Articles | Volume 9, issue 11
Geosci. Model Dev., 9, 4049–4070, 2016
https://doi.org/10.5194/gmd-9-4049-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Special issue: The Model Intercomparison Project on the climatic response...
Model description paper 11 Nov 2016
Model description paper | 11 Nov 2016
Easy Volcanic Aerosol (EVA v1.0): an idealized forcing generator for climate simulations
Matthew Toohey et al.
Related authors
Claudia Timmreck, Matthew Toohey, Davide Zanchettin, Stefan Brönnimann, Elin Lundstadt, and Rob Wilson
Clim. Past Discuss., https://doi.org/10.5194/cp-2021-4, https://doi.org/10.5194/cp-2021-4, 2021
Preprint under review for CP
Michaela I. Hegglin, Susann Tegtmeier, John Anderson, Adam E. Bourassa, Samuel Brohede, Doug Degenstein, Lucien Froidevaux, Bernd Funke, John Gille, Yasuko Kasai, Erkki Kyrölä, Jerry Lumpe, Donal Murtagh, Jessica L. Neu, Kristell Pérot, Ellis Remsberg, Alexey Rozanov, Matthew Toohey, Joachim Urban, Thomas von Clarmann, Kaley A. Walker, Hsiang-Jui Wang, Carlo Arosio, Robert Damadeo, Ryan Fuller, Gretchen Lingenfelser, Christopher McLinden, Diane Pendlebury, Chris Roth, Niall J. Ryan, Christopher Sioris, Lesley Smith, and Katja Weigel
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2020-342, https://doi.org/10.5194/essd-2020-342, 2020
Preprint under review for ESSD
Short summary
Short summary
This paper provides an overview of the SPARC Data Initiative, to date the most comprehensive assessment of vertically resolved stratospheric composition measurements spanning the past 4 decades (1979-2018). The measurements of 26 different chemical constituents were obtained from an international suite of space-based limb sounders and compiled into vertically resolved, zonal monthly mean climatologies. Their quality and consistency is discussed based on a range of evaluation diagnostics.
Margot Clyne, Jean-Francois Lamarque, Michael J. Mills, Myriam Khodri, William Ball, Slimane Bekki, Sandip S. Dhomse, Nicolas Lebas, Graham Mann, Lauren Marshall, Ulrike Niemeier, Virginie Poulain, Alan Robock, Eugene Rozanov, Anja Schmidt, Andrea Stenke, Timofei Sukhodolov, Claudia Timmreck, Matthew Toohey, Fiona Tummon, Davide Zanchettin, Yunqian Zhu, and Owen B. Toon
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-883, https://doi.org/10.5194/acp-2020-883, 2020
Revised manuscript accepted for ACP
Short summary
Short summary
This study finds how and why five state-of-the-art global climate models with interactive stratospheric aerosols differ when simulating the aftermath of large volcanic injections as part of the Model Intercomparison Project on the climatic response to Volcanic forcing (VolMIP). We identify and explain the consequences of significant disparities in the underlying physics and chemistry currently in some of the models, which are problems likely not unique to the models participating in this study.
Victor Brovkin, Stephan Lorenz, Thomas Raddatz, Tatiana Ilyina, Irene Stemmler, Matthew Toohey, and Martin Claussen
Biogeosciences, 16, 2543–2555, https://doi.org/10.5194/bg-16-2543-2019, https://doi.org/10.5194/bg-16-2543-2019, 2019
Short summary
Short summary
Mechanisms of atmospheric CO2 growth by 20 ppm from 6000 BCE to the pre-industrial period are still uncertain. We apply the Earth system model MPI-ESM-LR for two transient simulations of the climate–carbon cycle. An additional process, e.g. carbonate accumulation on shelves, is required for consistency with ice-core CO2 data. Our simulations support the hypothesis that the ocean was a source of CO2 until the late Holocene when anthropogenic CO2 sources started to affect atmospheric CO2.
Claudia Timmreck, Graham W. Mann, Valentina Aquila, Rene Hommel, Lindsay A. Lee, Anja Schmidt, Christoph Brühl, Simon Carn, Mian Chin, Sandip S. Dhomse, Thomas Diehl, Jason M. English, Michael J. Mills, Ryan Neely, Jianxiong Sheng, Matthew Toohey, and Debra Weisenstein
Geosci. Model Dev., 11, 2581–2608, https://doi.org/10.5194/gmd-11-2581-2018, https://doi.org/10.5194/gmd-11-2581-2018, 2018
Short summary
Short summary
The paper describes the experimental design of the Interactive Stratospheric Aerosol Model Intercomparison Project (ISA-MIP). ISA-MIP will improve understanding of stratospheric aerosol processes, chemistry, and dynamics and constrain climate impacts of background aerosol variability and small and large volcanic eruptions. It will help to asses the stratospheric aerosol contribution to the early 21st century global warming hiatus period and the effects from hypothetical geoengineering schemes.
Johann H. Jungclaus, Edouard Bard, Mélanie Baroni, Pascale Braconnot, Jian Cao, Louise P. Chini, Tania Egorova, Michael Evans, J. Fidel González-Rouco, Hugues Goosse, George C. Hurtt, Fortunat Joos, Jed O. Kaplan, Myriam Khodri, Kees Klein Goldewijk, Natalie Krivova, Allegra N. LeGrande, Stephan J. Lorenz, Jürg Luterbacher, Wenmin Man, Amanda C. Maycock, Malte Meinshausen, Anders Moberg, Raimund Muscheler, Christoph Nehrbass-Ahles, Bette I. Otto-Bliesner, Steven J. Phipps, Julia Pongratz, Eugene Rozanov, Gavin A. Schmidt, Hauke Schmidt, Werner Schmutz, Andrew Schurer, Alexander I. Shapiro, Michael Sigl, Jason E. Smerdon, Sami K. Solanki, Claudia Timmreck, Matthew Toohey, Ilya G. Usoskin, Sebastian Wagner, Chi-Ju Wu, Kok Leng Yeo, Davide Zanchettin, Qiong Zhang, and Eduardo Zorita
Geosci. Model Dev., 10, 4005–4033, https://doi.org/10.5194/gmd-10-4005-2017, https://doi.org/10.5194/gmd-10-4005-2017, 2017
Short summary
Short summary
Climate model simulations covering the last millennium provide context for the evolution of the modern climate and for the expected changes during the coming centuries. They can help identify plausible mechanisms underlying palaeoclimatic reconstructions. Here, we describe the forcing boundary conditions and the experimental protocol for simulations covering the pre-industrial millennium. We describe the PMIP4 past1000 simulations as contributions to CMIP6 and additional sensitivity experiments.
Matthew Toohey and Michael Sigl
Earth Syst. Sci. Data, 9, 809–831, https://doi.org/10.5194/essd-9-809-2017, https://doi.org/10.5194/essd-9-809-2017, 2017
Short summary
Short summary
Based on ice core sulfate records from Greenland and Antarctica, the eVolv2k database provides volcanic stratospheric sulfur injection estimates from 500 BCE to 1900 CE along with reconstructed aerosol optical properties needed for climate model simulations. The eVolv2k database constitutes a significant update to prior ice-core-based volcanic forcing reconstructions for climate models, improving the accuracy of volcanic forcing, especially before 1250 CE, and extending the record by 1000 years.
Alina Fiehn, Birgit Quack, Helmke Hepach, Steffen Fuhlbrügge, Susann Tegtmeier, Matthew Toohey, Elliot Atlas, and Kirstin Krüger
Atmos. Chem. Phys., 17, 6723–6741, https://doi.org/10.5194/acp-17-6723-2017, https://doi.org/10.5194/acp-17-6723-2017, 2017
Short summary
Short summary
Halogenated very short-lived substances (VSLSs) are naturally produced in the ocean and emitted to the atmosphere. In the stratosphere, these compounds can have a significant influence on the ozone layer and climate. During a research cruise in the west Indian Ocean, we found an important source region of halogenated VSLSs during the Asian summer monsoon. Modeling the transport from the ocean to the stratosphere we found two main pathways, one over the Indian Ocean and one over northern India.
Davide Zanchettin, Myriam Khodri, Claudia Timmreck, Matthew Toohey, Anja Schmidt, Edwin P. Gerber, Gabriele Hegerl, Alan Robock, Francesco S. R. Pausata, William T. Ball, Susanne E. Bauer, Slimane Bekki, Sandip S. Dhomse, Allegra N. LeGrande, Graham W. Mann, Lauren Marshall, Michael Mills, Marion Marchand, Ulrike Niemeier, Virginie Poulain, Eugene Rozanov, Angelo Rubino, Andrea Stenke, Kostas Tsigaridis, and Fiona Tummon
Geosci. Model Dev., 9, 2701–2719, https://doi.org/10.5194/gmd-9-2701-2016, https://doi.org/10.5194/gmd-9-2701-2016, 2016
Short summary
Short summary
Simulating volcanically-forced climate variability is a challenging task for climate models. The Model Intercomparison Project on the climatic response to volcanic forcing (VolMIP) – an endorsed contribution to CMIP6 – defines a protocol for idealized volcanic-perturbation experiments to improve comparability of results across different climate models. This paper illustrates the design of VolMIP's experiments and describes the aerosol forcing input datasets to be used.
M. Toohey, K. Krüger, M. Bittner, C. Timmreck, and H. Schmidt
Atmos. Chem. Phys., 14, 13063–13079, https://doi.org/10.5194/acp-14-13063-2014, https://doi.org/10.5194/acp-14-13063-2014, 2014
Short summary
Short summary
Earth system model simulations are used to investigate the impact of volcanic aerosol forcing on stratospheric dynamics, e.g. the Northern Hemisphere (NH) polar vortex. We find that mechanisms linking aerosol heating and high-latitude dynamics are not as direct as often assumed; high-latitude effects result from changes in stratospheric circulation and related vertical motions. The simulated responses also show evidence of being sensitive to the structure of the volcanic forcing used.
M. Toohey and T. von Clarmann
Atmos. Meas. Tech., 6, 937–948, https://doi.org/10.5194/amt-6-937-2013, https://doi.org/10.5194/amt-6-937-2013, 2013
Claudia Timmreck, Matthew Toohey, Davide Zanchettin, Stefan Brönnimann, Elin Lundstadt, and Rob Wilson
Clim. Past Discuss., https://doi.org/10.5194/cp-2021-4, https://doi.org/10.5194/cp-2021-4, 2021
Preprint under review for CP
Clarissa Alicia Kroll, Sally Dacie, Alon Azoulay, Hauke Schmidt, and Claudia Timmreck
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-1191, https://doi.org/10.5194/acp-2020-1191, 2020
Preprint under review for ACP
Short summary
Short summary
Volcanic forcing is counteracted by stratospheric water vapour (SWV) entering the stratosphere in consequence of aerosol induced cold point warming. We find that depending on emission strength, aerosol profile height, and season of the eruption up to four percent of the tropical aerosol forcing can be counterbalanced. An approximately linear relationship between cold point warming/SWV forcing and AOD in the yearly average is found allowing to estimate the SWV forcing for comparable eruptions.
Michaela I. Hegglin, Susann Tegtmeier, John Anderson, Adam E. Bourassa, Samuel Brohede, Doug Degenstein, Lucien Froidevaux, Bernd Funke, John Gille, Yasuko Kasai, Erkki Kyrölä, Jerry Lumpe, Donal Murtagh, Jessica L. Neu, Kristell Pérot, Ellis Remsberg, Alexey Rozanov, Matthew Toohey, Joachim Urban, Thomas von Clarmann, Kaley A. Walker, Hsiang-Jui Wang, Carlo Arosio, Robert Damadeo, Ryan Fuller, Gretchen Lingenfelser, Christopher McLinden, Diane Pendlebury, Chris Roth, Niall J. Ryan, Christopher Sioris, Lesley Smith, and Katja Weigel
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2020-342, https://doi.org/10.5194/essd-2020-342, 2020
Preprint under review for ESSD
Short summary
Short summary
This paper provides an overview of the SPARC Data Initiative, to date the most comprehensive assessment of vertically resolved stratospheric composition measurements spanning the past 4 decades (1979-2018). The measurements of 26 different chemical constituents were obtained from an international suite of space-based limb sounders and compiled into vertically resolved, zonal monthly mean climatologies. Their quality and consistency is discussed based on a range of evaluation diagnostics.
Franziska Aemisegger, Raphaela Vogel, Pascal Graf, Fabienne Dahinden, Leonie Villiger, Friedhelm Jansen, Sandrine Bony, Bjorn Stevens, and Heini Wernli
Weather Clim. Dynam. Discuss., https://doi.org/10.5194/wcd-2020-51, https://doi.org/10.5194/wcd-2020-51, 2020
Revised manuscript under review for WCD
Short summary
Short summary
The interaction of clouds in the trade wind region with the atmospheric flow is complex and at the heart of uncertainties associated with climate projections. In this study, a natural tracer of atmospheric circulation is used to establish a link between air originating from dry regions of the midlatitudes and the occurrence of specific cloud patterns. Two pathways involving transport within midlatitude weather systems are identified, by which air is brought into the trades within 5–10 days.
Hyunju Jung, Ann Kristin Naumann, and Bjorn Stevens
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-875, https://doi.org/10.5194/acp-2020-875, 2020
Revised manuscript under review for ACP
Short summary
Short summary
We aim to analyze the behavior of organized convection in a large-scale flow by imposing a mean flow to an idealized simulation. In the mean flow organized convection initially propagates slower than the mean wind speed and becomes stationary. Surface fluxes response to the surface wind asymmetry as a result of the mean flow. While the role of the surface enthalpy flux is minor, the surface momentum flux act as a drag on the surface wind and annihilate the asymmetries, causing the stationarity.
Margot Clyne, Jean-Francois Lamarque, Michael J. Mills, Myriam Khodri, William Ball, Slimane Bekki, Sandip S. Dhomse, Nicolas Lebas, Graham Mann, Lauren Marshall, Ulrike Niemeier, Virginie Poulain, Alan Robock, Eugene Rozanov, Anja Schmidt, Andrea Stenke, Timofei Sukhodolov, Claudia Timmreck, Matthew Toohey, Fiona Tummon, Davide Zanchettin, Yunqian Zhu, and Owen B. Toon
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-883, https://doi.org/10.5194/acp-2020-883, 2020
Revised manuscript accepted for ACP
Short summary
Short summary
This study finds how and why five state-of-the-art global climate models with interactive stratospheric aerosols differ when simulating the aftermath of large volcanic injections as part of the Model Intercomparison Project on the climatic response to Volcanic forcing (VolMIP). We identify and explain the consequences of significant disparities in the underlying physics and chemistry currently in some of the models, which are problems likely not unique to the models participating in this study.
Ulrike Niemeier, Felix Riede, and Claudia Timmreck
Clim. Past Discuss., https://doi.org/10.5194/cp-2020-109, https://doi.org/10.5194/cp-2020-109, 2020
Revised manuscript accepted for CP
Short summary
Short summary
13,000 years ago, the Laacher See (East Eifel) eruption impacted local environments, human communities and climate. We have simulated the evolution of the fine ash and sulfur cloud and tried to mirror the empirically known ash distribution. The heating of the ash causes the volcanic cloud to rotate, which adds a southerly component to the transport, resulting in a stronger transport to low-latitudes. This may partially explain why no Laacher See tephra has been found in Greenlandic ice-cores.
Elizaveta Malinina, Alexei Rozanov, Ulrike Niemeier, Sandra Peglow, Carlo Arosio, Felix Wrana, Claudia Timmreck, Christian von Savigny, and John P. Burrows
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-749, https://doi.org/10.5194/acp-2020-749, 2020
Preprint under review for ACP
Short summary
Short summary
In the paper, changes in the stratospheric aerosol loading after the 2018 Ambae eruption were analyzed using OMPS-LP observations. The eruption was also simulated with MECHAM-HAM global climate model. Generally, the model and observations agree very well. We attribute good consistency of the results with precisely determined altitude and mass of the volcanic injection as well as with nudging of meteorological data. The radiative forcing from the eruption was estimated to be −0.13 W/m2.
Claudia Christine Stephan, Sabrina Schnitt, Hauke Schulz, Hugo Bellenger, Simon P. de Szoeke, Claudia Acquistapace, Katharina Baier, Thibaut Dauhut, Rémi Laxenaire, Yanmichel Morfa-Avalos, Renaud Person, Estefanía Quiñones Meléndez, Gholamhossein Bagheri, Tobias Böck, Alton Daley, Johannes Güttler, Kevin C. Helfer, Sebastian A. Los, Almuth Neuberger, Johannes Röttenbacher, Andreas Raeke, Maximilian Ringel, Markus Ritschel, Pauline Sadoulet, Imke Schirmacher, M. Katharina Stolla, Ethan Wright, Benjamin Charpentier, Alexis Doerenbecher, Richard Wilson, Friedhelm Jansen, Stefan Kinne, Gilles Reverdin, Sabrina Speich, Sandrine Bony, and Bjorn Stevens
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2020-174, https://doi.org/10.5194/essd-2020-174, 2020
Revised manuscript accepted for ESSD
Short summary
Short summary
The EUREC4A field campaign took place in the western tropical Atlantic during January and February 2020. A total of 812 radiosondes, launched regularly (usually 4-hourly) from Barbados and four ships, measured wind, temperature and relative humidity. They sampled atmospheric variability associated with different ocean surface conditions, synoptic variability, and mesoscale convective organization. The methods of data collection and post-processing for the radiosonde data are described here.
James D. Annan, Julia C. Hargreaves, Thorsten Mauritsen, and Bjorn Stevens
Earth Syst. Dynam., 11, 709–719, https://doi.org/10.5194/esd-11-709-2020, https://doi.org/10.5194/esd-11-709-2020, 2020
Short summary
Short summary
In this paper we explore the potential of variability for constraining the equilibrium response of the climate system to external forcing. We show that the constraint is inherently skewed, with a long tail to high sensitivity, and that while the variability may contain some useful information, it is unlikely to generate a tight constraint.
Ulrike Niemeier, Claudia Timmreck, and Kirstin Krüger
Atmos. Chem. Phys., 19, 10379–10390, https://doi.org/10.5194/acp-19-10379-2019, https://doi.org/10.5194/acp-19-10379-2019, 2019
Short summary
Short summary
In 1963 Mt. Agung, Indonesia, showed unrest for several months. During this period,
two medium-sized eruptions injected SO2 into the stratosphere. Recent volcanic emission datasets include only one large eruption phase. Therefore, we compared model experiments, with (a) one larger eruption and (b) two eruptions as observed. The evolution of the volcanic cloud differs significantly between the two experiments. Both climatic eruptions should be taken into account.
Victor Brovkin, Stephan Lorenz, Thomas Raddatz, Tatiana Ilyina, Irene Stemmler, Matthew Toohey, and Martin Claussen
Biogeosciences, 16, 2543–2555, https://doi.org/10.5194/bg-16-2543-2019, https://doi.org/10.5194/bg-16-2543-2019, 2019
Short summary
Short summary
Mechanisms of atmospheric CO2 growth by 20 ppm from 6000 BCE to the pre-industrial period are still uncertain. We apply the Earth system model MPI-ESM-LR for two transient simulations of the climate–carbon cycle. An additional process, e.g. carbonate accumulation on shelves, is required for consistency with ice-core CO2 data. Our simulations support the hypothesis that the ocean was a source of CO2 until the late Holocene when anthropogenic CO2 sources started to affect atmospheric CO2.
Heike Konow, Marek Jacob, Felix Ament, Susanne Crewell, Florian Ewald, Martin Hagen, Lutz Hirsch, Friedhelm Jansen, Mario Mech, and Bjorn Stevens
Earth Syst. Sci. Data, 11, 921–934, https://doi.org/10.5194/essd-11-921-2019, https://doi.org/10.5194/essd-11-921-2019, 2019
Short summary
Short summary
High-resolution measurements of maritime clouds are relatively scarce. Airborne cloud radar, microwave radiometer and dropsonde observations are used to expand these data. The measurements are unified into one data set to enable easy joint analyses of several or all instruments together to gain insight into cloud properties and atmospheric state. The data set contains measurements from four campaigns between December 2013 and October 2016 over the tropical and midlatitude Atlantic.
Stephanie Fiedler, Bjorn Stevens, Matthew Gidden, Steven J. Smith, Keywan Riahi, and Detlef van Vuuren
Geosci. Model Dev., 12, 989–1007, https://doi.org/10.5194/gmd-12-989-2019, https://doi.org/10.5194/gmd-12-989-2019, 2019
Uwe Mikolajewicz, Florian Ziemen, Guido Cioni, Martin Claussen, Klaus Fraedrich, Marvin Heidkamp, Cathy Hohenegger, Diego Jimenez de la Cuesta, Marie-Luise Kapsch, Alexander Lemburg, Thorsten Mauritsen, Katharina Meraner, Niklas Röber, Hauke Schmidt, Katharina D. Six, Irene Stemmler, Talia Tamarin-Brodsky, Alexander Winkler, Xiuhua Zhu, and Bjorn Stevens
Earth Syst. Dynam., 9, 1191–1215, https://doi.org/10.5194/esd-9-1191-2018, https://doi.org/10.5194/esd-9-1191-2018, 2018
Short summary
Short summary
Model experiments show that changing the sense of Earth's rotation has relatively little impact on the globally and zonally averaged energy budgets but leads to large shifts in continental climates and patterns of precipitation. The retrograde world is greener as the desert area shrinks. Deep water formation shifts from the North Atlantic to the North Pacific with subsequent changes in ocean overturning. Over large areas of the Indian Ocean, cyanobacteria dominate over bulk phytoplankton.
Claudia Timmreck, Graham W. Mann, Valentina Aquila, Rene Hommel, Lindsay A. Lee, Anja Schmidt, Christoph Brühl, Simon Carn, Mian Chin, Sandip S. Dhomse, Thomas Diehl, Jason M. English, Michael J. Mills, Ryan Neely, Jianxiong Sheng, Matthew Toohey, and Debra Weisenstein
Geosci. Model Dev., 11, 2581–2608, https://doi.org/10.5194/gmd-11-2581-2018, https://doi.org/10.5194/gmd-11-2581-2018, 2018
Short summary
Short summary
The paper describes the experimental design of the Interactive Stratospheric Aerosol Model Intercomparison Project (ISA-MIP). ISA-MIP will improve understanding of stratospheric aerosol processes, chemistry, and dynamics and constrain climate impacts of background aerosol variability and small and large volcanic eruptions. It will help to asses the stratospheric aerosol contribution to the early 21st century global warming hiatus period and the effects from hypothetical geoengineering schemes.
Sebastian Illing, Christopher Kadow, Holger Pohlmann, and Claudia Timmreck
Earth Syst. Dynam., 9, 701–715, https://doi.org/10.5194/esd-9-701-2018, https://doi.org/10.5194/esd-9-701-2018, 2018
Andrew E. Dessler, Thorsten Mauritsen, and Bjorn Stevens
Atmos. Chem. Phys., 18, 5147–5155, https://doi.org/10.5194/acp-18-5147-2018, https://doi.org/10.5194/acp-18-5147-2018, 2018
Short summary
Short summary
One of the most important parameters in climate science is the equilibrium climate sensitivity (ECS). Estimates of this quantity based on 20th-century observations suggest low values of ECS (below 2 °C). We show that these calculations may be significantly in error. Together with other recent work on this problem, it seems probable that the ECS is larger than suggested by the 20th-century observations.
Allison A. Wing, Kevin A. Reed, Masaki Satoh, Bjorn Stevens, Sandrine Bony, and Tomoki Ohno
Geosci. Model Dev., 11, 793–813, https://doi.org/10.5194/gmd-11-793-2018, https://doi.org/10.5194/gmd-11-793-2018, 2018
Short summary
Short summary
RCEMIP, an intercomparison of multiple types of numerical models, is proposed. In RCEMIP, the climate system is modeled in an idealized manner with no spatial dependence of boundary conditions (i.e., sea surface temperature) or forcing (i.e., incoming sunlight). This set of simulations will be used to investigate how the amount of cloudiness changes with warming, how the clustering of clouds changes with warming, and how the state of the atmosphere in this idealized setup varies between models.
Lauren Marshall, Anja Schmidt, Matthew Toohey, Ken S. Carslaw, Graham W. Mann, Michael Sigl, Myriam Khodri, Claudia Timmreck, Davide Zanchettin, William T. Ball, Slimane Bekki, James S. A. Brooke, Sandip Dhomse, Colin Johnson, Jean-Francois Lamarque, Allegra N. LeGrande, Michael J. Mills, Ulrike Niemeier, James O. Pope, Virginie Poulain, Alan Robock, Eugene Rozanov, Andrea Stenke, Timofei Sukhodolov, Simone Tilmes, Kostas Tsigaridis, and Fiona Tummon
Atmos. Chem. Phys., 18, 2307–2328, https://doi.org/10.5194/acp-18-2307-2018, https://doi.org/10.5194/acp-18-2307-2018, 2018
Short summary
Short summary
We use four global aerosol models to compare the simulated sulfate deposition from the 1815 Mt. Tambora eruption to ice core records. Inter-model volcanic sulfate deposition differs considerably. Volcanic sulfate deposited on polar ice sheets is used to estimate the atmospheric sulfate burden and subsequently radiative forcing of historic eruptions. Our results suggest that deriving such relationships from model simulations may be associated with greater uncertainties than previously thought.
Johann H. Jungclaus, Edouard Bard, Mélanie Baroni, Pascale Braconnot, Jian Cao, Louise P. Chini, Tania Egorova, Michael Evans, J. Fidel González-Rouco, Hugues Goosse, George C. Hurtt, Fortunat Joos, Jed O. Kaplan, Myriam Khodri, Kees Klein Goldewijk, Natalie Krivova, Allegra N. LeGrande, Stephan J. Lorenz, Jürg Luterbacher, Wenmin Man, Amanda C. Maycock, Malte Meinshausen, Anders Moberg, Raimund Muscheler, Christoph Nehrbass-Ahles, Bette I. Otto-Bliesner, Steven J. Phipps, Julia Pongratz, Eugene Rozanov, Gavin A. Schmidt, Hauke Schmidt, Werner Schmutz, Andrew Schurer, Alexander I. Shapiro, Michael Sigl, Jason E. Smerdon, Sami K. Solanki, Claudia Timmreck, Matthew Toohey, Ilya G. Usoskin, Sebastian Wagner, Chi-Ju Wu, Kok Leng Yeo, Davide Zanchettin, Qiong Zhang, and Eduardo Zorita
Geosci. Model Dev., 10, 4005–4033, https://doi.org/10.5194/gmd-10-4005-2017, https://doi.org/10.5194/gmd-10-4005-2017, 2017
Short summary
Short summary
Climate model simulations covering the last millennium provide context for the evolution of the modern climate and for the expected changes during the coming centuries. They can help identify plausible mechanisms underlying palaeoclimatic reconstructions. Here, we describe the forcing boundary conditions and the experimental protocol for simulations covering the pre-industrial millennium. We describe the PMIP4 past1000 simulations as contributions to CMIP6 and additional sensitivity experiments.
Matthew Toohey and Michael Sigl
Earth Syst. Sci. Data, 9, 809–831, https://doi.org/10.5194/essd-9-809-2017, https://doi.org/10.5194/essd-9-809-2017, 2017
Short summary
Short summary
Based on ice core sulfate records from Greenland and Antarctica, the eVolv2k database provides volcanic stratospheric sulfur injection estimates from 500 BCE to 1900 CE along with reconstructed aerosol optical properties needed for climate model simulations. The eVolv2k database constitutes a significant update to prior ice-core-based volcanic forcing reconstructions for climate models, improving the accuracy of volcanic forcing, especially before 1250 CE, and extending the record by 1000 years.
Rieke Heinze, Christopher Moseley, Lennart Nils Böske, Shravan Kumar Muppa, Vera Maurer, Siegfried Raasch, and Bjorn Stevens
Atmos. Chem. Phys., 17, 7083–7109, https://doi.org/10.5194/acp-17-7083-2017, https://doi.org/10.5194/acp-17-7083-2017, 2017
Short summary
Short summary
High-resolution multi-week simulations of a measurement campaign are evaluated with respect to mean boundary layer quantities and turbulence statistics. Two models are used in a semi-idealized setup through forcing, with output from a coarser-scale model to account for the larger-scale conditions. The boundary layer depth is in principal agreement with observations. Turbulence statistics like variance profiles agree satisfactorily with measurements.
Alina Fiehn, Birgit Quack, Helmke Hepach, Steffen Fuhlbrügge, Susann Tegtmeier, Matthew Toohey, Elliot Atlas, and Kirstin Krüger
Atmos. Chem. Phys., 17, 6723–6741, https://doi.org/10.5194/acp-17-6723-2017, https://doi.org/10.5194/acp-17-6723-2017, 2017
Short summary
Short summary
Halogenated very short-lived substances (VSLSs) are naturally produced in the ocean and emitted to the atmosphere. In the stratosphere, these compounds can have a significant influence on the ozone layer and climate. During a research cruise in the west Indian Ocean, we found an important source region of halogenated VSLSs during the Asian summer monsoon. Modeling the transport from the ocean to the stratosphere we found two main pathways, one over the Indian Ocean and one over northern India.
Bjorn Stevens, Stephanie Fiedler, Stefan Kinne, Karsten Peters, Sebastian Rast, Jobst Müsse, Steven J. Smith, and Thorsten Mauritsen
Geosci. Model Dev., 10, 433–452, https://doi.org/10.5194/gmd-10-433-2017, https://doi.org/10.5194/gmd-10-433-2017, 2017
Short summary
Short summary
A simple analytic description of aerosol optical properties and their main effects on clouds is developed and described. The analytic description is easy to use and easy to modify and should aid experimentation to help understand how aerosol radiative and cloud interactions effect climate and circulation. The climatology is recommended for adoption by models participating in the sixth phase of the Coupled Model Intercomparison Project.
Mark J. Webb, Timothy Andrews, Alejandro Bodas-Salcedo, Sandrine Bony, Christopher S. Bretherton, Robin Chadwick, Hélène Chepfer, Hervé Douville, Peter Good, Jennifer E. Kay, Stephen A. Klein, Roger Marchand, Brian Medeiros, A. Pier Siebesma, Christopher B. Skinner, Bjorn Stevens, George Tselioudis, Yoko Tsushima, and Masahiro Watanabe
Geosci. Model Dev., 10, 359–384, https://doi.org/10.5194/gmd-10-359-2017, https://doi.org/10.5194/gmd-10-359-2017, 2017
Short summary
Short summary
The Cloud Feedback Model Intercomparison Project (CFMIP) aims to improve understanding of cloud-climate feedback mechanisms and evaluation of cloud processes and cloud feedbacks in climate models. CFMIP also aims to improve understanding of circulation, regional-scale precipitation and non-linear changes. CFMIP is contributing to the 6th phase of the Coupled Model Intercomparison Project (CMIP6) by coordinating a hierarchy of targeted experiments with cloud-related model outputs.
Robert Pincus, Piers M. Forster, and Bjorn Stevens
Geosci. Model Dev., 9, 3447–3460, https://doi.org/10.5194/gmd-9-3447-2016, https://doi.org/10.5194/gmd-9-3447-2016, 2016
Short summary
Short summary
This paper describes an experimental protocol to understand the changes in energy balance (the "radiative forcing") that arise due to changes in atmospheric composition and why this value is not the same across climate models. The protocol includes a way to determine the total forcing to which each model is subjected, experiments designed at teasing out why certain errors occur, and experiments to identify any robust signals caused by atmospheric particles from human activities.
Davide Zanchettin, Myriam Khodri, Claudia Timmreck, Matthew Toohey, Anja Schmidt, Edwin P. Gerber, Gabriele Hegerl, Alan Robock, Francesco S. R. Pausata, William T. Ball, Susanne E. Bauer, Slimane Bekki, Sandip S. Dhomse, Allegra N. LeGrande, Graham W. Mann, Lauren Marshall, Michael Mills, Marion Marchand, Ulrike Niemeier, Virginie Poulain, Eugene Rozanov, Angelo Rubino, Andrea Stenke, Kostas Tsigaridis, and Fiona Tummon
Geosci. Model Dev., 9, 2701–2719, https://doi.org/10.5194/gmd-9-2701-2016, https://doi.org/10.5194/gmd-9-2701-2016, 2016
Short summary
Short summary
Simulating volcanically-forced climate variability is a challenging task for climate models. The Model Intercomparison Project on the climatic response to volcanic forcing (VolMIP) – an endorsed contribution to CMIP6 – defines a protocol for idealized volcanic-perturbation experiments to improve comparability of results across different climate models. This paper illustrates the design of VolMIP's experiments and describes the aerosol forcing input datasets to be used.
Veronika Eyring, Sandrine Bony, Gerald A. Meehl, Catherine A. Senior, Bjorn Stevens, Ronald J. Stouffer, and Karl E. Taylor
Geosci. Model Dev., 9, 1937–1958, https://doi.org/10.5194/gmd-9-1937-2016, https://doi.org/10.5194/gmd-9-1937-2016, 2016
Short summary
Short summary
The objective of CMIP is to better understand past, present, and future climate change in a multi-model context. CMIP's increasing importance and scope is a tremendous success story, but the need to address an ever-expanding range of scientific questions arising from more and more research communities has made it necessary to revise the organization of CMIP. In response to these challenges, we have adopted a more federated structure for the sixth phase of CMIP (i.e. CMIP6) and subsequent phases.
A. Laakso, H. Kokkola, A.-I. Partanen, U. Niemeier, C. Timmreck, K. E. J. Lehtinen, H. Hakkarainen, and H. Korhonen
Atmos. Chem. Phys., 16, 305–323, https://doi.org/10.5194/acp-16-305-2016, https://doi.org/10.5194/acp-16-305-2016, 2016
Short summary
Short summary
We have studied the impacts of a volcanic eruption during solar radiation management (SRM) using an aerosol-climate model ECHAM5-HAM-SALSA and an Earth system model MPI-ESM. A volcanic eruption during stratospheric sulfur geoengineering would lead to larger particles and smaller amount of new particles than if an volcano erupts in normal atmospheric conditions. Thus, volcanic eruption during SRM would lead to only a small additional cooling which would last for a significantly shorter period.
U. Niemeier and C. Timmreck
Atmos. Chem. Phys., 15, 9129–9141, https://doi.org/10.5194/acp-15-9129-2015, https://doi.org/10.5194/acp-15-9129-2015, 2015
Short summary
Short summary
The injection of sulfur dioxide is considered as an option for solar radiation management. We have calculated the effects of SO2 injections up to 100 Tg(S)/y. Our calculations show that the forcing efficiency of the injection decays exponentially. This result implies that SO2 injections in the order of 6 times Mt. Pinatubo eruptions per year are required to keep temperatures constant at that anticipated for 2020, whilst maintaining business as usual emission conditions.
R. Hommel, C. Timmreck, M. A. Giorgetta, and H. F. Graf
Atmos. Chem. Phys., 15, 5557–5584, https://doi.org/10.5194/acp-15-5557-2015, https://doi.org/10.5194/acp-15-5557-2015, 2015
N. Sudarchikova, U. Mikolajewicz, C. Timmreck, D. O'Donnell, G. Schurgers, D. Sein, and K. Zhang
Clim. Past, 11, 765–779, https://doi.org/10.5194/cp-11-765-2015, https://doi.org/10.5194/cp-11-765-2015, 2015
M. Mech, E. Orlandi, S. Crewell, F. Ament, L. Hirsch, M. Hagen, G. Peters, and B. Stevens
Atmos. Meas. Tech., 7, 4539–4553, https://doi.org/10.5194/amt-7-4539-2014, https://doi.org/10.5194/amt-7-4539-2014, 2014
Short summary
Short summary
Here the High Altitude and LOng range research aircraft Microwave Package (HAMP) is introduced. The package consists
of three passive radiometer modules with 26 channels between 22
and 183 GHz and a 36 GHz Doppler cloud radar. The manuscript
describes the instrument specifications, the installation in the aircraft, and the operation. Furthermore, results from simulation
and retrieval studies, as well as measurements from a first test
campaign, are shown.
M. Toohey, K. Krüger, M. Bittner, C. Timmreck, and H. Schmidt
Atmos. Chem. Phys., 14, 13063–13079, https://doi.org/10.5194/acp-14-13063-2014, https://doi.org/10.5194/acp-14-13063-2014, 2014
Short summary
Short summary
Earth system model simulations are used to investigate the impact of volcanic aerosol forcing on stratospheric dynamics, e.g. the Northern Hemisphere (NH) polar vortex. We find that mechanisms linking aerosol heating and high-latitude dynamics are not as direct as often assumed; high-latitude effects result from changes in stratospheric circulation and related vertical motions. The simulated responses also show evidence of being sensitive to the structure of the volcanic forcing used.
D. Zanchettin, O. Bothe, C. Timmreck, J. Bader, A. Beitsch, H.-F. Graf, D. Notz, and J. H. Jungclaus
Earth Syst. Dynam., 5, 223–242, https://doi.org/10.5194/esd-5-223-2014, https://doi.org/10.5194/esd-5-223-2014, 2014
M. Toohey and T. von Clarmann
Atmos. Meas. Tech., 6, 937–948, https://doi.org/10.5194/amt-6-937-2013, https://doi.org/10.5194/amt-6-937-2013, 2013
J. Segschneider, A. Beitsch, C. Timmreck, V. Brovkin, T. Ilyina, J. Jungclaus, S. J. Lorenz, K. D. Six, and D. Zanchettin
Biogeosciences, 10, 669–687, https://doi.org/10.5194/bg-10-669-2013, https://doi.org/10.5194/bg-10-669-2013, 2013
Related subject area
Climate and Earth System Modeling
Implementation of sequential cropping into JULESvn5.2 land-surface model
Development of four-dimensional variational assimilation system based on the GRAPES–CUACE adjoint model (GRAPES–CUACE-4D-Var V1.0) and its application in emission inversion
HIRM v1.0: a hybrid impulse response model for climate modeling and uncertainty analyses
CLIMADA v1.4.1: towards a globally consistent adaptation options appraisal tool
FORTE 2.0: a fast, parallel and flexible coupled climate model
Optimization of the sulfate aerosol hygroscopicity parameter in WRF-Chem
Updated European hydraulic pedotransfer functions with communicated uncertainties in the predicted variables (euptfv2)
Spin-up characteristics with three types of initial fields and the restart effects on forecast accuracy in the GRAPES global forecast system
GTS v1.0: a macrophysics scheme for climate models based on a probability density function
Calibration of temperature-dependent ocean microbial processes in the cGENIE.muffin (v0.9.13) Earth system model
Description and evaluation of aerosol in UKESM1 and HadGEM3-GC3.1 CMIP6 historical simulations
DiRong1.0: a distributed implementation for improving routing network generation in model coupling
Overview of the Norwegian Earth System Model (NorESM2) and key climate response of CMIP6 DECK, historical, and scenario simulations
Geospatial input data for the PALM model system 6.0: model requirements, data sources and processing
Exploring the parameter space of the COSMO-CLM v5.0 regional climate model for the Central Asia CORDEX domain
The benefits of increasing resolution in global and regional climate simulations for European climate extremes
European daily precipitation according to EURO-CORDEX regional climate models (RCMs) and high-resolution global climate models (GCMs) from the High-Resolution Model Intercomparison Project (HighResMIP)
Harmonization of global land use change and management for the period 850–2100 (LUH2) for CMIP6
A computationally efficient method for probabilistic local warming projections constrained by history matching and pattern scaling, demonstrated by WASP–LGRTC-1.0
R2D2 v2.0: accounting for temporal dependences in multivariate bias correction via analogue rank resampling
Extending the Modular Earth Submodel System (MESSy v2.54) model hierarchy: the ECHAM/MESSy IdeaLized (EMIL) model setup
Boreal summer intraseasonal oscillation in a superparameterized general circulation model: effects of air–sea coupling and ocean mean state
Reduced Complexity Model Intercomparison Project Phase 1: introduction and evaluation of global-mean temperature response
Modeling land surface processes over a mountainous rainforest in Costa Rica using CLM4.5 and CLM5
A new bias-correction method for precipitation over complex terrain suitable for different climate states: a case study using WRF (version 3.8.1)
ISSM-SLPS: geodetically compliant Sea-Level Projection System for the Ice-sheet and Sea-level System Model v4.17
Newly developed aircraft routing options for air traffic simulation in the chemistry–climate model EMAC 2.53: AirTraf 2.0
Quantifying CanESM5 and EAMv1 sensitivities to Mt. Pinatubo volcanic forcing for the CMIP6 historical experiment
Optimizing high-resolution Community Earth System Model on a heterogeneous many-core supercomputing platform
Understanding the development of systematic errors in the Asian Summer Monsoon
MIROC-INTEG-LAND version 1: a global biogeochemical land surface model with human water management, crop growth, and land-use change
Optimality-based non-Redfield plankton–ecosystem model (OPEM v1.1) in UVic-ESCM 2.9 – Part 2: Sensitivity analysis and model calibration
Optimality-based non-Redfield plankton–ecosystem model (OPEM v1.1) in UVic-ESCM 2.9 – Part 1: Implementation and model behaviour
The E3SM version 1 single-column model
RadNet 1.0: exploring deep learning architectures for longwave radiative transfer
Efficient ensemble data assimilation for coupled models with the Parallel Data Assimilation Framework: example of AWI-CM (AWI-CM-PDAF 1.0)
Modelling mineral dust emissions and atmospheric dispersion with MADE3 in EMAC v2.54
Evaluation of the University of Victoria Earth System Climate Model version 2.10 (UVic ESCM 2.10)
Earth System Model Evaluation Tool (ESMValTool) v2.0 – diagnostics for emergent constraints and future projections from Earth system models in CMIP
Evaluating the land-surface energy partitioning in ERA5
Robust Ecosystem Demography (RED version 1.0): a parsimonious approach to modelling vegetation dynamics in Earth system models
The GGCMI Phase 2 emulators: global gridded crop model responses to changes in CO2, temperature, water, and nitrogen (version 1.0)
Role of vegetation in representing land surface temperature in the CHTESSEL (CY45R1) and SURFEX-ISBA (v8.1) land surface models: a case study over Iberia
Simulating the mid-Holocene, Last Interglacial and mid-Pliocene climate with EC-Earth3-LR
Taiwan Earth System Model Version 1: description and evaluation of mean state
Using the anomaly forcing Community Land Model (CLM 4.5) for crop yield projections
Evaluating simulated climate patterns from the CMIP archives using satellite and reanalysis datasets using the Climate Model Assessment Tool (CMATv1)
An offline framework for high-dimensional ensemble Kalman filters to reduce the time to solution
The shared socio-economic pathway (SSP) greenhouse gas concentrations and their extensions to 2500
HighResMIP versions of EC-Earth: EC-Earth3P and EC-Earth3P-HR – description, model computational performance and basic validation
Camilla Mathison, Andrew J. Challinor, Chetan Deva, Pete Falloon, Sébastien Garrigues, Sophie Moulin, Karina Williams, and Andy Wiltshire
Geosci. Model Dev., 14, 437–471, https://doi.org/10.5194/gmd-14-437-2021, https://doi.org/10.5194/gmd-14-437-2021, 2021
Short summary
Short summary
Sequential cropping (also known as multiple or double cropping) is a common cropping system, particularly in tropical regions. Typically, land surface models only simulate a single crop per year. To understand how sequential crops influence surface fluxes, we implement sequential cropping in JULES to simulate all the crops grown within a year at a given location in a seamless way. We demonstrate the method using a site in Avignon, four locations in India and a regional run for two Indian states.
Chao Wang, Xingqin An, Qing Hou, Zhaobin Sun, Yanjun Li, and Jiangtao Li
Geosci. Model Dev., 14, 337–350, https://doi.org/10.5194/gmd-14-337-2021, https://doi.org/10.5194/gmd-14-337-2021, 2021
Kalyn Dorheim, Steven J. Smith, and Ben Bond-Lamberty
Geosci. Model Dev., 14, 365–375, https://doi.org/10.5194/gmd-14-365-2021, https://doi.org/10.5194/gmd-14-365-2021, 2021
Short summary
Short summary
Simple climate models are frequently used in research and decision-making communities because of their tractability and low computational cost. Simple climate models are diverse, including highly idealized and process-based models. Here we present a hybrid approach that combines the strength of two types of simple climate models in a flexible framework. This hybrid approach has provided insights into the climate system and opens an avenue for investigating radiative forcing uncertainties.
David N. Bresch and Gabriela Aznar-Siguan
Geosci. Model Dev., 14, 351–363, https://doi.org/10.5194/gmd-14-351-2021, https://doi.org/10.5194/gmd-14-351-2021, 2021
Short summary
Short summary
Climate change is a fact and adaptation a necessity. The Economics of Climate Adaptation methodology provides a framework to integrate risk and reward perspectives of different stakeholders, underpinned by the CLIMADA impact modelling platform. This extended version of CLIMADA enables risk assessment and options appraisal in a modular form and occasionally bespoke fashion yet with high reusability of functionalities to foster usage in interdisciplinary studies and international collaboration.
Adam T. Blaker, Manoj Joshi, Bablu Sinha, David P. Stevens, Robin S. Smith, and Joël J.-M. Hirschi
Geosci. Model Dev., 14, 275–293, https://doi.org/10.5194/gmd-14-275-2021, https://doi.org/10.5194/gmd-14-275-2021, 2021
Short summary
Short summary
FORTE 2.0 is a flexible coupled atmosphere–ocean general circulation model that can be run on modest hardware. We present two 2000-year simulations which show that FORTE 2.0 is capable of producing a stable climate. Earlier versions of FORTE were used for a wide range of studies, ranging from aquaplanet configurations to investigating the cold European winters of 2009–2010. This paper introduces the updated model for which the code and configuration are now publicly available.
Ah-Hyun Kim, Seong Soo Yum, Dong Yeong Chang, and Minsu Park
Geosci. Model Dev., 14, 259–273, https://doi.org/10.5194/gmd-14-259-2021, https://doi.org/10.5194/gmd-14-259-2021, 2021
Short summary
Short summary
A new method to estimate the sulfate aerosol hygroscopicity parameter (κSO4) is suggested that can consider κSO4 for two different sulfate species instead of prescribing a single κSO4 value, as in most previous studies. The new method simulates more realistic cloud droplet concentrations and, thus, a more realistic cloud albedo effect than the original method. The new method is simple and readily applicable to modeling studies investigating sulfate aerosols’ effect in aerosol–cloud interactions.
Brigitta Szabó, Melanie Weynants, and Tobias K. D. Weber
Geosci. Model Dev., 14, 151–175, https://doi.org/10.5194/gmd-14-151-2021, https://doi.org/10.5194/gmd-14-151-2021, 2021
Short summary
Short summary
This paper presents updated European prediction algorithms (euptf2) to compute soil hydraulic parameters from easily available soil properties. The new algorithms lead to significantly better predictions and provide a built-in prediction uncertainty computation. The influence of predictor variables on predicted soil hydraulic properties is explored and practical guidance on how to use the derived PTFs is provided. A website and an R package facilitate easy application of the updated predictions.
Zhanshan Ma, Chuanfeng Zhao, Jiandong Gong, Jin Zhang, Zhe Li, Jian Sun, Yongzhu Liu, Jiong Chen, and Qingu Jiang
Geosci. Model Dev., 14, 205–221, https://doi.org/10.5194/gmd-14-205-2021, https://doi.org/10.5194/gmd-14-205-2021, 2021
Short summary
Short summary
The spin-up in GRAPES_GFS, under different initial fields, goes through a dramatic adjustment in the first half-hour of integration and slow dynamic and thermal adjustments afterwards. It lasts for at least 6 h, with model adjustment gradually completed from lower to upper layers in the model. Thus, the forecast results, at least in the first 6 h, should be avoided when used. In addition, the spin-up process should repeat when the model simulation is interrupted.
Chein-Jung Shiu, Yi-Chi Wang, Huang-Hsiung Hsu, Wei-Ting Chen, Hua-Lu Pan, Ruiyu Sun, Yi-Hsuan Chen, and Cheng-An Chen
Geosci. Model Dev., 14, 177–204, https://doi.org/10.5194/gmd-14-177-2021, https://doi.org/10.5194/gmd-14-177-2021, 2021
Short summary
Short summary
A cloud macrophysics scheme utilizing grid-mean hydrometeor information is developed and evaluated for climate models. The GFS–TaiESM–Sundqvist (GTS) scheme can simulate variations of cloud fraction associated with relative humidity (RH) in a more consistent way than the default scheme of CAM5.3. Through better cloud–RH distributions, the GTS scheme helps to better represent cloud fraction, cloud radiative forcing, and thermodynamic-related climatic fields in climate simulations.
Katherine A. Crichton, Jamie D. Wilson, Andy Ridgwell, and Paul N. Pearson
Geosci. Model Dev., 14, 125–149, https://doi.org/10.5194/gmd-14-125-2021, https://doi.org/10.5194/gmd-14-125-2021, 2021
Short summary
Short summary
Temperature is a controller of metabolic processes and therefore also a controller of the ocean's biological carbon pump (BCP). We calibrate a temperature-dependent version of the BCP in the cGENIE Earth system model. Since the pre-industrial period, warming has intensified near-surface nutrient recycling, supporting production and largely offsetting stratification-induced surface nutrient limitation. But at the same time less carbon that sinks out of the surface then reaches the deep ocean.
Jane P. Mulcahy, Colin Johnson, Colin G. Jones, Adam C. Povey, Catherine E. Scott, Alistair Sellar, Steven T. Turnock, Matthew T. Woodhouse, Nathan Luke Abraham, Martin B. Andrews, Nicolas Bellouin, Jo Browse, Ken S. Carslaw, Mohit Dalvi, Gerd A. Folberth, Matthew Glover, Daniel P. Grosvenor, Catherine Hardacre, Richard Hill, Ben Johnson, Andy Jones, Zak Kipling, Graham Mann, James Mollard, Fiona M. O'Connor, Julien Palmiéri, Carly Reddington, Steven T. Rumbold, Mark Richardson, Nick A. J. Schutgens, Philip Stier, Marc Stringer, Yongming Tang, Jeremy Walton, Stephanie Woodward, and Andrew Yool
Geosci. Model Dev., 13, 6383–6423, https://doi.org/10.5194/gmd-13-6383-2020, https://doi.org/10.5194/gmd-13-6383-2020, 2020
Short summary
Short summary
Aerosols are an important component of the Earth system. Here, we comprehensively document and evaluate the aerosol schemes as implemented in the physical and Earth system models, HadGEM3-GC3.1 and UKESM1. This study provides a useful characterisation of the aerosol climatology in both models, facilitating the understanding of the numerous aerosol–climate interaction studies that will be conducted for CMIP6 and beyond.
Hao Yu, Li Liu, Chao Sun, Ruizhe Li, Xinzhu Yu, Cheng Zhang, Zhiyuan Zhang, and Bin Wang
Geosci. Model Dev., 13, 6253–6263, https://doi.org/10.5194/gmd-13-6253-2020, https://doi.org/10.5194/gmd-13-6253-2020, 2020
Short summary
Short summary
Routing network generation is a major step for initializing the data transfer functionality for model coupling. The distributed implementation for routing network generation (DiRong1.0) proposed in this paper can significantly improve the global implementation of routing network generation used in some existing coupling software, because it does not introduce any gather–broadcast communications and achieves much lower complexity in terms of time, memory, and communication.
Øyvind Seland, Mats Bentsen, Dirk Olivié, Thomas Toniazzo, Ada Gjermundsen, Lise Seland Graff, Jens Boldingh Debernard, Alok Kumar Gupta, Yan-Chun He, Alf Kirkevåg, Jörg Schwinger, Jerry Tjiputra, Kjetil Schanke Aas, Ingo Bethke, Yuanchao Fan, Jan Griesfeller, Alf Grini, Chuncheng Guo, Mehmet Ilicak, Inger Helene Hafsahl Karset, Oskar Landgren, Johan Liakka, Kine Onsum Moseid, Aleksi Nummelin, Clemens Spensberger, Hui Tang, Zhongshi Zhang, Christoph Heinze, Trond Iversen, and Michael Schulz
Geosci. Model Dev., 13, 6165–6200, https://doi.org/10.5194/gmd-13-6165-2020, https://doi.org/10.5194/gmd-13-6165-2020, 2020
Short summary
Short summary
The second version of the coupled Norwegian Earth System Model (NorESM2) is presented and evaluated. The temperature and precipitation patterns has improved compared to NorESM1. The model reaches present-day warming levels to within 0.2 °C of observed temperature but with a delayed warming during the late 20th century. Under the four scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5), the warming in the period of 2090–2099 compared to 1850–1879 reaches 1.3, 2.2, 3.1, and 3.9 K.
Wieke Heldens, Cornelia Burmeister, Farah Kanani-Sühring, Björn Maronga, Dirk Pavlik, Matthias Sühring, Julian Zeidler, and Thomas Esch
Geosci. Model Dev., 13, 5833–5873, https://doi.org/10.5194/gmd-13-5833-2020, https://doi.org/10.5194/gmd-13-5833-2020, 2020
Short summary
Short summary
For realistic microclimate simulations in urban areas with PALM 6.0, detailed description of surface types, buildings and vegetation is required. This paper shows how such input data sets can be derived with the example of three German cities. Various data sources are used, including remote sensing, municipal data collections and open data such as OpenStreetMap. The collection and preparation of input data sets is tedious. Future research aims therefore at semi-automated tools to support users.
Emmanuele Russo, Silje Lund Sørland, Ingo Kirchner, Martijn Schaap, Christoph C. Raible, and Ulrich Cubasch
Geosci. Model Dev., 13, 5779–5797, https://doi.org/10.5194/gmd-13-5779-2020, https://doi.org/10.5194/gmd-13-5779-2020, 2020
Short summary
Short summary
The parameter space of the COSMO-CLM RCM is investigated for the Central Asia CORDEX domain using a perturbed physics ensemble (PPE) with different parameter values. Results show that only a subset of model parameters presents relevant changes in model performance and these changes depend on the considered region and variable: objective calibration methods are highly necessary in this case. Additionally, the results suggest the need for calibrating an RCM when targeting different domains.
Carley E. Iles, Robert Vautard, Jane Strachan, Sylvie Joussaume, Bernd R. Eggen, and Chris D. Hewitt
Geosci. Model Dev., 13, 5583–5607, https://doi.org/10.5194/gmd-13-5583-2020, https://doi.org/10.5194/gmd-13-5583-2020, 2020
Short summary
Short summary
We investigate how increased resolution affects the simulation of European climate extremes for global and regional climate models to inform modelling strategies. Precipitation extremes become heavier with higher resolution, especially over mountains, wind extremes become somewhat stronger, and for temperature extremes warm biases are reduced over mountains. Differences with resolution for the global model appear to come from downscaling effects rather than improved large-scale circulation.
Marie-Estelle Demory, Ségolène Berthou, Jesús Fernández, Silje L. Sørland, Roman Brogli, Malcolm J. Roberts, Urs Beyerle, Jon Seddon, Rein Haarsma, Christoph Schär, Erasmo Buonomo, Ole B. Christensen, James M. Ciarlo ̀, Rowan Fealy, Grigory Nikulin, Daniele Peano, Dian Putrasahan, Christopher D. Roberts, Retish Senan, Christian Steger, Claas Teichmann, and Robert Vautard
Geosci. Model Dev., 13, 5485–5506, https://doi.org/10.5194/gmd-13-5485-2020, https://doi.org/10.5194/gmd-13-5485-2020, 2020
Short summary
Short summary
Now that global climate models (GCMs) can run at similar resolutions to regional climate models (RCMs), one may wonder whether GCMs and RCMs provide similar regional climate information. We perform an evaluation for daily precipitation distribution in PRIMAVERA GCMs (25–50 km resolution) and CORDEX RCMs (12–50 km resolution) over Europe. We show that PRIMAVERA and CORDEX simulate similar distributions. Considering both datasets at such a resolution results in large benefits for impact studies.
George C. Hurtt, Louise Chini, Ritvik Sahajpal, Steve Frolking, Benjamin L. Bodirsky, Katherine Calvin, Jonathan C. Doelman, Justin Fisk, Shinichiro Fujimori, Kees Klein Goldewijk, Tomoko Hasegawa, Peter Havlik, Andreas Heinimann, Florian Humpenöder, Johan Jungclaus, Jed O. Kaplan, Jennifer Kennedy, Tamás Krisztin, David Lawrence, Peter Lawrence, Lei Ma, Ole Mertz, Julia Pongratz, Alexander Popp, Benjamin Poulter, Keywan Riahi, Elena Shevliakova, Elke Stehfest, Peter Thornton, Francesco N. Tubiello, Detlef P. van Vuuren, and Xin Zhang
Geosci. Model Dev., 13, 5425–5464, https://doi.org/10.5194/gmd-13-5425-2020, https://doi.org/10.5194/gmd-13-5425-2020, 2020
Short summary
Short summary
To estimate the effects of human land use activities on the carbon–climate system, a new set of global gridded land use forcing datasets was developed to link historical land use data to eight future scenarios in a standard format required by climate models. This new generation of land use harmonization (LUH2) includes updated inputs, higher spatial resolution, more detailed land use transitions, and the addition of important agricultural management layers; it will be used for CMIP6 simulations.
Philip Goodwin, Martin Leduc, Antti-Ilari Partanen, H. Damon Matthews, and Alex Rogers
Geosci. Model Dev., 13, 5389–5399, https://doi.org/10.5194/gmd-13-5389-2020, https://doi.org/10.5194/gmd-13-5389-2020, 2020
Short summary
Short summary
Numerical climate models are used to make projections of future surface warming for different pathways of future greenhouse gas emissions, where future surface warming will vary from place to place. However, it is so expensive to run complex models using supercomputers that future projections can only be produced for a small number of possible future emissions pathways. This study presents an efficient climate model to make projections of local surface warming using a desktop computer.
Mathieu Vrac and Soulivanh Thao
Geosci. Model Dev., 13, 5367–5387, https://doi.org/10.5194/gmd-13-5367-2020, https://doi.org/10.5194/gmd-13-5367-2020, 2020
Short summary
Short summary
We propose a multivariate bias correction (MBC) method to adjust the spatial and/or inter-variable properties of climate simulations, while also accounting for their temporal dependences (e.g., autocorrelations).
It consists on a method reordering the ranks of the time series according to their multivariate distance to a reference time series.
Results show that temporal correlations are improved while spatial and inter-variable correlations are still satisfactorily corrected.
Hella Garny, Roland Walz, Matthias Nützel, and Thomas Birner
Geosci. Model Dev., 13, 5229–5257, https://doi.org/10.5194/gmd-13-5229-2020, https://doi.org/10.5194/gmd-13-5229-2020, 2020
Short summary
Short summary
Numerical models of Earth's climate system have been gaining more and more complexity over the last decades. Therefore, it is important to establish simplified models to improve process understanding. In our study, we present and document the development of a new simplified model setup within the framework of a complex climate model system that uses the same routines to calculate atmospheric dynamics as the complex model but is simplified in the representation of clouds and radiation.
Yingxia Gao, Nicholas P. Klingaman, Charlotte A. DeMott, and Pang-Chi Hsu
Geosci. Model Dev., 13, 5191–5209, https://doi.org/10.5194/gmd-13-5191-2020, https://doi.org/10.5194/gmd-13-5191-2020, 2020
Short summary
Short summary
Both the air–sea coupling and ocean mean state affect the fidelity of simulated boreal summer intraseasonal oscillation (BSISO). To elucidate their relative effects on the simulated BSISO, a set of experiments was conducted using a superparameterized AGCM and its coupled version. Both air–sea coupling and cold ocean mean state improve the BSISO amplitude due to the suppression of the overestimated variance, while the former (latter) could further upgrade (degrade) the BSISO propagation.
Zebedee R. J. Nicholls, Malte Meinshausen, Jared Lewis, Robert Gieseke, Dietmar Dommenget, Kalyn Dorheim, Chen-Shuo Fan, Jan S. Fuglestvedt, Thomas Gasser, Ulrich Golüke, Philip Goodwin, Corinne Hartin, Austin P. Hope, Elmar Kriegler, Nicholas J. Leach, Davide Marchegiani, Laura A. McBride, Yann Quilcaille, Joeri Rogelj, Ross J. Salawitch, Bjørn H. Samset, Marit Sandstad, Alexey N. Shiklomanov, Ragnhild B. Skeie, Christopher J. Smith, Steve Smith, Katsumasa Tanaka, Junichi Tsutsui, and Zhiang Xie
Geosci. Model Dev., 13, 5175–5190, https://doi.org/10.5194/gmd-13-5175-2020, https://doi.org/10.5194/gmd-13-5175-2020, 2020
Short summary
Short summary
Computational limits mean that we cannot run our most comprehensive climate models for all applications of interest. In such cases, reduced complexity models (RCMs) are used. Here, researchers working on 15 different models present the first systematic community effort to evaluate and compare RCMs: the Reduced Complexity Model Intercomparison Project (RCMIP). Our research ensures that users of RCMs can more easily evaluate the strengths, weaknesses and limitations of their tools.
Jaeyoung Song, Gretchen R. Miller, Anthony T. Cahill, Luiza Maria T. Aparecido, and Georgianne W. Moore
Geosci. Model Dev., 13, 5147–5173, https://doi.org/10.5194/gmd-13-5147-2020, https://doi.org/10.5194/gmd-13-5147-2020, 2020
Short summary
Short summary
The performance of a land surface model (CLM4.5 and 5.0) was examined against a suite of measurements from a tropical montane rainforest in Costa Rica. Both versions failed to capture the effects of frequent rainfall events and mountainous terrain on temperature, leaf wetness, photosynthesis, and transpiration. While the new model version eliminated some errors, it still cannot precisely simulate a number of processes. This suggests that two key components of the model need modification.
Patricio Velasquez, Martina Messmer, and Christoph C. Raible
Geosci. Model Dev., 13, 5007–5027, https://doi.org/10.5194/gmd-13-5007-2020, https://doi.org/10.5194/gmd-13-5007-2020, 2020
Short summary
Short summary
This work presents a new bias-correction method for precipitation that considers orographic characteristics, which can be used in studies where the latter strongly changes. The three-step correction method consists of a separation into orographic features, correction of low-intensity precipitation, and application of empirical quantile mapping. Seasonal bias induced by the global climate model is fully corrected. Rigorous cross-validations illustrate the method's applicability and robustness.
Eric Larour, Lambert Caron, Mathieu Morlighem, Surendra Adhikari, Thomas Frederikse, Nicole-Jeanne Schlegel, Erik Ivins, Benjamin Hamlington, Robert Kopp, and Sophie Nowicki
Geosci. Model Dev., 13, 4925–4941, https://doi.org/10.5194/gmd-13-4925-2020, https://doi.org/10.5194/gmd-13-4925-2020, 2020
Short summary
Short summary
ISSM-SLPS is a new projection system for future sea level that increases the resolution and accuracy of current projection systems and improves the way uncertainty is treated in such projections. This will pave the way for better inclusion of state-of-the-art results from existing intercomparison efforts carried out by the scientific community, such as GlacierMIP2 or ISMIP6, into sea-level projections.
Hiroshi Yamashita, Feijia Yin, Volker Grewe, Patrick Jöckel, Sigrun Matthes, Bastian Kern, Katrin Dahlmann, and Christine Frömming
Geosci. Model Dev., 13, 4869–4890, https://doi.org/10.5194/gmd-13-4869-2020, https://doi.org/10.5194/gmd-13-4869-2020, 2020
Short summary
Short summary
This paper describes the updated submodel AirTraf 2.0 which simulates global air traffic in the ECHAM/MESSy Atmospheric Chemistry (EMAC) model. Nine aircraft routing options have been integrated, including contrail avoidance, minimum economic costs, and minimum climate impact. Example simulations reveal characteristics of different routing options on air traffic performances. The consistency of the AirTraf simulations is verified with literature data.
Landon A. Rieger, Jason N. S. Cole, John C. Fyfe, Stephen Po-Chedley, Philip J. Cameron-Smith, Paul J. Durack, Nathan P. Gillett, and Qi Tang
Geosci. Model Dev., 13, 4831–4843, https://doi.org/10.5194/gmd-13-4831-2020, https://doi.org/10.5194/gmd-13-4831-2020, 2020
Short summary
Short summary
Recently, the stratospheric aerosol forcing dataset used as an input to the Coupled Model Intercomparison Project phase 6 was updated. This work explores the impact of those changes on the modelled historical climates in the CanESM5 and EAMv1 models. Temperature differences in the stratosphere shortly after the Pinatubo eruption are found to be significant, but surface temperatures and precipitation do not show a significant change.
Shaoqing Zhang, Haohuan Fu, Lixin Wu, Yuxuan Li, Hong Wang, Yunhui Zeng, Xiaohui Duan, Wubing Wan, Li Wang, Yuan Zhuang, Hongsong Meng, Kai Xu, Ping Xu, Lin Gan, Zhao Liu, Sihai Wu, Yuhu Chen, Haining Yu, Shupeng Shi, Lanning Wang, Shiming Xu, Wei Xue, Weiguo Liu, Qiang Guo, Jie Zhang, Guanghui Zhu, Yang Tu, Jim Edwards, Allison Baker, Jianlin Yong, Man Yuan, Yangyang Yu, Qiuying Zhang, Zedong Liu, Mingkui Li, Dongning Jia, Guangwen Yang, Zhiqiang Wei, Jingshan Pan, Ping Chang, Gokhan Danabasoglu, Stephen Yeager, Nan Rosenbloom, and Ying Guo
Geosci. Model Dev., 13, 4809–4829, https://doi.org/10.5194/gmd-13-4809-2020, https://doi.org/10.5194/gmd-13-4809-2020, 2020
Short summary
Short summary
Science advancement and societal needs require Earth system modelling with higher resolutions that demand tremendous computing power. We successfully scale the 10 km ocean and 25 km atmosphere high-resolution Earth system model to a new leading-edge heterogeneous supercomputer using state-of-the-art optimizing methods, promising the solution of high spatial resolution and time-varying frequency. Corresponding technical breakthroughs are of significance in modelling and HPC design communities.
Gill M. Martin, Richard C. Levine, José M. Rodriguez, and Michael Vellinga
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2020-268, https://doi.org/10.5194/gmd-2020-268, 2020
Revised manuscript accepted for GMD
Short summary
Short summary
Our study highlights a number of different techniques that can be employed to investigate the sources of model error. We demonstrate how this methodology can be used to identify the regions and model components responsible for the development of long-standing errors in the Asian Summer Monsoon. Once these are known, further work can be done to explore the local processes contributing to this behaviour and their sensitivity to changes in physical parameterizations and/or model resolution.
Tokuta Yokohata, Tsuguki Kinoshita, Gen Sakurai, Yadu Pokhrel, Akihiko Ito, Masashi Okada, Yusuke Satoh, Etsushi Kato, Tomoko Nitta, Shinichiro Fujimori, Farshid Felfelani, Yoshimitsu Masaki, Toshichika Iizumi, Motoki Nishimori, Naota Hanasaki, Kiyoshi Takahashi, Yoshiki Yamagata, and Seita Emori
Geosci. Model Dev., 13, 4713–4747, https://doi.org/10.5194/gmd-13-4713-2020, https://doi.org/10.5194/gmd-13-4713-2020, 2020
Short summary
Short summary
The most significant feature of MIROC-INTEG-LAND is that the land surface model that describes the processes of the energy and water balances, human water management, and crop growth incorporates a land-use decision-making model based on economic activities. The future simulations indicate that changes in climate have significant impacts on crop yields, land use, and irrigation water demand.
Chia-Te Chien, Markus Pahlow, Markus Schartau, and Andreas Oschlies
Geosci. Model Dev., 13, 4691–4712, https://doi.org/10.5194/gmd-13-4691-2020, https://doi.org/10.5194/gmd-13-4691-2020, 2020
Short summary
Short summary
We demonstrate sensitivities of tracers to parameters of a new optimality-based plankton–ecosystem model (OPEM) in the UVic-ESCM. We find that changes in phytoplankton subsistence nitrogen quota strongly impact the nitrogen inventory, nitrogen fixation, and elemental stoichiometry of ordinary phytoplankton and diazotrophs. We introduce a new likelihood-based metric for model calibration, and it shows the capability of constraining globally averaged oxygen, nitrate, and DIC concentrations.
Markus Pahlow, Chia-Te Chien, Lionel A. Arteaga, and Andreas Oschlies
Geosci. Model Dev., 13, 4663–4690, https://doi.org/10.5194/gmd-13-4663-2020, https://doi.org/10.5194/gmd-13-4663-2020, 2020
Short summary
Short summary
The stoichiometry of marine biotic processes is important for the regulation of atmospheric CO2 and hence the global climate. We replace a simplistic, fixed-stoichiometry plankton module in an Earth system model with an optimal-regulation model with variable stoichiometry. Our model compares better to the observed carbon transfer from the surface to depth and surface nutrient distributions. This work could aid our ability to describe and project the role of marine ecosystems in the Earth system.
Peter A. Bogenschutz, Shuaiqi Tang, Peter M. Caldwell, Shaocheng Xie, Wuyin Lin, and Yao-Sheng Chen
Geosci. Model Dev., 13, 4443–4458, https://doi.org/10.5194/gmd-13-4443-2020, https://doi.org/10.5194/gmd-13-4443-2020, 2020
Short summary
Short summary
This paper documents a tool that has been developed that can be used to accelerate the development and understanding of climate models. This version of the model, known as a the single-column model, is much faster to run than the full climate model, and we demonstrate that this tool can be used to quickly exploit model biases that arise due to physical processes. We show examples of how this single-column model can directly benefit the field.
Ying Liu, Rodrigo Caballero, and Joy Merwin Monteiro
Geosci. Model Dev., 13, 4399–4412, https://doi.org/10.5194/gmd-13-4399-2020, https://doi.org/10.5194/gmd-13-4399-2020, 2020
Short summary
Short summary
The calculation of atmospheric radiative transfer is the most computationally expensive part of climate models. Reducing this computational burden could potentially improve our ability to simulate the earth's climate at finer scales. We propose using a statistical model – a deep neural network – to compute approximate radiative transfer in the earth's atmosphere. We demonstrate a significant reduction in computational burden as compared to a traditional scheme, especially when using GPUs.
Lars Nerger, Qi Tang, and Longjiang Mu
Geosci. Model Dev., 13, 4305–4321, https://doi.org/10.5194/gmd-13-4305-2020, https://doi.org/10.5194/gmd-13-4305-2020, 2020
Short summary
Short summary
Data assimilation combines observations with numerical models to get an improved estimate of the model state. This work discusses the technical aspects of how a coupled model that simulates the ocean and the atmosphere can be augmented by data assimilation functionality provided in generic form by the open-source software PDAF (Parallel Data Assimilation Framework). A very efficient program is obtained that can be executed on high-performance computers.
Christof G. Beer, Johannes Hendricks, Mattia Righi, Bernd Heinold, Ina Tegen, Silke Groß, Daniel Sauer, Adrian Walser, and Bernadett Weinzierl
Geosci. Model Dev., 13, 4287–4303, https://doi.org/10.5194/gmd-13-4287-2020, https://doi.org/10.5194/gmd-13-4287-2020, 2020
Short summary
Short summary
Mineral dust aerosol plays an important role in the climate system. Previously, dust emissions have often been represented in global models by prescribed monthly-mean emission fields representative of a specific year. We now apply an online calculation of wind-driven dust emissions. This results in an improved agreement with observations, due to a better representation of the highly variable dust emissions. Increasing the model resolution led to an additional performance gain.
Nadine Mengis, David P. Keller, Andrew H. MacDougall, Michael Eby, Nesha Wright, Katrin J. Meissner, Andreas Oschlies, Andreas Schmittner, Alexander J. MacIsaac, H. Damon Matthews, and Kirsten Zickfeld
Geosci. Model Dev., 13, 4183–4204, https://doi.org/10.5194/gmd-13-4183-2020, https://doi.org/10.5194/gmd-13-4183-2020, 2020
Short summary
Short summary
In this paper, we evaluate the newest version of the University of Victoria Earth System Climate Model (UVic ESCM 2.10). Combining recent model developments as a joint effort, this version is to be used in the next phase of model intercomparison and climate change studies. The UVic ESCM 2.10 is capable of reproducing changes in historical temperature and carbon fluxes well. Additionally, the model is able to reproduce the three-dimensional distribution of many ocean tracers.
Axel Lauer, Veronika Eyring, Omar Bellprat, Lisa Bock, Bettina K. Gier, Alasdair Hunter, Ruth Lorenz, Núria Pérez-Zanón, Mattia Righi, Manuel Schlund, Daniel Senftleben, Katja Weigel, and Sabrina Zechlau
Geosci. Model Dev., 13, 4205–4228, https://doi.org/10.5194/gmd-13-4205-2020, https://doi.org/10.5194/gmd-13-4205-2020, 2020
Short summary
Short summary
The Earth System Model Evaluation Tool is a community software tool designed for evaluation and analysis of climate models. New features of version 2.0 include analysis scripts for important large-scale features in climate models, diagnostics for extreme events, regional model and impact evaluation. In this paper, newly implemented climate metrics, emergent constraints for climate-relevant feedbacks and diagnostics for future model projections are described and illustrated with examples.
Brecht Martens, Dominik L. Schumacher, Hendrik Wouters, Joaquín Muñoz-Sabater, Niko E. C. Verhoest, and Diego G. Miralles
Geosci. Model Dev., 13, 4159–4181, https://doi.org/10.5194/gmd-13-4159-2020, https://doi.org/10.5194/gmd-13-4159-2020, 2020
Short summary
Short summary
Climate reanalyses are widely used in different fields and an in-depth evaluation of the different variables provided by reanalyses is a necessary means to provide feedback on the quality to their users and the operational centres producing these data sets. In this study, we show the improvements of ECMWF's latest climate reanalysis (ERA5) upon its predecessor (ERA-Interim) in partitioning the available energy at the land surface.
Arthur P. K. Argles, Jonathan R. Moore, Chris Huntingford, Andrew J. Wiltshire, Anna B. Harper, Chris D. Jones, and Peter M. Cox
Geosci. Model Dev., 13, 4067–4089, https://doi.org/10.5194/gmd-13-4067-2020, https://doi.org/10.5194/gmd-13-4067-2020, 2020
Short summary
Short summary
The Robust Ecosystem Demography (RED) model simulates cohorts of vegetation through mass classes. RED establishes a framework for representing demographic changes through competition, growth, and mortality across the size distribution of a forest. The steady state of the model can be solved analytically, enabling initialization. When driven by mean growth rates from a land-surface model, RED is able to fit the observed global vegetation map, giving a map of implicit mortality rates.
James A. Franke, Christoph Müller, Joshua Elliott, Alex C. Ruane, Jonas Jägermeyr, Abigail Snyder, Marie Dury, Pete D. Falloon, Christian Folberth, Louis François, Tobias Hank, R. Cesar Izaurralde, Ingrid Jacquemin, Curtis Jones, Michelle Li, Wenfeng Liu, Stefan Olin, Meridel Phillips, Thomas A. M. Pugh, Ashwan Reddy, Karina Williams, Ziwei Wang, Florian Zabel, and Elisabeth J. Moyer
Geosci. Model Dev., 13, 3995–4018, https://doi.org/10.5194/gmd-13-3995-2020, https://doi.org/10.5194/gmd-13-3995-2020, 2020
Short summary
Short summary
Improving our understanding of the impacts of climate change on crop yields will be critical for global food security in the next century. The models often used to study the how climate change may impact agriculture are complex and costly to run. In this work, we describe a set of global crop model emulators (simplified models) developed under the Agricultural Model Intercomparison Project. Crop model emulators make agricultural simulations more accessible to policy or decision makers.
Miguel Nogueira, Clément Albergel, Souhail Boussetta, Frederico Johannsen, Isabel F. Trigo, Sofia L. Ermida, João P. A. Martins, and Emanuel Dutra
Geosci. Model Dev., 13, 3975–3993, https://doi.org/10.5194/gmd-13-3975-2020, https://doi.org/10.5194/gmd-13-3975-2020, 2020
Short summary
Short summary
We used earth observations to evaluate and improve the representation of land surface temperature (LST) and vegetation coverage over Iberia in CHTESSEL and SURFEX land surface models. We demonstrate the added value of updating the vegetation types and fractions together with the representation of vegetation coverage seasonality. Results show a large reduction in daily maximum LST systematic error during warm months, with neutral impacts in other seasons.
Qiong Zhang, Qiang Li, Qiang Zhang, Ellen Berntell, Josefine Axelsson, Jie Chen, Zixuan Han, Wesley de Nooijer, Zhengyao Lu, Klaus Wyser, and Shuting Yang
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2020-208, https://doi.org/10.5194/gmd-2020-208, 2020
Revised manuscript accepted for GMD
Short summary
Short summary
Paleoclimate modelling has long been regarded as a strong out-of-sample test-bed of the climate models that are used for the projection of future climate changes. Here, we document the model experiments setup for the three past warm periods with EC-Earth3-LR and present the results on the large-scale features from the completed production simulations. The simulations demonstrate the good performance of the model to capture the climate response under different climate forcings.
Wei-Liang Lee, Yi-Chi Wang, Chein-Jung Shiu, I-chun Tsai, Chia-Ying Tu, Yung-Yao Lan, Jen-Ping Chen, Hua-Lu Pan, and Huang-Hsiung Hsu
Geosci. Model Dev., 13, 3887–3904, https://doi.org/10.5194/gmd-13-3887-2020, https://doi.org/10.5194/gmd-13-3887-2020, 2020
Short summary
Short summary
The Taiwan Earth System Model (TaiESM) is a new climate model developed in Taiwan. It includes several new features, and therefore it can better simulate the occurrence of convective rainfall, solar energy received by mountainous surfaces, and more detail chemical processes in aerosols. TaiESM can capture the trend of global warming after 1950 well, and its overall performance in most meteorological quantities is better than the average of global models used in IPCC AR5.
Yaqiong Lu and Xianyu Yang
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2020-186, https://doi.org/10.5194/gmd-2020-186, 2020
Revised manuscript accepted for GMD
Short summary
Short summary
Crop growth in land surface models normally requires high temporal resolution climate data, but such high temporal resolution climate data are not provided by many climate model simulations due to expensive storage, which limits modeling choice if there is an interest in a particular climate simulation that only saved monthly outputs. Our work provides an alternative way to use the monthly climate for crop yield projections. Such approach could be easily adopted by other crop models.
John T. Fasullo
Geosci. Model Dev., 13, 3627–3642, https://doi.org/10.5194/gmd-13-3627-2020, https://doi.org/10.5194/gmd-13-3627-2020, 2020
Short summary
Short summary
The fidelity of climate model simulations included in the WCRP Coupled Model Intercomparison Project Versions 3 through 6 is evaluated using best estimates of fields considered by the community to be critical for climate change projections. The analysis benchmarks patterns of the mean state and variability (seasonal/interannual) both within and across model generations, highlighting progress and quantifying persisting biases across models.
Yongjun Zheng, Clément Albergel, Simon Munier, Bertrand Bonan, and Jean-Christophe Calvet
Geosci. Model Dev., 13, 3607–3625, https://doi.org/10.5194/gmd-13-3607-2020, https://doi.org/10.5194/gmd-13-3607-2020, 2020
Short summary
Short summary
This study proposes a sophisticated dynamically running job scheme as well as an innovative parallel IO algorithm to reduce the time to solution of an offline framework for high-dimensional ensemble Kalman filters. The offline and online modes of ensemble Kalman filters are built to comprehensively assess their time to solution efficiencies. The offline mode is substantially faster than the online mode in terms of time to solution, especially for large-scale assimilation problems.
Malte Meinshausen, Zebedee R. J. Nicholls, Jared Lewis, Matthew J. Gidden, Elisabeth Vogel, Mandy Freund, Urs Beyerle, Claudia Gessner, Alexander Nauels, Nico Bauer, Josep G. Canadell, John S. Daniel, Andrew John, Paul B. Krummel, Gunnar Luderer, Nicolai Meinshausen, Stephen A. Montzka, Peter J. Rayner, Stefan Reimann, Steven J. Smith, Marten van den Berg, Guus J. M. Velders, Martin K. Vollmer, and Ray H. J. Wang
Geosci. Model Dev., 13, 3571–3605, https://doi.org/10.5194/gmd-13-3571-2020, https://doi.org/10.5194/gmd-13-3571-2020, 2020
Short summary
Short summary
This study provides the future greenhouse gas (GHG) concentrations under the new set of so-called SSP scenarios (the successors of the IPCC SRES and previous representative concentration pathway (RCP) scenarios). The projected CO2 concentrations range from 350 ppm for low-emission scenarios by 2150 to more than 2000 ppm under the high-emission scenarios. We also provide concentrations, latitudinal gradients, and seasonality for most of the other 42 considered GHGs.
Rein Haarsma, Mario Acosta, Rena Bakhshi, Pierre-Antoine Bretonnière, Louis-Philippe Caron, Miguel Castrillo, Susanna Corti, Paolo Davini, Eleftheria Exarchou, Federico Fabiano, Uwe Fladrich, Ramon Fuentes Franco, Javier García-Serrano, Jost von Hardenberg, Torben Koenigk, Xavier Levine, Virna Loana Meccia, Twan van Noije, Gijs van den Oord, Froila M. Palmeiro, Mario Rodrigo, Yohan Ruprich-Robert, Philippe Le Sager, Etienne Tourigny, Shiyu Wang, Michiel van Weele, and Klaus Wyser
Geosci. Model Dev., 13, 3507–3527, https://doi.org/10.5194/gmd-13-3507-2020, https://doi.org/10.5194/gmd-13-3507-2020, 2020
Short summary
Short summary
HighResMIP is an international coordinated CMIP6 effort to investigate the improvement in climate modeling caused by an increase in horizontal resolution. This paper describes EC-Earth3P-(HR), which has been developed for HighResMIP. First analyses reveal that increasing resolution does improve certain aspects of the simulated climate but that many other biases still continue, possibly related to phenomena that are still not yet resolved and need to be parameterized.
Cited articles
Ammann, C. M., Meehl, G. A., Washington, W. M., and Zender, C. S.: A monthly and latitudinally varying volcanic forcing dataset in simulations of 20th century climate, Geophys. Res. Lett., 30, 1657, https://doi.org/10.1029/2003GL016875, 2003.
Arfeuille, F., Luo, B. P., Heckendorn, P., Weisenstein, D., Sheng, J. X., Rozanov, E., Schraner, M., Brönnimann, S., Thomason, L. W., and Peter, T.: Modeling the stratospheric warming following the Mt. Pinatubo eruption: uncertainties in aerosol extinctions, Atmos. Chem. Phys., 13, 11221–11234, https://doi.org/10.5194/acp-13-11221-2013, 2013 (data available at: ftp://iacftp.ethz.ch/pub_read/luo/ccmi/).
Arfeuille, F., Weisenstein, D., Mack, H., Rozanov, E., Peter, T., and Brönnimann, S.: Volcanic forcing for climate modeling: a new microphysics-based data set covering years 1600–present, Clim. Past, 10, 359–375, https://doi.org/10.5194/cp-10-359-2014, 2014.
Bluth, G. J. S., Doiron, S. D., Schnetzler, C. C., Krueger, A. J., and Walter, L. S.: Global tracking of the SO2 clouds from the June, 1991 Mount Pinatubo eruptions, Geophys. Res. Lett., 19, 151–154, https://doi.org/10.1029/91GL02792, 1992.
Bluth, G. J. S., Rose, W. I., Sprod, I. E., and Krueger, A. J.: Stratospheric Loading of Sulfur From Explosive Volcanic Eruptions, J. Geol., 105, 671–684, https://doi.org/10.1086/515972, 1997.
Bourassa, A. E., Degenstein, D. A., and Llewellyn, E. J.: Retrieval of stratospheric aerosol size information from OSIRIS limb scattered sunlight spectra, Atmos. Chem. Phys., 8, 6375–6380, https://doi.org/10.5194/acp-8-6375-2008, 2008.
Brohan, P., Allan, R., Freeman, E., Wheeler, D., Wilkinson, C., and Williamson, F.: Constraining the temperature history of the past millennium using early instrumental observations, Clim. Past, 8, 1551–1563, https://doi.org/10.5194/cp-8-1551-2012, 2012.
Brühl, C., Lelieveld, J., Tost, H., Höpfner, M., and Glatthor, N.: Stratospheric sulfur and its implications for radiative forcing simulated by the chemistry climate model EMAC., J. Geophys. Res.-Atmos., 120, 2103–2118, https://doi.org/10.1002/2014JD022430, 2015.
Carn, S. A., Clarisse, L., and Prata, A. J.: Multi-decadal satellite measurements of global volcanic degassing, J. Volcanol. Geoth. Res., 311, 99–134, https://doi.org/10.1016/j.jvolgeores.2016.01.002, 2016.
Charlson, R. J., Schwartz, S. E., Hales, J. M., Cess, R. D., Coakley, J. A., Hansen, J. E., and Hofmann, D. J.: Climate forcing by anthropogenic aerosols, Science, 255, 423–430, https://doi.org/10.1126/science.255.5043.423, 1992.
Charlton-Perez, A. J., Baldwin, M. P., Birner, T., Black, R. X., Butler, A. H., Calvo, N., Davis, N. A., Gerber, E. P., Gillett, N., Hardiman, S., Kim, J., Krüger, K., Lee, Y.-Y., Manzini, E., McDaniel, B. A., Polvani, L., Reichler, T., Shaw, T. A., Sigmond, M., Son, S.-W., Toohey, M., Wilcox, L., Yoden, S., Christiansen, B., Lott, F., Shindell, D., Yukimoto, S., and Watanabe, S.: On the lack of stratospheric dynamical variability in low-top versions of the CMIP5 models, J. Geophys. Res.-Atmos., 118, 2494–2505, https://doi.org/10.1002/jgrd.50125, 2013.
Crowley, T. J.: Causes of Climate Change Over the Past 1000 Years, Science, 289, 270–277, https://doi.org/10.1126/science.289.5477.270, 2000.
Crowley, T. J. and Unterman, M. B.: Technical details concerning development of a 1200 yr proxy index for global volcanism, Earth Syst. Sci. Data, 5, 187–197, https://doi.org/10.5194/essd-5-187-2013, 2013.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., Van De Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V, Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J. J., Park, B. K., Peubey, C., De Rosnay, P., Tavolato, C., Thépaut, J. N., and Vitart, F.: The ERA-Interim reanalysis: configuration and performance of the data assimilation system, Q. J. Roy. Meteor. Soc., 137, 553–597, https://doi.org/10.1002/qj.828, 2011.
Driscoll, S., Bozzo, A., Gray, L. J., Robock, A., and Stenchikov, G.: Coupled Model Intercomparison Project 5 (CMIP5) simulations of climate following volcanic eruptions, J. Geophys. Res., 117, D17105, https://doi.org/10.1029/2012JD017607, 2012.
Eyring, V. and Lamarque, J.-F.: Overview of IGAC/SPARC Chemistry-Climate Model Initiative (CCMI) Community Simulations in Support of Upcoming Ozone and Climate Assessments, SPARC Newsl., 40, 48–66, 2013.
Gao, C., Oman, L., Robock, A., and Stenchikov, G. L.: Atmospheric volcanic loading derived from bipolar ice cores: Accounting for the spatial distribution of volcanic deposition, J. Geophys. Res., 112, https://doi.org/10.1029/2006JD007461, 2007.
Gao, C., Robock, A., and Ammann, C.: Volcanic forcing of climate over the past 1500 years: An improved ice core-based index for climate models, J. Geophys. Res., 113, D23111, https://doi.org/10.1029/2008JD010239, 2008 (data available at: http://climate.envsci.rutgers.edu/IVI2/).
Grieser, J. and Schönwiese, C.-D.: Parameterization of Spatio-temporal Patterns of Volcanic Aerosol Induced Stratospheric Optical Depth and its Climate Radiative Forcing, Atmósfera, 12, 111–133, 1999.
Guo, S., Bluth, G. J. S., Rose, W. I., Watson, I. M., and Prata, A. J.: Re-evaluation of SO2 release of the 15 June 1991 Pinatubo eruption using ultraviolet and infrared satellite sensors, Geochem. Geophy. Geosys., 5, Q04001, https://doi.org/10.1029/2003GC000654, 2004.
Hansen, J. E. and Travis, L. D.: Light scattering in planetary atmospheres, Space Sci. Rev., 16, 527–610, https://doi.org/10.1007/BF00168069, 1974.
Haywood, J. M., Jones, A., Bellouin, N., and Stephenson, D.: Asymmetric forcing from stratospheric aerosols impacts Sahelian rainfall, Nat. Clim. Change, 3, 660–665, https://doi.org/10.1038/nclimate1857, 2013.
Holton, J. R., Haynes, P. H., McIntyre, M. E., Douglass, A. R., Rood, R. B., and Pfister, L.: Stratosphere-Troposphere Exchange, Rev. Geophys., 33, 403–439, https://doi.org/10.1029/95RG02097, 1995.
Höpfner, M., Boone, C. D., Funke, B., Glatthor, N., Grabowski, U., Günther, A., Kellmann, S., Kiefer, M., Linden, A., Lossow, S., Pumphrey, H. C., Read, W. G., Roiger, A., Stiller, G., Schlager, H., von Clarmann, T., and Wissmüller, K.: Sulfur dioxide (SO2) from MIPAS in the upper troposphere and lower stratosphere 2002–2012, Atmos. Chem. Phys., 15, 7017–7037, https://doi.org/10.5194/acp-15-7017-2015, 2015.
Jacob, D.: Introduction to atmospheric chemistry, Princeton University Press, 1999.
Junge, C. E., Chagnon, C. W., Manson, J. E., Junge, C. E., Chagnon, C. W., and Manson, J. E.: Stratospheric Aerosols, J. Meteorol., 18, 81–108, https://doi.org/10.1175/1520-0469(1961)018<0081:SA>2.0.CO;2, 1961.
Kageyama, M., Braconnot, P., Harrison, S. P., Haywood, A. M., Jungclaus, J., Otto-Bliesner, B. L., Peterschmitt, J.-Y., Abe-Ouchi, A., Albani, S., Bartlein, P. J., Brierley, C., Crucifix, M., Dolan, A., Fernandez-Donado, L., Fischer, H., Hopcroft, P. O., Ivanovic, R. F., Lambert, F., Lunt, D. J., Mahowald, N. M., Peltier, W. R., Phipps, S. J., Roche, D. M., Schmidt, G. A., Tarasov, L., Valdes, P. J., Zhang, Q., and Zhou, T.: PMIP4-CMIP6: the contribution of the Paleoclimate Modelling Intercomparison Project to CMIP6, Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2016-106, in review, 2016.
Kremser, S., Thomason, L. W., von Hobe, M., Hermann, M., Deshler, T., Timmreck, C., Toohey, M., Stenke, A., Schwarz, J. P., Weigel, R., Fueglistaler, S., Prata, F. J., Vernier, J.-P., Schlager, H., Barnes, J. E., Antuña-Marrero, J.-C., Fairlie, D., Palm, M., Mahieu, E., Notholt, J., Rex, M., Bingen, C., Vanhellemont, F., Bourassa, A., Plane, J. M. C., Klocke, D., Carn, S. A., Clarisse, L., Trickl, T., Neely, R., James, A. D., Rieger, L., Wilson, J. C., and Meland, B.: Stratospheric aerosol – Observations, processes, and impact on climate, Rev. Geophys., 54, 278–335, https://doi.org/10.1002/2015RG000511, 2016.
Manney, G. L., Zurek, R. W., O'Neill, A., and Swinbank, R.: On the Motion of Air through the Stratospheric Polar Vortex, J. Atmos. Sci., 51, 2973–2994, https://doi.org/10.1175/1520-0469(1994)051<2973:OTMOAT>2.0.CO;2, 1994.
McIntyre, M. E. and Palmer, T. N.: Breaking planetary waves in the stratosphere, Nature, 305, 593–600, https://doi.org/10.1038/305593a0, 1983.
Metzner, D., Kutterolf, S., Toohey, M., Timmreck, C., Niemeier, U., Freundt, A., and Krüger, K.: Radiative forcing and climate impact resulting from SO2 injections based on a 200,000-year record of Plinian eruptions along the Central American Volcanic Arc, Int. J. Earth Sci., https://doi.org/10.1007/s00531-012-0814-z, 2014.
Neely, R. and Schmidt, A.: VolcanEESM: Global volcanic sulphur dioxide (SO2) emissions database from 1850 to present – Version 1.0, Cent. Environ. Data Anal., https://doi.org/10.5285/76ebdc0b-0eed-4f70-b89e-55e606bcd568, 2016.
Neu, J. L., Sparling, L. C., and Plumb, R. A.: Variability of the subtropical “edges” in the stratosphere, J. Geophys. Res., 108, 4482, https://doi.org/10.1029/2002JD002706, 2003.
Oman, L., Robock, A., Stenchikov, G. L., and Thordarson, T.: High-latitude eruptions cast shadow over the African monsoon and the flow of the Nile, Geophys. Res. Lett., 33, L18711, https://doi.org/10.1029/2006GL027665, 2006.
Plumb, R. A.: A “tropical pipe” model of stratospheric transport, J. Geophys. Res., 101, 3957–3972, https://doi.org/10.1029/95JD03002, 1996.
Plumb, R. A.: Stratospheric Transport., J. Meteorol. Soc. Jpn., 80, 793–809, https://doi.org/10.2151/jmsj.80.793, 2002.
Ray, E. A., Moore, F. L., Rosenlof, K. H., Davis, S. M., Boenisch, H., Morgenstern, O., Smale, D., Rozanov, E., Hegglin, M., Pitari, G., Mancini, E., Braesicke, P., Butchart, N., Hardiman, S., Li, F., Shibata, K., and Plummer, D. A.: Evidence for changes in stratospheric transport and mixing over the past three decades based on multiple data sets and tropical leaky pipe analysis, J. Geophys. Res., 115, D21304, https://doi.org/10.1029/2010JD014206, 2010.
Read, W. G., Froidevaux, L., and Waters, J. W.: Microwave limb sounder measurement of stratospheric SO2 from the Mt. Pinatubo Volcano, Geophys. Res. Lett., 20, 1299, https://doi.org/10.1029/93GL00831, 1993.
Ridley, D. A., Solomon, S., Barnes, J. E., Burlakov, V. D., Deshler, T., Dolgii, S. I., Herber, A. B., Nagai, T., Neely, R. R., Nevzorov, A. V., Ritter, C., Sakai, T., Santer, B. D., Sato, M., Schmidt, A., Uchino, O., and Vernier, J. P.: Total volcanic stratospheric aerosol optical depths and implications for global climate change, Geophys. Res. Lett., 41, 7763–7769, https://doi.org/10.1002/2014GL061541, 2014.
Robock, A.: A latitudinally dependent volcanic dust veil index, and its effect on climate simulations, J. Volcanol. Geoth. Res., 11, 67–80, https://doi.org/10.1016/0377-0273(81)90076-7, 1981.
Robock, A. and Free, M. P.: Ice cores as an index of global volcanism from 1850 to the present, J. Geophys. Res., 100, 11549–11567, https://doi.org/10.1029/95JD00825, 1995.
Rogers, H. L., Norton, W. A., Lambert, A., and Grainger, R. G.: Isentropic, diabatic, and sedimentary transport of Mount Pinatubo aerosol, J. Geophys. Res., 104, 4051–4063, https://doi.org/10.1029/1998JD200018, 1999.
Santer, B. D., Bonfils, C., Painter, J. F., Zelinka, M. D., Mears, C., Solomon, S., Schmidt, G. A., Fyfe, J. C., Cole, J. N. S., Nazarenko, L., Taylor, K. E., and Wentz, F. J.: Volcanic contribution to decadal changes in tropospheric temperature, Nat. Geosci., 7, 185–189, https://doi.org/10.1038/ngeo2098, 2014.
Sato, M., Hansen, J. E., McCormick, M. P., and Pollack, J. B.: Stratospheric Aerosol Optical Depths, 1850–1990, J. Geophys. Res., 98, 22987–22994, https://doi.org/10.1029/93JD02553, 1993.
Sato, M., Hansen, J. E., Lacis, A., McCormick, M. P., and Pollack, J. B., Thomason, L., and Bourassa, A.: Stratospheric Aerosol Optical Thickness in the GISS Climate Model, available at: http://data.giss.nasa.gov/modelforce/strataer/ (last access: 10 November 2016), 2012.
Schmidt, G. A., Jungclaus, J. H., Ammann, C. M., Bard, E., Braconnot, P., Crowley, T. J., Delaygue, G., Joos, F., Krivova, N. A., Muscheler, R., Otto-Bliesner, B. L., Pongratz, J., Shindell, D. T., Solanki, S. K., Steinhilber, F., and Vieira, L. E. A.: Climate forcing reconstructions for use in PMIP simulations of the last millennium (v1.0), Geosci. Model Dev., 4, 33–45, https://doi.org/10.5194/gmd-4-33-2011, 2011.
Schmidt, H., Rast, S., Bunzel, F., Esch, M., Giorgetta, M., Kinne, S., Krismer, T., Stenchikov, G., Timmreck, C., Tomassini, L., and Walz, M.: Response of the middle atmosphere to anthropogenic and natural forcings in the CMIP5 simulations with the Max Planck Institute Earth system model, J. Adv. Model. Earth Syst., 5, 98–116, https://doi.org/10.1002/jame.20014, 2013.
Schurer, A. P., Hegerl, G. C., Mann, M. E., Tett, S. F. B., and Phipps, S. J.: Separating Forced from Chaotic Climate Variability over the Past Millennium, J. Climate, 26, 6954–6973, https://doi.org/10.1175/JCLI-D-12-00826.1, 2013.
Sheng, J.-X., Weisenstein, D. K., Luo, B.-P., Rozanov, E., Stenke, A., Anet, J., Bingemer, H., and Peter, T.: Global atmospheric sulfur budget under volcanically quiescent conditions: Aerosol-chemistry-climate model predictions and validation, J. Geophys. Res.-Atmos., 120, 256–276, https://doi.org/10.1002/2014JD021985, 2015.
Shepherd, T. G.: Large-scale atmospheric dynamics for atmospheric chemists, Chem. Rev., 103, 4509–4532, https://doi.org/10.1021/cr020511z, 2003.
Solomon, S., Daniel, J. S., Neely, R. R., Vernier, J. P., Dutton, E. G., and Thomason, L. W.: The Persistently Variable “Background” Stratospheric Aerosol Layer and Global Climate Change, Science, 333, 866–870, https://doi.org/10.1126/science.1206027, 2011.
Stenchikov, G. L., Kirchner, I., Robock, A., Graf, H.-F., Antuña, J. C., Grainger, R. G., Lambert, A., and Thomason, L.: Radiative forcing from the 1991 Mount Pinatubo volcanic eruption, J. Geophys. Res., 103, 13837–13857, https://doi.org/10.1029/98JD00693, 1998.
Stevens, B., Fiedler, S., Kinne, S., Peters, K., Rast, S., Müsse, J., Smith, S. J., and Mauritsen, T.: Simple Plumes: A parameterization of anthropogenic aerosol optical properties and an associated Twomey effect for climate studies, Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2016-189, in review, 2016.
Stoffel, M., Khodri, M., Corona, C., Guillet, S., Poulain, V., Bekki, S., Guiot, J., Luckman, B. H., Oppenheimer, C., Lebas, N., Beniston, M., and Masson-Delmotte, V.: Estimates of volcanic-induced cooling in the Northern Hemisphere over the past 1,500 years, Nat. Geosci., 8, 784–788, https://doi.org/10.1038/ngeo2526, 2015.
Stothers, R. B.: The great Tambora eruption in 1815 and its aftermath, Science, 224, 1191–1198, https://doi.org/10.1126/science.224.4654.1191, 1984.
Stothers, R. B.: Major optical depth perturbations to the stratosphere from volcanic eruptions: Stellar extinction period, 1961–1978, J. Geophys. Res., 106, 2993–3003, https://doi.org/10.1029/2000JD900652, 2001.
Tegtmeier, S., Krüger, K., Wohltmann, I., Schoellhammer, K., and Rex, M.: Variations of the residual circulation in the Northern Hemispheric winter, J. Geophys. Res., 113, D16109, https://doi.org/10.1029/2007JD009518, 2008.
Thomason, L. W. and Peter, T. (Eds.): Assessment of Stratospheric Aerosol Properties (ASAP), SPARC Report No. 4, WCRP-124, WMO/TD-No. 1295, 2006.
Timmreck, C., Graf, H.-F., Lorenz, S. J., Niemeier, U., Zanchettin, D., Matei, D., Jungclaus, J. H., and Crowley, T. J.: Aerosol size confines climate response to volcanic super-eruptions, Geophys. Res. Lett., 37, L24705, https://doi.org/10.1029/2010GL045464, 2010.
Timmreck, C., Pohlmann, H., Illing, S., and Kadow, C.: The impact of stratospheric volcanic aerosol on decadal-scale climate predictions, Geophys. Res. Lett., 43, 834–842, https://doi.org/10.1002/2015GL067431, 2016.
Toohey, M., Krüger, K., Niemeier, U., and Timmreck, C.: The influence of eruption season on the global aerosol evolution and radiative impact of tropical volcanic eruptions, Atmos. Chem. Phys., 11, 12351–12367, https://doi.org/10.5194/acp-11-12351-2011, 2011.
Trepte, C. R., Veiga, R. E., and McCormick, M. P.: The Poleward Dispersal of Mount Pinatubo Volcanic Aerosol, J. Geophys. Res., 98, 18563–18573, https://doi.org/10.1029/93JD01362, 1993.
Trepte, C. R., Thomason, L. W., and Kent, G. S.: Banded structures in stratospheric aerosol distributions, Geophys. Res. Lett., 21, 2397–2400, https://doi.org/10.1029/94GL01462, 1994.
Voigt, A., Stevens, B., Bony, S., and Boucher, O.: Easy Aerosol – a modeling framework to study robustness and sources of uncertainties in aerosol-induced changes of the large-scale atmospheric circulation, WCRP, available at: https://www.wcrp-climate.org/images/grand_challenges/clouds/documents/easyaerosol_projectdescription_expprotocol.pdf (last access: 10 November 2016), 2014.
Weisenstein, D. K., Yue, G. K., Ko, M. K. W., Sze, N.-D., Rodriguez, J. M., and Scott, C. J.: A two-dimensional model of sulfur species and aerosols, J. Geophys. Res.-Atmos., 102, 13019–13035, https://doi.org/10.1029/97JD00901, 1997.
Yoshimori, M., Stocker, T. F., Raible, C. C., Renold, M., Yoshimori, M., Stocker, T. F., Raible, C. C., and Renold, M.: Externally Forced and Internal Variability in Ensemble Climate Simulations of the Maunder Minimum, J. Climate, 18, 4253–4270, https://doi.org/10.1175/JCLI3537.1, 2005.
Zanchettin, D., Khodri, M., Timmreck, C., Toohey, M., Schmidt, A., Gerber, E. P., Hegerl, G., Robock, A., Pausata, F. S. R., Ball, W. T., Bauer, S. E., Bekki, S., Dhomse, S. S., LeGrande, A. N., Mann, G. W., Marshall, L., Mills, M., Marchand, M., Niemeier, U., Poulain, V., Rozanov, E., Rubino, A., Stenke, A., Tsigaridis, K., and Tummon, F.: The Model Intercomparison Project on the climatic response to Volcanic forcing (VolMIP): experimental design and forcing input data for CMIP6, Geosci. Model Dev., 9, 2701–2719, https://doi.org/10.5194/gmd-9-2701-2016, 2016.
Short summary
Stratospheric sulfate aerosols from volcanic eruptions have a significant impact on the Earth's climate. The Easy Volcanic Aerosol (EVA) volcanic forcing generator provides a tool whereby the optical properties of volcanic aerosols can be included in climate model simulations in a self-consistent, complete, and flexible manner. EVA is based on satellite observations of the 1991 Pinatubo eruption but can be applied to any real or hypothetical eruption of interest.
Stratospheric sulfate aerosols from volcanic eruptions have a significant impact on the Earth's...