem (CP). All relaxed problem for-
mulations considered below are CPs. An important prop-
erty of a CP is that every local optimum of f over X is
already a global optimum (see, e.g., Boyd and Vanden-
berghe, 2004).

Quadratic program. A special CP is a convex quadratic
program (QP). A QP has a convex quadratic objective
function f and its function domain X is described in
terms of some k linear constraints, i.e.,
X = {x ∈ Rn |gi(x)≥ 0 for i ∈ {1, . . .,k}} ,
where gi , i = 1, . . .,k, are linear functions. The surrogate
model formulations (4)–(7) are QPs. Tools to calculate
global optima of arbitrary QPs exist, but for most of our
surrogates we can apply tailored algorithms which are
more efficient.

2.3 Bounds for monotonic models

We start with an example that is not directly related to bio-
geochemical models but which serves as a basis for the ap-
proaches in Sect. 2.4 and 2.6, respectively. The task here is
to fit observations with a monotonically increasing data set.
Measuring the model–data misfit by its sum squared error,
the associated non-parametric optimization problem can, for
example, be stated as a convex quadratic program as follows

min
∑N

i=1
(pi − oi)

2,

subject to p ∈ RN ,
pi ≤ pi+1 for i ∈ {1, . . .,N − 1}.

(4)

This yields a vector p ∈ RN with monotonically increas-
ing entries, where pi is the data point that corresponds to
time ti . These entries are selected such that the sum of the
squared deviations from the observations is minimized. Note
that Eq. (4) corresponds to the general non-parametric opti-
mization problem (3) if F is the class of all monotonically
increasing functions. If we want to work with monotoni-
cally decreasing functions instead, we just need to replace
“≤” with “≥” in the monotonicity constraints or we can ap-
ply Eq. (4) to −o instead of o and negate the result.

The optimization problem (4) can be solved efficiently.
The pool adjacent violator (PAV) algorithm (Barlow et al.,
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Figure 1. Synthetic data (blue dots) and corresponding output (blue
crosses) of a periodic model function (blue curve). As the model fre-
quencies are low, both the model function and its samples take only
two local extremes. The segments before, after, and between the ex-
tremes (times tj and tk) are monotonically decreasing/increasing.
The respective monotonic fits to the data (drawn in red) are there-
fore “better” than the model output.

1972) solves it with linear effort, i.e., in less than c ·N com-
puter operations for some constant c and all N . Another
possibility is to use a general optimization tool for con-
vex quadratic programs like CPLEX or MATLAB quadprog.
Clearly, solutions of Eq. (4) provide a lower bound on the
optimal model–data misfit for every parametric model that is
monotonically increasing.

2.4 Bounds for periodic models

When simulating periodic systems, the model might (inten-
tionally or un-intentionally) not resolve all frequencies that
occur in the corresponding observational data. Models that
resolve low frequencies with respect to data frequency (e.g.,
NPZD models that aim to capture the main characteristics of
an annual cycle) take a correspondingly limited number of
extreme values within a given time interval, e.g., a seasonal
cycle. This situation is sketched in Fig. 1.

The fact that each segment between two subsequent ex-
treme values is monotonically increasing/decreasing allows
us to apply the methods introduced in Sect. 2.3. A corre-
sponding series p1, . . .,pN of discrete samples has (at most)
the same number of local extremes as the model. For illus-
tration, suppose that the series has exactly two extreme val-
ues pj and pk with j < k ∈ [N ] as sketched in the example
in Fig. 1. These must be one minimum and one maximum.
Assume that the time points j and k are known in advance
and the minimum appears at position j . Then, an optimal
data fit is a solution of a convex quadratic program similar

to Eq. (4)

min
∑N

i=1
(pi − oi)

2,

subject to p ∈ RN ,
pi ≥ pi+1 for i ∈ {1, . . ., j − 1},
pi ≤ pi+1 for i ∈ {j, . . .,k− 1},
pi ≥ pi+1 for i ∈ {k, . . .,N − 1},[
pN ≥ p1

]
,

(5)

where the optional last constraint appears if the considered
interval represents a full cycle of a periodic model. This
yields a vector p ∈ RN with entries that decrease up to entry
j , then start to increase, and fall after entry k. At the same
time this vector minimizes the deviation from the observa-
tional data. The negated solution of Eq. (5) applied to −o

instead of o is an optimal data fit to observations o that has a
maximum at position j and a minimum at position k. Now, if
the positions j and k of the extremes are unknown, repeating
the optimizations with o and −o for every j < k ∈ [N ], the
best of all results is an optimal data fit subject to the property
that there are (at most) two local extremes in the series. Sim-
ilar to the case of two extremes, we can consider more than
two, saym, extremes. Dealing with all possible combinations
of the positions of m extremes would imply a computational
effort of c1 ·N

m operations (c1 constant, N arbitrary), but
using a tailored algorithm (Demetriou and Powell, 1991) we
can calculate a best piece-wise monotonic fit in only c2·m·N

2

computer operations.

2.5 Bounds for models with bounded derivatives

The change rates of biogeochemical processes like growth
and decay have natural limits. In the presence of noise, ob-
servational data are very likely to exhibit higher variations
than a model that is devoted to comparatively slow interac-
tions. In other words, noise (or unresolved periodic processes
with high frequencies and high amplitudes) cannot be well
approximated by models that mimic processes of lower vari-
ation, i.e., models with small changes in a given time step.
These processes are characterized by a small absolute deriva-
tive. If we are able to postulate general bounds on the deriva-
tives of a parametric model function ϕ with respect to time,
we can try to utilize this property in order to calculate lower
bounds on the optimal misfit of ϕ.

General bounds on the first time derivative (steepness)
of ϕ are given as real numbers Dmin <Dmax such that
Dmin ≤

∂ϕ
∂t
(s, t)≤Dmax holds for all allowed parameter sets

s and time points t . Using the function space F = {8 : R→
R | Dmin ≤8

′
≤Dmax} in Eq. (3), we obtain a relaxation of

the parametric problem (1) that can be expressed as the con-
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vex quadratic program

min
∑N

i=1
(pi − oi)

2,

subject to p ∈ RN ,
pi + (ti+1− ti)Dmin ≤ pi+1 for i ∈ [N − 1],
pi + (ti+1− ti)Dmax ≥ pi+1 for i ∈ [N − 1].

(6)

A solution of this problem yields a lower model–data mis-
fit bound for all parameter sets s such that ϕ(s, ·) satisfies
the steepness bounds, Dmin ≤

∂ϕ
∂t
(s, t)≤Dmax. Here, we ap-

proximated the derivative 8′(t) by finite differences which
yields Dmin ≤

8(ti+1)−8(ti )
ti+1−ti

≤Dmax.
It is also possible to add linear constraints to the QP which

consider bounds on higher-order derivatives of ϕ in terms
of higher-order finite differences. For example, the property
D2,min ≤

∂2ϕ

∂t2
(s, t)≤D2,max, s ∈ S, t ∈ [t1, tN ], can be ac-

counted for with second-order differences by, for example,
posing the (compactly written) constraints

D2,min ≤
pi+2− 2pi+1+pi

(ti+2− ti)2
≤D2,max for i ∈ [N − 2].

The knowledge of tight bounds on derivatives of increasing
order allows obtaining increasingly tight lower bounds on the
model–data misfit. However, since bounds on higher-order
derivatives are more difficult to derive in practice, we restrict
our studies to steepness bounds.

2.6 Bounds for models with combined properties

Clearly, we can combine model properties into a joint QP,
e.g., if the model has two local extremes within a window of
interest and bounded steepness. We can apply the combina-
tion of Eqs. (5) and (6) and obtain the joint QP

min
∑N

i=1
(pi − oi)

2,

subject to p ∈ RN ,
pi ≥ pi+1 ≥ pi + (ti+1− ti)Dmin

for i ∈ {1, . . ., j − 1} ∪ {k, . . .,N − 1},
pi ≤ pi+1 ≤ pi + (ti+1− ti)Dmax

for i ∈ {j, . . .,k− 1},[
pN ≥ p1 ≥ pN + (T + t1− tN )Dmin

]
.

(7)

Here, again, j < k are the indices of the unique minimum and
the unique maximum, respectively, Dmin < 0 and Dmax > 0
are the universal lower and upper bounds on the model’s first
derivative, and T is the optional period of the model.

Similar to the approach in Sect. 2.4, the optimal solution
of Eq. (7) applied to o and −o for all j < k ∈ [N ] will pro-
vide the lower bound on the model–data misfit of the para-
metric model. As an alternative to a QP solver, we can use
an extension of the PAV algorithm that additionally considers

steepness bounds with monotonic regression called Lipschitz
pool adjacent violators (LPAV; Yeganova and Wilbur, 2009)
in order to solve Eq. (7).

3 Experiments

3.1 Method evaluation

We first aim to examine the extent to which the minimum
model–data misfit of a parameterized model can deviate
from the corresponding minimum misfit of a proposed non-
parametric relaxation. Clearly, the difference between both
misfits also depends on the characteristics of the observa-
tional data, that is, noise level and data density. We there-
fore derive statistics about that dependency using synthetic
observations.

3.1.1 Test statistics

We generate the synthetic observations by adding white noise
to N discrete samples 8(ti) of a model function 8 : R−→
R, varying both the noise level and the number of samples.
Our noise levels will be relative to the range

r := max
i∈[N ]

8(ti)− min
i∈[N ]

8(ti)

of the model output. As a simple parametric test function we

use a cubic polynomial 8(t)= ϕ(s, t)=
3∑
i=0
si t

i . We sim-

ulate 1-year time series of observational data by consider-
ing the interval [0,365] and taking N equidistant samples,
ti =

i
N
· 365, for a polynomial with fixed coefficients s∗ (a

fixed parametrization), and N ∈ {12,25,50,100,200,300}.
We add zero-mean white noise N (0, σ ) to the time series
values using one of six different noise levels with standard
deviations σ = σ ∗ · r , σ ∗ ∈ {0.1,0.2,0.3,0.5,0.7,1.0}. Fig-
ure 2 shows the exemplary cubic polynomial

8(t)= 2+ 0.035 · t − 0.0003 · t2+ 5.592 · 10−7
· t3

and N = 300 synthetic observations oi obtained by adding
white noise with standard deviation σ = 0.2 · r to the cor-
responding function values, i.e., oi =8(ti)+N (0, 0.2 · r).
The figure further shows the minimum RMSE data fit by a
function that has at most two local extremes as introduced in
Sect. 2.4.

The related RMSE between the synthetic data and this
piece-wise monotonic fit is 0.445. We know that this er-
ror cannot be larger than the corresponding error between
the fix polynomial 8 and the data since any cubic poly-
nomial also takes at most two extremes. Indeed, the latter
error is 0.501, which is the RMS of the white noise we
added. By solving a convex optimization problem we can
efficiently identify the coefficients s∗ = (s∗0 , s

∗

1 , s
∗

2 , s
∗

3 ) of a

polynomial8∗ =
3∑
i=0
s∗i t

i that provides the best data fit of all
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Figure 2. A cubic polynomial, synthetic observational data gener-
ated by adding white noise to 300 equidistant samples of the poly-
nomial, and a minimum RMSE data fit with regard to the property
that no more than two extremes are taken.

cubic polynomials. Unsurprisingly, the re-optimized polyno-
mial8∗ differs only slightly from the original one and yields
a RMSE of 0.497.

For our statistics about the proposed error assessment
methods we are interested in the ratio

q :=
frmse(p

rel,o)

frmse(ppar,o)

between the lower error bound given by the optimal output of
a non-parametric model relaxation prel and the correspond-
ing data fit with the original parametric model ppar. In the
above example this ratio is qa =

0.445
0.501 = 0.888∼ 89%. We

repeat the calculation of a lower error bound and the cor-
responding error ratio with two other relaxations assuming
only a bounded model steepness (see Sect. 2.5) and a com-
bination of both properties, bounded steepness and the exis-
tence of at most two (local) extremes (see Sect. 2.6), respec-
tively. The results are depicted in Fig. 3.

Here, for both relaxations we assume a maximum model
steepness of 0.05 which is approximately 28 % more than the
maximum steepness of the original polynomial in the interval
[0,365]. The resulting RMSEs of the property-based optimal
data fits are 0.442 if only the steepness bound is assumed
(data fit (b)) and 0.464 if both properties are assumed (data
fit (c)). The corresponding error ratios are qb = 0.883 and
qc = 0.927.

To derive robust statistics, we repeat the experiment 100
times using different zero-mean white noise with the same
standard deviation σ . Now, we do the same for all 6×6 com-
binations of N and σ ; i.e., we apply the three model relax-
ations (a), (b), and (c) with regard to each of the 36 data prop-
erty assumptions to 100 data sets of corresponding synthetic
observations. The results are shown in Table 1.
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Figure 3. The synthetic observational data of Fig. 2 and minimum
RMSE data fits with regard to a steepness bound (data fit, (b)) as
well as regarding both properties, bounded steepness and the exis-
tence of at most two extremes (data fit, (c)).

The approach to calculate lower bounds on the model–data
misfit by using property-based model relaxations stems from
the intuition that the overall shape of the optimized paramet-
ric model and that of the non-parametric relaxation should be
similar if the relaxation describes the main properties of the
original model well. The amount of similarity is reflected by
the ratios stated in Table 1. Values that are close to 100 % pro-
vide evidence that the parametric model is suitably shaped
with regard to the corresponding general model property as-
sumptions. Here, by construction of the synthetic data, we
already know that the original polynomials are “correctly
shaped”. Therefore, the numbers in the table actually reflect
the tightness of the property-based relaxations and serve as
circumstances under which the lower bound approach can
succeed.

We observe that the data must be rather dense in order to
reach good error ratios, especially with low levels of noise.
This dependence is plausible because small numbers of ob-
servations and low levels of noise cause small difference
quotients oi+1−oi

ti+1−ti
of the observations. However, the explicit

steepness bounds, property (a), or implicit steepness bounds,
property (b), which we use for the model relaxation must be
considerably smaller than the difference quotients in order to
provide a lower bound that is close to the model–data misfit
of the optimized parametric model.

For example, consider a target ratio of 85 % to be reached
for all 100 sets of random observations, i.e., the left (worst
case) number in a cell of Table 1 should be greater than 85.
For up toN = 50 observations none of our experiments reach
the 85 % in the worst case. For N = 100 it is reached with
property (b) and noise level 1.0, and with property (c) and
noise levels 0.5, 0.7, 1.0 (multiplied by the range of the un-
derlying true process). Regarding the lowest applied noise
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Table 1. Ratios (times 100) between the misfit of the parametric model (cubic polynomial) to synthetic observations (the model output
plus white noise) and the misfit of the corresponding non-parametric regression model. We state the ratios for different noise levels σ and
numbers of samples N . The values in each cell are the range of the ratios over 100 trials followed by their average and standard deviation.
Non-parametric regression was done by (a) only assuming that at most two local extremes exist, (b) only assuming a steepness bound of
0.05, and (c) assuming both properties.

Property σ
Range; mean; SD

N = 300 N = 200 N = 100 N = 50 N = 25 N = 12

(a)

0.1 82–88; 85; 1.2 74–85; 81; 2.2 63–79; 71; 3.3 36–69; 56; 6.6 9–58; 36; 10.2 0–51; 12; 13.8
0.2 86–92; 89; 1.1 80–90; 86; 1.9 70–85; 78; 3.0 50–79; 66; 5.9 22–70; 50; 9.6 0–65; 27; 15.7
0.3 88–94; 91; 1.0 83–92; 88; 1.8 74–87; 81; 2.8 56–82; 71; 5.6 24–74; 56; 9.4 1–70; 36; 15.2
0.5 90–95; 93; 0.9 86–94; 90; 1.6 77–90; 84; 2.6 60–84; 75; 5.2 29–80; 62; 9.4 7–69; 44; 14.7
0.7 91–96; 94; 0.9 88–95; 91; 1.5 79–92; 86; 2.5 62–86; 77; 5.2 31–81; 64; 9.2 13–71; 48; 14.4
1.0 91–97; 95; 0.9 89–96; 92; 1.5 80–93; 87; 2.5 63–87; 78; 5.1 34–82; 66; 8.9 19–75; 50; 14.0

(b)

0.1 77–84; 81; 1.4 69–80; 75; 2.1 51–70; 61; 3.5 22–52; 41; 6.4 0–48; 16; 10.7 0–15; 0; 1.5
0.2 85–91; 88; 1.2 79–88; 84; 1.7 67–81; 75; 2.9 45–69; 60; 5.6 12–63; 38; 10.3 0–42; 7; 10.2
0.3 88–93; 91; 1.0 83–91; 88; 1.5 74–86; 81; 2.6 54–77; 69; 5.0 27–69; 51; 9.1 0–53; 19; 13.7
0.5 91–95; 93; 0.9 87–94; 91; 1.3 81–91; 86; 2.2 63–84; 77; 4.4 44–77; 64; 7.7 0–66; 37; 14.1
0.7 92–96; 95; 0.8 89–95; 93; 1.2 84–93; 89; 2.0 67–88; 82; 4.0 52–82; 70; 6.7 10–72; 47; 12.9
1.0 94–97; 96; 0.7 91–96; 94; 1.1 87–95; 91; 1.8 71–91; 85; 3.7 59–86; 76; 5.8 25–77; 57; 11.5

(c)

0.1 85–92; 89; 1.1 80–88; 85; 1.7 70–83; 76; 2.8 44–73; 61; 5.6 15–58 39 9.5 0–51; 12; 13.8
0.2 89–95; 93; 1.0 87–93; 90; 1.4 79–89; 84; 2.3 59–82; 74; 4.8 35–72; 57; 8.2 0–65; 31; 14.8
0.3 91–96; 94; 0.9 89–95; 92; 1.2 82–92; 88; 2.1 66–86; 79; 4.4 47–78; 66; 7.2 1–70; 42; 13.5
0.5 93–97; 96; 0.7 92–96; 94; 1.1 86–95; 91; 1.8 71–90; 84; 3.9 54–84; 74; 6.3 8–78; 55; 12.0
0.7 94–98; 97; 0.7 93–97; 95; 0.9 88–96; 92; 1.7 73–93; 87; 3.6 59–87; 79; 5.7 18–83; 62; 11.1
1.0 95–99; 97; 0.6 94–98; 96; 0.8 90–97; 94; 1.5 76–94; 89; 3.3 65–90; 83; 5.1 29–87; 68; 10.2

level of 0.1 and property (a), the 85 % ratio is never reached
in the worst case but only in the average case and only with
N = 300 observations.

3.1.2 A countercheck

Having evidence that the lower bounds on the model–data
misfit become tight with sufficiently dense observations, we
want to countercheck if an optimized parametric model that
slightly differs from the actual process behind the observa-
tional data has a significantly worse model–data misfit in
comparison with its non-parametric relaxation. This time, we
generate 300 synthetic observations by disturbing the sum of
two sine waves

8(t)= sin(t)+ 0.3 · sin(2t)

and start with a noise level of 10 % relative to the range of
the function values (σ = 0.1 · r). As the data might be mis-
taken for noisy measurements of a single sine process at first
glance, we use a general sine model to fit the observations.
From the data, we estimate that both the frequency and the
amplitude of the sine are at most 1.2. This implies a max-
imum steepness of 1.44 and that the sine model takes no
more than two extremes in [2,π ], that is, according to the
above notation, we use a type (c) model relaxation. Opti-
mization yields a solution with a RMS model–data misfit

0 π 2π
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0

1

Time

V
a
lu

e

Synthetic observations

Sine regression

Non-parametric fit

Figure 4. Synthetic data obtained by adding noise to the function
8(t)= sin(t)+0.3·sin(2t) and the optimized data fit by a clean sine
wave (parametric model) and its property-based non-parametric re-
laxation (steepness ≤ 1.44, at most two extremes), respectively.

of 0.275 and the corresponding property-based lower mis-
fit bound 0.2. The data and both model outputs are shown
in Fig. 4.
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Figure 5. Synthetic observations as in Fig. 4 but optimizing the
“correct” parametric model and its property-based non-parametric
relaxation (steepness ≤ 2.21, at most four extremes).

With regard to the data density, the ratio qc = 0.727 of
both values is not completely convincing and, indeed, one
can recognize a “failure in the model shape”. Now, we sup-
pose the more precise process

ϕ(s, t)= s1+ s2 · sin(s3(t − s4))+ s5 · sin(s6(t − s7)), (8)

resolving a second sine wave of higher frequency. We further
suppose knowledge of the general bounds on both amplitudes
|s2| ≤ 1.2, |s5| ≤ 0.35 and on both frequencies |s3| ≤ 1.2,
|s6| ≤ 2.2. This implies that the steepness of ϕ is bounded by
1.22
+ 0.35 · 2.2= 2.21. From the data, we can expect that

the new model with optimized parameters also only takes
two extremes in the interval [0,2π ]. However, for the given
bounds on the frequency and arbitrary parameters the model
can take up to four extremes. Consequently, in addition to
the steepness bound on the model, at most four extremes
must be assumed to calculate the lower error bound on the
best possible model–data misfit. Applying both assumptions,
(i.e., using model property (c) from above) the exact opti-
mum value of the model relaxation is∼ 0.217, while the opti-
mized new parametric model comes down to∼ 0.193 provid-
ing a clearly better model–data misfit ratio qc = 0.891 than
the pure sine model. The optimized parametric model curve
is shown in Fig. 5.

We repeat the experiment with noise levels of σ = 5 % and
σ = 20 % for different numbers of equidistant observations
N ∈ {500,300,200,100} and for all three property-based
model-relaxation types (a), (b), and (c) used in Sect. 3.1.1.
Again, we generate 100 different random sets of observations
for each combination of σ and N . The results are depicted
in Table 2.

The experiments help to identify conditions under which
we may distinguish the “truth” from “distortions of the
truth”. Sufficient conditions are given if the misfit ratio for

the true parametric model, say q1, is not too small, e.g.,
q1 ≥ 0.5, but the ratio for a moderate distortion of the true
parametric model, say q2, is essentially smaller. Depending
on how close q1 is to 1, we may say that q2 is essentially
smaller than q1 if either of the fractions q2

q1
and 1−q1

1−q2
are con-

vincingly less than 1, say q1
q2
≤ 0.75 or 1−q2

1−q1
≤ 0.5. We find

that a rather low noise level is necessary to satisfy these con-
ditions. As already observed in Sect. 3.1, high noise levels σ
provide rather tight lower bounds on the minimum-attainable
model–data misfit of the “correct model type” if sufficient
observations are available. Unfortunately, the corresponding
lower bounds for a less accurate model become similarly
close in this case. For properties (b) and (c) and fewer ob-
servations, they can even exceed the lower misfit bounds for
the “correct model” since we apply different uniform steep-
ness bounds.

3.2 Application to real-world observations

We now consider two real-world examples with the aim of
fitting chlorophyll a observations.

3.2.1 Baltic Sea observations

Our first example considers observations from the Bornholm
Basin in the Baltic Sea at 55.15◦ N, 15.59◦ E, dubbed station
BY5. The data were provided by the Swedish Oceanographi-
cal Data Center (SHARK) at the Swedish Meteorological and
Hydrological Institute (SMHI). BY5 was repeatedly sampled
during 1962–2009. As there are relatively long periods with
only sparse data, we merge all data into a climatological sea-
sonal cycle. To derive phytoplankton (in nitrate units) from
chlorophyll a, we use a constant ratio of chlorophyll a to
nitrate of 1.59 g Chl a (mol N)−1. The considered seasonally
adjusted time series comprises 175 observations of phyto-
plankton.

We fit a NPZD box model to the data. It is based on a
model of Oschlies and Garcon (1999). The original version
was set up and tuned for the global ocean, but we consider a
simplified version which is described in detail by Löptien and
Dietze (2015). Its model equations are given in the Appendix
and its free parameters and their assumed limits can be found
in Table A1. As there is no temperature dependence in this
model version, an average temperature of 10 ◦C is assumed
for the growth period. Further, the “assimilation efficiency of
herbivores” parameter is omitted (implicitly set to 1). Fig-
ure 6 shows the Baltic Sea phytoplankton data set and sim-
ulations of the NPZD model simulations (red curve) using
the parameter values, derived for the open ocean, from Os-
chlies and Garcon (1999). As this model-fit appears to be,
as expected, poor, we optimize the parameters with regard
to the Baltic Sea observations (these optimized parameter
values are also depicted in Table A1). The result is a more
adequate model output (blue curve) lowering the associated
RMSE model–data misfit from 0.896 to 0.717.
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Table 2. Ratios (times 100) between the misfit of the parametric model to synthetic observations (the model output plus white noise) and the
misfit of the corresponding non-parametric regression model. The ratios are given for different noise levels σ and numbers of samples N .
The four entries in each cell are the mean ratio of 100 trials, the standard deviation for the pure sine model, and the corresponding values for
the “true” model that uses a sum of two sine waves. Non-parametric regression was done by (a) only assuming that at most two (four) local
extremes exist, (b) only assuming a model specific steepness bound (see text), and (c) assuming both properties.

Property σ
mean (sine); SD (sine); mean (“truth”); SD (“truth”)

N = 500 N = 300 N = 200 N = 100

(a)
0.05 84; 1.1; 50; 1.8 79; 1.5; 47; 2.0 73; 2.5; 43; 2.6 60; 3.6; 36; 3.3

0.1 89; 0.9; 74; 2.0 85; 1.2; 70; 2.2 81; 2.2; 67; 3.1 71; 3.2; 60; 4.2
0.2 92; 0.8; 88; 1.5 89; 1.1; 85; 1.8 86; 2.0; 82; 2.6 78; 3.0; 76; 3.9

(b)
0.05 81; 1.1; 52; 1.8 73; 1.7; 49; 2.0 65; 2.5; 46; 2.4 46; 4.1; 39; 3.3

0.1 88; 0.9; 77; 1.9 83; 1.4; 74; 2.2 78; 2.0; 71; 2.5 65; 3.5; 65; 3.6
0.2 92; 0.7; 90; 1.3 89; 1.1; 89; 1.6 86; 1.6; 87; 1.8 77; 2.9; 82; 2.6

(c)
0.05 88; 0.9; 55; 1.8 84; 1.4; 52; 2.0 78; 2.1; 50; 2.5 65; 3.2; 44; 3.1

0.1 93; 0.7; 79; 1.9 89; 1.1; 77; 2.2 86; 1.7; 75; 2.6 77; 2.6; 70; 3.5
0.2 95; 0.6; 92; 1.3 93; 0.9; 90; 1.6 91; 1.4; 89; 1.8 85; 2.2; 86; 2.6

In a next step, we assess our result by examining the
lower bounds. Following the procedure outlined at the end
of Sect. 2.2, we need to identify properties of the NPZD
model that are satisfied for every credible (allowed) parame-
ter choice and lead to an easily solvable surrogate problem.
Ideally, we could give mathematical proof of such properties.
However, postulating a model property which is based on
sound biological experience is justified, even if this property
is not satisfied for all feasible combinations of the parameter
values. In this context it is important to note that the rela-
tively simple model structure of our NPZD model with fixed
(non-temperature-dependent) rates does not suffice to de-
scribe the seasonal cycle after the spring bloom (Fennel and
Neumann, 2004, p. 35ff). Generally, model versions which
fit the spring bloom satisfactory do not capture the observed
chlorophyll increase in autumn. We thus assume only two
extremes to determine a compatible lower bound. A practi-
cal approach for more complex systems would be to itera-
tively increase the number of extremes of the non-parametric
model relaxation until the obtained lower bound hardly in-
creases anymore (this approach would also require quite
dense observational data). Using the algorithm of Yeganova
and Wilbur (2009), we find that the best-attainable RMSE
misfit between a time series with two extremes and our data
is σa = 0.557, a first lower error bound for the applied NPZD
model. The corresponding error ratio between this bound
and the error of the optimized model is qa = 0.777. In or-
der to tighten our lower error bound, we additionally postu-
late a model steepness limit of 0.14, which we justify with
the fact that the optimized model curve has two extremes,
a plausible position of its maximum, and a maximal steep-
ness of∼ 0.1. The associated best possible data fit, which we
can calculate using the “piecewise monotonic regression” al-
gorithm (Yeganova and Wilbur, 2009), in combination with

the LPAV algorithm (Demetriou and Powell, 1991) instead
of the classical PAV algorithm (black curve in Fig. 6), has
an RMSE of σc = 0.66 which yields a quite high ratio of
qc =

σc
0.717 = 0.921. Thus, it is confirmed that the main por-

tion of the model–data misfit of the optimized NPZD model
is not caused by a sub-optimal choice of the parameter set
but by other sources of uncertainty. For the sake of com-
pleteness we calculate the best data fit with regard to a lim-
ited model steepness of 0.14 solely (disregarding its number
of extremes) using CPLEX to solve the corresponding for-
mulation in terms of a quadratic program (6). In this case,
the RMSE is σb = 0.619 and the corresponding error ratio is
qb = 0.864.

Some indication of an even smaller gap between the at-
tained model–data misfit and the globally optimal misfit of
the NPZD model is given by the following additional step.
The RMSE error of the calibrated NPZD model is the em-
pirical standard deviation σ between model simulations and
observations. The lower bounds with regard to the general
model properties (a), (b), and (c), i.e., σa = 0.557, σb =

0.619, and σc = 0.66, are approximately 20, 22, and 23.5 %
of the range of the model output, respectively. Experiments
with random noise might help to further assess the quality of
our parametric solution. Similar to the statistics in Sect. 3.1.1,
Table 1, we generate 100 sets of synthetic observations for
each of the 3 standard deviations σa, σb, and σc by simply
adding white noise to the model output and calculate the av-
erage error of the corresponding optimal non-parametric data
fit. The obtained average ratios are qa,emp = 0.719, qb,emp =

0.891, and qc,emp = 0.919 which are encouragingly close to
the respective ratios for the true observations. We have to
note, however, that the assumed normal distribution property
is not actually satisfied by the errors between phytoplankton
observations and the optimized NPZD model.
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Figure 6. Bornholm seasonally adjusted observation time series of phytoplankton, and data fits using the considered NPZD model using
the parameters which were adjusted for global model configuration (red) and optimized parameters for the local model version (blue). The
(black) reference plot is the minimum error data fit with regard to the properties that no more than two extremes are taken and the steepness
is at most 0.14.

3.2.2 Global satellite observations

In a second example, we consider global observations of mar-
itime chlorophyll a. We use annual mean chlorophyll a ob-
servations in units of mg m−3, which were derived from Sea-
WiFS satellite data from http://seadas.gsfc.nasa.gov (NASA
Goddard Space Flight Center, 2011) using 8-day composites
binned on a 1/12◦ spatial grid (4320× 2160 boxes). Note
that these annual averages might be seasonally biased in re-
gions with sparse data. As we consider annual mean val-
ues, we apply our method in space instead of time. We do
not consider coastal areas, since these can not be well repre-
sented in the coarse-resolution model and are also likely to
contain a considerable degree of observational uncertainty.
We thus mask out all grid boxes with chlorophyll a concen-
trations above 1 mg m−3. We compare the observed chloro-
phyll a concentrations to simulated values. The simulation is
based on the CM2Mc configuration, described by Galbraith
et al. (2010). Spinup procedure and boundary conditions fol-
low Dietze et al. (2017) (see Table 1 their FMCD configura-
tion). The resolution of the model comprises 120× 80 boxes
(3◦ for longitudes and 2–3◦ for latitudes) and is coarse com-
pared to the spatial resolution of the observational data. The
annual mean model simulations are interpolated onto the ob-
servation grid in order to compute the corresponding RMSE
for the model–data misfit. Figure 7 visualizes the observed
chlorophyll a and the corresponding model simulations.

The observational data are quite rugged for larger regions
of the ocean while the simulations are comparably smooth
everywhere, due to the resolution of the model. Therefore,
we can expect positive lower bounds on the model–data mis-
fit.

The RMSE model–data misfit is 0.138 mg m−3. Deal-
ing with two-dimensional data, our one-dimensional lower
bound methods can be applied chunk-wise. Here, we traverse

each longitude of our spatial grid in chunks of 200 consecu-
tive boxes (where the last chunk for each longitude consists
of its ≤ 200 remaining boxes). It provides with us a lower
bound on the sum squared errors between observations and
simulations with regard to each chunk, say αi,k for the kth
of ni chunks of the ith longitude, i ∈ {1, . . .,4320}. A lower
bound on the (unweighted) RMSE model–data misfit is then
given by

α =

√√√√ 1
Nobs

4320∑
i=1

ni∑
k=1

αi,k ,

where Nobs is the total number of considered observation
values. Note that the proposed method works equally well
on weighted RMSEs. As a general model property for our
bound approach we use a slightly higher maximum chloro-
phyll a variation per distance than the maximum variation of
our model simulation results (similar to the Baltic Sea exam-
ple, we multiply the maximum simulated variation by 1.4 for
each chunk). The result is a lower bound of 0.049 mg m−3

which is 35 % of the misfit we achieved with our model sim-
ulations. Thus, the lower bound is in the same order of mag-
nitude, but still considerably lower than the actual model–
data misfit. One might conclude that there is room for model-
improvement when it comes to chlorophyll a. Still one needs
to keep in mind that the model was presumably never op-
timized to simulate chlorophyll a as good as possible and
focused on many other factors as well.

We repeated our experiment restricted to the Southern
Ocean (below 60◦ S). Here, the RMSE model–data mis-
fit is 0.170 mg m−3 and the calculated lower bound is
0.108 mg m−3 (63 %).
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Figure 7. Observed and simulated annual mean chlorophyll a mapped onto a 1/12◦ spatial grid. (a) SeaWiFS level 3 mapped 8-day com-
posites from http://seadas.gsfc.nasa.gov, 1998–2005 annual means of binned climatology. (b) Corresponding spatially interpolated model
simulations.

4 Discussion

Our aim is to complement research on the calibration of bio-
geochemical models by calculating lower bounds on their
best-attainable model–data misfit. We utilize two general
model properties for our purpose; a limited number of ex-
tremes and a bounded model steepness. We also consider
the combination of both properties. The reason to consider
such non-parametric model properties is that they yield ef-
ficiently solvable (relaxed) optimization problems whereas
optimizing the original parametric model is computationally
demanding.

4.1 Applicability

In our experiments (Sect. 3.1.1), the solitary assumption of
a bounded model steepness leads to tight model relaxations
(tight lower error bounds) if enough observational data are
available and the steepness bound is chosen to be close to
the maximum steepness of a calibrated model output. The
task of deriving a maximal bound for the steepness of a re-
spective model output can be difficult in practice and relies
on (1) model equations and (2) observational data. A rig-
orous mathematical model analysis, e.g., considering single
model parameters like the maximum growth of phytoplank-
ton, provides maximal limits which are valid for the entire
parameter domain. However, relying on observation-based
experience with the modeled processes, it might be justified
to assume a smaller, empirical steepness bound, irrespective
of that bound being valid for all permitted parameters. In
Sect. 3.2.1, we assumed a steepness bound that is ∼ 40 %
larger than the maximum steepness of the NPZD model with
optimized parameters. In the future, we aim to target itera-
tive procedures to derive tight universal (likely time variate)

model steepness bounds, e.g., using some kind of branch-
and-bound approach.

Our second constraint, a limited number of extremes, is
generally relatively easy to determine for common, rather
smooth biogeochemical models. An applicable number of
extremes can be determined if a regression with more ex-
tremes only barely reduces the misfit any further. But here
one should also keep the model structure in mind. Sim-
ple models can be limited in reproducing specific shapes
of the seasonal cycle. Based on the model structure, we as-
sumed only two extremes for our NPZD real-world exam-
ple in Sect. 3.2.1. Note, however, that assuming four ex-
tremes yields better fits in this case: the RMSE decreases
from 0.619 to 0.559 without bounding the steepness (from
0.66 to 0.62 with steepness bound). Note that the “low num-
ber of extremes” condition indirectly implies a bounded (av-
erage) model steepness, too. In our Baltic Sea experiments,
the assumption about the number of extremes resulted in bet-
ter bounds than the sole assumption of a bounded steepness.
In our experiments with global ocean data, we observed op-
posite results.

Unsurprisingly, the combination of tight steepness bounds
with a limited number of extremes yields even better lower
bounds on the minimum-attainable model–data misfit than
both properties separately. Finally, all our model relaxations
require a rather large number of observations (per chunk) in
order to yield convincingly tight bounds (see Table 1).

4.2 Generalizations

Our contribution considers the root mean square error
(RMSE) as an objective measure of the model–data misfit
because it eases the task of formulating certain model proper-
ties in terms of convex optimization problems and to resort to
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corresponding tailor-made efficient algorithms. However, the
suggested model properties also allow us to deduce optimiza-
tion problems which are efficiently solvable if other misfit
measures are used. For example, the sum absolute error can
be dealt with in terms of linear programs (LPs) by including
auxiliary variables and auxiliary linear constraints to express
absolute values. Also, the efficient methods of Demetriou
(1995) and Yeganova and Wilbur (2009) (we provide RMSE
implementations in the Supplement) can be realized with
other misfit measures than RMSE.

Concerning the number of local extremes, our proof-of-
concept experiments are restricted to a maximum of two
(four) extremes according to the properties of the respec-
tive parametric models. However, solutions can even be cal-
culated efficiently if the model output is assumed to take a
large maximum number of extremes (Demetriou and Pow-
ell, 1991; Demetriou, 1995). As mentioned above, a suitable
approach to work with that property is to increase the max-
imum assumed number of extremes until the corresponding
lower bound on the minimum-attainable model–data misfit
hardly increases anymore, indicating that further extremes
contribute to fit noise rather than processes of interest.

4.3 Cautionary notes

Contrary to the fact that a small gap between the misfit of
some property-based model relaxation and the misfit of the
optimized original model proves that further parameter cali-
bration is not required, a large gap between both misfits does
not necessarily mean that the calibration of the chosen model
is bad, nor does it mean that the model is an incorrect repre-
sentation of the processes of interest. Our experiments indi-
cate that a large gap only then tends to prove the inadequacy
of a model (calibration) if enough observations are available.
Otherwise, the chosen property-based relaxations might fit
observations too well.

On the other hand, a small gap between the optimal misfit
of a property-based non-parametric relaxation and the misfit
of the original parametric model can even be reached with an
inappropriate parametric model structure if there is too much
noise in the data. The experiments in Sect. 3.1.2 are setup
to estimate conditions that allow us to distinguish the “truth”
from a “moderate distortion of the truth”. With regard to the
experimental results in Table 2, a rather low noise level is
necessary to satisfy these conditions.

5 Conclusions

We presented an approach for proving that a parametric
model is well calibrated, i.e., that changes of its free param-
eters can no longer lead to a much better model–data misfit.
The intention is motivated by the fact that calibrating global
biogeochemical ocean models is important but computation-
ally expensive.

Generally, the aim is to determine an optimal parameter set
such that a predefined metric of the model–data misfit is min-
imal. To keep the number of required expensive model simu-
lations as small as possible, we suggest calculating “tight”
lower bounds on the lowest achievable model–data misfit.
Our objective is to utilize properties of the original model
that are satisfied for all permitted parameters and lead to eas-
ily solvable optimization problems. Here, we focus on two
such model properties to derive our lower bounds on the
model–data misfit; a maximum time derivative and a max-
imum number of extremes per time unit.

Indeed, our experiments show that the achieved bounds
can come quite close to the optimized misfit of the original
model if many observations are available. However, a prob-
lem with global observational data (e.g., World Ocean Atlas
data) is that it is often sparse in time. For example, if we
examine annual cycles of periodic processes with monthly
observations, our lower bound approach will only succeed
if we overlay (seasonally adjust) measurement data of sev-
eral years in order to reach the required data coverage. Long-
term time series from observing platforms like BATS (Stein-
berg et al., 2001) provide enough data on the temporal di-
mension but are limited in space and are only available for
certain sites. However, we can also apply our method with
data that is dense in space. A suitable global application of
our method to biogeochemical models is related with dense
satellite observations of chlorophyll a (Volpe et al., 2007;
Dogliotti et al., 2009). Section 3.2.2 illustrates how our meth-
ods can be applied in order to cope with such data.

Assuming the error between model output and observa-
tions to be Gaussian distributed noise, an obtained lower
bound on the RMSE is also a lower bound on the empirical
standard derivation σ of the noise. We suggest the following
rule-of-thumb procedure, which is illustrated for a real-world
example in Sect. 3.2.1:

1. Optimize the model parameters with regard to the cor-
responding model–data misfit.

2. Calculate lower error bounds on the model–data misfit
by using appropriate assumptions about the model prop-
erties.

3. Accept if the ratio q between 1 and 2 is close to 1, or
consider the lower bound starting from 2 to be the stan-
dard deviation σ of the noise in the observations and
check whether q corresponds to the empirical ratio qemp
that is obtained by adding random noise of level σ to the
output of the optimized parametric model and fitting the
obtained synthetic observations with the non-parametric
relaxation.
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Code availability. Implementations of the applied methods are
available on GitHub (https://github.com/vsauerland/regression). A
permanent version of the code described here is archived in the pub-
lic Zenodo repository (Sauerland, 2017). We provide two packages
of C++ sources:

– regressionCPX includes QP formulations and requires the
CPLEX solver.

– regression is a subset that does not require CPLEX,
and only uses QP free and tailored regression algorithms:
PAV (Barlow et al., 1972), LPAV (Demetriou and Powell,
1991), PMR (Yeganova and Wilbur, 2009), and a combination
of LPAV and PMR, PMRS.

For notes on compilation, use, and more, we refer the reader to the
manual and the README files contained in both packages.
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Appendix A: NPZD model parameters and equations

We explicitly state the free parameters and equations of the
NPZD box model that has been studied in Löptien and Dietze
(2015) and is used for our real-world example in Sect. 3.2.1.
The prognostic variables are nitrate (N), phytoplankton (P),
zooplankton (Z), and detritus (D) and are scaled to units of
mmolNm2. The temporal change of the prognostic variables
depends on 10 free parameters outlined in Table A1 and is
determined by the following equations

d
dt

N=−µmax · gl · gN ·P+mPN ·P+mZN ·Z+mDN ·D,

d
dt

P= µmax · gl · gN ·P−mPN ·P−G(P) ·Z−mPD ·P,

d
dt

Z=G(P) ·Z−mZN ·Z−mZD ·Z2,

d
dt

D=mZD ·Z2
+mPD ·P−mDN ·D.

Table A1. Parameters of the considered NPZD model with their physical units, allowed ranges, and optimized values.

Parameter Symbol Unit Range Optimized value

Net max. phytoplankton growth rate µnew day−1 0.1–0.9 0.1
Half-sat. const. for light HPAR Wm−2 5.0–40.0 24.7832
Half-sat. const. for nutrient uptake HN mmolNm−3 0.05–1.2 0.05
Max. grazing/prey-capture rate HZ mmolNm−6 0.2–1.1 0.2
Net max. grazing rate gnew day−1 0.01–1.2 1.2
Phytoplankton loss to N mPN day−1 0.01–0.6 0.01
Zooplankton loss to N mZN day−1 0.01–0.65 0.01
Remineralization rate of Det. mDN day−1 0.02–0.15 0.02
Zooplankton loss to Det. mZD day−1(mmolNm−3)−1 0.01–0.9 0.507
Phytoplankton loss to Det. mPD day−1 0.01–0.9 0.0191

Here, the hyperbolic MM equations gI =
PAR

PAR+HPAR
and

gN =
N

N+HN
describe the limiting effect of light and nitrate

concentration on the nitrate uptake of phytoplankton and

G(P)=
gmax ·P2

P2+HZ

is a “Holling III” term. The maximum growth rate of phyto-
planktonµmax and the maximum grazing rate of zooplankton
gmax are obtained by substitutions

µnew := µmax−mPN−mPD,

gnew := gmax−mZN,

in order to enforce net phytoplankton growth and net zoo-
plankton grazing using the positive lower limits on µnew and
gnew, respectively.
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