Articles | Volume 9, issue 11
Geosci. Model Dev., 9, 4133–4154, 2016
https://doi.org/10.5194/gmd-9-4133-2016
Geosci. Model Dev., 9, 4133–4154, 2016
https://doi.org/10.5194/gmd-9-4133-2016

Model description paper 21 Nov 2016

Model description paper | 21 Nov 2016

A land surface model combined with a crop growth model for paddy rice (MATCRO-Rice v. 1) – Part 1: Model description

Yuji Masutomi et al.

Related authors

A land surface model combined with a crop growth model for paddy rice (MATCRO-Rice v. 1) – Part 2: Model validation
Yuji Masutomi, Keisuke Ono, Takahiro Takimoto, Masayoshi Mano, Atsushi Maruyama, and Akira Miyata
Geosci. Model Dev., 9, 4155–4167, https://doi.org/10.5194/gmd-9-4155-2016,https://doi.org/10.5194/gmd-9-4155-2016, 2016
Short summary

Related subject area

Biogeosciences
A model-independent data assimilation (MIDA) module and its applications in ecology
Xin Huang, Dan Lu, Daniel M. Ricciuto, Paul J. Hanson, Andrew D. Richardson, Xuehe Lu, Ensheng Weng, Sheng Nie, Lifen Jiang, Enqing Hou, Igor F. Steinmacher, and Yiqi Luo
Geosci. Model Dev., 14, 5217–5238, https://doi.org/10.5194/gmd-14-5217-2021,https://doi.org/10.5194/gmd-14-5217-2021, 2021
Short summary
Optical model for the Baltic Sea with an explicit CDOM state variable: a case study with Model ERGOM (version 1.2)
Thomas Neumann, Sampsa Koponen, Jenni Attila, Carsten Brockmann, Kari Kallio, Mikko Kervinen, Constant Mazeran, Dagmar Müller, Petra Philipson, Susanne Thulin, Sakari Väkevä, and Pasi Ylöstalo
Geosci. Model Dev., 14, 5049–5062, https://doi.org/10.5194/gmd-14-5049-2021,https://doi.org/10.5194/gmd-14-5049-2021, 2021
Short summary
WAP-1D-VAR v1.0: development and evaluation of a one-dimensional variational data assimilation model for the marine ecosystem along the West Antarctic Peninsula
Hyewon Heather Kim, Ya-Wei Luo, Hugh W. Ducklow, Oscar M. Schofield, Deborah K. Steinberg, and Scott C. Doney
Geosci. Model Dev., 14, 4939–4975, https://doi.org/10.5194/gmd-14-4939-2021,https://doi.org/10.5194/gmd-14-4939-2021, 2021
Short summary
SCOPE 2.0: a model to simulate vegetated land surface fluxes and satellite signals
Peiqi Yang, Egor Prikaziuk, Wout Verhoef, and Christiaan van der Tol
Geosci. Model Dev., 14, 4697–4712, https://doi.org/10.5194/gmd-14-4697-2021,https://doi.org/10.5194/gmd-14-4697-2021, 2021
Short summary
SolveSAPHE-r2 (v2.0.1): revisiting and extending the Solver Suite for Alkalinity-PH Equations for usage with CO2, HCO3 or CO32− input data
Guy Munhoven
Geosci. Model Dev., 14, 4225–4240, https://doi.org/10.5194/gmd-14-4225-2021,https://doi.org/10.5194/gmd-14-4225-2021, 2021
Short summary

Cited articles

Arora, V. K., Bore, G. J., Christian, J. R., Curry, C. L., Denman, K. L., Zahariev, K., Flato, G. M., Scinocca, J. F., Merryfield, W. J., and Lee, W. G.: The effect of terrestrial photosynthesis down regulation on the twentieth-century carbon budget simulated with the CCCma Earth System Model, J. Climate, 22, 6066–6088, 2009.
Baldocchi, D.: An analytical solution for coupled leaf photosynthesis and stomatal conductance models, Tree Physiol., 14, 1069–1079, 1994.
Ball, J. T.: An analysis of stomatal conductance, PhD Thesis, Stanford University, CA, USA, 1988.
Best, M. J., Pryor, M., Clark, D. B., Rooney, G. G., Essery, R. L. H., Ménard, C. B., Edwards, J. M., Hendry, M. A., Porson, A., Gedney, N., Mercado, L. M., Sitch, S., Blyth, E., Boucher, O., Cox, P. M., Grimmond, C. S. B., and Harding, R. J.: The Joint UK Land Environment Simulator (JULES), model description – Part 1: Energy and water fluxes, Geosci. Model Dev., 4, 677–699, https://doi.org/10.5194/gmd-4-677-2011, 2011.
Beven, K. J. and Kirkby, M. J.: A physically based, variable contributing area model of basin hydrology, Hydrol. Sci. Bull., 24, 43–69, 1979.
Short summary
Crop growth and agricultural management can affect climate at various spatial and temporal scales through the exchange of heat, water, and gases between land and atmosphere. Therefore, simulation of fluxes for heat, water, and gases from agricultural land is important for climate simulations. We developed a new land surface model combined with a crop growth model, called MATCRO-Rice. The main objective of this paper is to present the full description of MATCRO-Rice.