
Response to reviewer # 1 and #2 input on ”A new
metric for climate models that includes field and

spatial dependencies using Gaussian Markov
Random Fields” by Nosedal-Sanchez et al.

April 9, 2016

Response to Reviewer # 1 Reviewer comment given in blue.

1. Conditional independence is an assumption underlying Markov random fields. For
three variables A, B, and C, the joint probability distribution of A and B condi-
tioned on C, written as p(A,B|C), can be factored into the product p(A|C) times
p(B|C) for all values of C if A and B are conditionally independent of C. The
authors should argue, or preferably demonstrate, that the necessary conditional in-
dependence properties approximately hold for the application of their method to
climate model fields. The feedbacks across scales in the climate system and the
coupled nature of the physical equations may serve as a basis for some degree
of conditional independence, though I expect some cases where p(A|C) is a poor
approximation of p(A|B,C) as implied by conditional independence.

The assumption of conditional independence (for estimating precisions among
points outside a neighborhood structure) does not need to be met exactly in or-
der for GMRF to represent a useful step forward toward the goals outlined in the
introduction. The assumption facilitates the sparse representation of the precision
matrix and therefore is convenient. It enables us to capture some but perhaps not
the full extent of the dependencies that exist across space and fields in the cli-
mate data. The witch-hat graphs provide a measure of how well GMRF captures
observed covariances. One could enlarge the neighborhood structure indicating
conditional dependencies of the precision matrix beyond nearest neighbors, but we
felt that the present treatment was adequate.

2. The authors appear to neglect temporal relationships in the method and example,
even though such relationships are prevalent in the climate system. A perturbation

1



in the pattern of sea surface temperature in the tropics, for example, may take
months before the signal shows up in the spatial distribution of precipitation in the
mid-latitudes. While introducing temporal correlations into their method is beyond
the scope of the manuscript and not required at this stage, it would still be beneficial
to readers if the authors described how their method could be extended is this way.

It is common for climate model evaluation to place most of its emphasis on long-
term means and that is our target application. GMRFs may be extended to include
temporal relationships (e.g. Cressie and Wikle, 2011), but we did not attempt to
develop those ideas in the present manuscript. Note that the assumption that the
distribution of errors are Gaussian does not hold as well on short(er) time scales.
The text mentions that the effects of teleconnection patterns shape local covari-
ances (through a set of processes that are influenced by anomalously low or high
pressures). Space-field GMRFs would be sensitive to these effects since the tele-
connections shape long term means. We will update the text to provide more in-
formation about the possibility to extend the analysis to include temporal relation-
ships.

Statistics for Spatio-Temporal Data, by Noel Cressie and Christopher K. Wikle.
Wiley, Hoboken, NJ, 2011 (588 pp.)

3. The opening paragraph states that there is skepticism in using a scalar metric to
assess climate model performance. This gives the impression that everything gets
boiled down to a single number, which isn’t the case. Climate models are often
assessed using a vector of scalar quantities (e.g. as in Gleckler et al), a scalar
measure of a vector field, or combinations of these and other metrics. A single
field projected on a Taylor diagram, for example, considers two orthogonal scalar
quantities (centered rms and correlation). Please clarify the description.

We agree with the reviewer’s point that the scientific community makes use of
many metrics to judge a model’s credibility. The section explaining our point was
poorly written. The issue is not that climate scientists already make use of many
metrics in model selection. We needed to first say that formal methods for model
calibration operate on a single scalar metric. The scientific community is skeptical
that a scalar metric (and therefore formal calibration methods) could adequately
capture all the scientific sensibilities that are needed for judging model acceptabil-
ity. We will clarify this point.

4. The opening paragraph also describes the need to account for spatial and field
dependencies. Field dependence is an essential feature of your methodology, so it
would be useful to readers to provide a specific example of what you mean by field
dependence early in the introduction.
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Thanks for this suggestion. We will provide an example.

5. The first sentence in the second paragraph in the introduction is a little awkward
and should be rewritten (lines 12-15, page 3). There is an observational record
of climate, but not an observational record of a climate model. Moreover, this
statement seems to suggest that data assimilation is primarily a data imputation
method, which it really isn’t. Data assimilation minimizes the differences between
the model state and observations, while insuring that the state fields abide by con-
servation laws (mass, energy, and momentum) and other important physical de-
pendencies. This paragraph overall seems to imply that the models don’t do a very
good job with the dependencies, which is arguable. I have confidence that the
models are getting many of the large scale dependencies about right (e.g. equa-
tor to pole gradients, land-ocean contrasts, temperature dependence of water vapor
through Clausius-Clapeyron, etc).

In this paragraph we wish to make the point that there exists a very limited ob-
servational record on which to estimate space and field dependencies of climate
phenomena. Likely the best synthesis of these dependencies are from reanalysis
products for some of the reasons you state. However there is a catch. The mod-
els used for data assimilation rely on their own physics packages to predict cloud
characteristics and their radiative effects. Moreover, the data assimilation strate-
gies for generating these products do not attempt to conserve mass, energy, and
momentum, particularly between analysis steps. So the products are both a re-
flection of the observations that go into them and the physics and fluid motions of
the model. Figure 1 below provides an illustration of this point. It shows that a
multivariate measure of the distance between NCEP and ERA40, which are two
reanalysis products, and CAM3.1 were nearly as different from one another as
CAM3.1 was to them. Seasonally and regionally, the two products contained up-
wards of 200 Wm−2 differences in shortwave radiation reaching the surface which
is emblematic of the different parameterizations each model uses for estimating
cloud distributions and their radiative properties.

6. It’s a good idea to present the general idea behind the metric in equation (1) in the
introduction, though I found myself flipping back and forth between the introduc-
tion and section 2 to make better sense of the information. To make it easier for
readers to get through the introduction without getting hung up on details, perhaps
you could introduce the concept in more general terms. Also, the symbol Z is used
for the metric in this section, but it doesn’t appear elsewhere in the manuscript and
should be dropped. And the times symbol in ’nobs x npts’ on line 3, page 4 suggests
that v is a matrix with nobs rows and npts columns. I recommend changing it to
nobsnpts.
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NCEP ERA40 

CAM3.1

Figure 1: Average distance between two data assimilation products, NCEP (Kalnay et al.,1996);
Kistler et al. 2001) and ERA40 (Uppala et al. 2005), is a good fraction of the distance to CAM3.1
(Community Atmosphere Model version 3.1). The length of each segment is based on the metric
used in Jackson et al., (2008) and described by Mu et al., (2003) and includes shortwave radiation
to surface, 2 m air temperature, surface sensible heat flux, relative humidity, air temperature, zonal
winds, and sea level pressure from 1990 to 2001.

These are very good suggestions and clarifications. We will update the text.

7. There is a typo in the lower right element of the S inverse matrix on line 11, page 7.
The sigma index should be 22, instead of 11. For consistency, use the same indices
for off-diagonal terms (e.g. S12 is used for the lower left term on line 11, while
S21 is used on line 13 page 7).

Thanks for catching this error.

8. Regarding the alpha parameter, please provide references or further information
about the statement that alpha depends only on the geometry of the neighborhood
and not on the details of the fields. I have other questions about alpha. How much
does it vary going from a first order neighborhood to a higher order neighborhood?
Can alpha be extended from a scalar to a vector to optimize the covariances in

4



different regions in the neighborhood?

Equation (5) shows that α is only dependent on the eigenvalues of the Q matrix.
The Q matrix itself is only a function of the domain (e.g. geometry and number of
latitude and longitude grid points) and the neighborhood structure. Thus we would
expect the value for α to be affected if we use a higher order neighborhood. We
started the task of building a Q matrix with a higher order neighborhood structure,
however implementing it correctly requires a lot of attention to detail to deal with
how the stencil changes as one approaches a boundary and this task will require
more time to complete than we have at the moment. Thus we don’t know how
much α would be affected. Because the higher order Q matrix will have more than
one singular vector, we came to the realization that the concept of α may need to
be expanded to accommodate all of the Q matrix singular vectors. Thus the answer
to the question is not straight-forward and would require further consideration. In
response to your last question, since α in the way we have been using it exists as
an extension of the Q matrix, it does not make sense to use it to accommodate
covariances for particular regions which may be field dependent.

9. The witch hat plots are convenient, but take some effort to get used to. It would be
useful it you first stepped the readers through the concept with a simple example.
How much does the shape of the witch hat depend on the selected indexing for the
neighborhood? E.g. swapping x3 and x4 in figure 1 appears arbitrary, but results in
a different Q. Does the averaging of the cells for a given distance from the diagonal
hide information that could be important? Are there other simple ways to show the
differences between the empirical and GMRF estimates (e.g. Hinton diagrams)?

The results would not be altered by how boxes are indexed within a Q matrix that
correctly identifies the neighborhood structure around each grid cell. The reason
to present a summary of the covariance matrix in terms of a ‘witch hat’ graph is
because there is not much variation in the estimate of the variances/covariances
along any of the diagonals. There can be small deviations in the symmetry that
occur because of how neighboring cells are indexed particularly as one approaches
a boundary. An example of this deviation is provided below. However a fairly ac-
curate estimate of the ‘witch hat’ could be constructed as an average of variances
or covariances along the various diagonals relative to the main diagonal. However,
as the example illustrates, this is not as simple as an evaluation of the distance to
the diagonal. We construct our covariances for the ‘witch hat’ graph by explicitly
identifying those cells that are a given distance from the diagonal (see example
below). Hinton diagrams provide a graphic view of the size of values within a ma-
trix. ‘witch hat’ graphs allow us to compare GMRF implied variances/covariances
with those estimated empirically from data. The text explaining witch hats will be
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further clarified.

Example of the construction of a ‘witch hat’.

We will describe the construction of a witch hat graph for a 3× 3 lattice, like the
one shown below.

1 2 3
4 5 6
7 8 9

Suppose that variance estimates are available at each of the 9 grid points for one
field, for example S11Q∗. In this case, S11Q∗ is a 9×9 matrix.

Like any other graph, a witch hat graph is formed by points. We will find the points
that define a witch hat graph that makes comparisons in the N - S direction. From
the figure shown above, it is clear that grid cells 1,2,3,4,5, and 6, have one grid cell
below them: 4, 5, 6, 7, 8, and 9, respectively. Now, we use these numbers to form
pairs: (4,1),(5,2),(6,3),(7,4),(8,5), and (9,6). Then, using the corresponding
elements of our matrix of estimates, we compute the following average:

w(−1) =
σ̂41 + σ̂52 + σ̂63 + σ̂74 + σ̂85 + σ̂96

6

(where σ̂i j = σ̂(i, j) = element located on ith row and jth column of matrix of
estimates).

Thus, we define (−1,w(−1)) as one point of our witch hat graph. Let us find
another point. Again, using the same figure, it is clear that grid cells 4,5,6,7,8, and
9, have one grid cell above them: 1,2,3,4,5, and 6, respectively. As we did before,
we proceed to form pairs with these numbers: (1,4),(2,5),(3,6),(4,7),(5,8), and
(6,9). Then, we use the corresponding elements of our matrix of estimates to
compute another average:

w(1) =
σ̂14 + σ̂25 + σ̂36 + σ̂47 + σ̂58 + σ̂69

6

This couple of numbers, (1,w(1)), gives another point of the witch hat graph. Do-
ing something similar, with grid cells that have neighbours located two rows down
or up of themselves, we obtain:

w(−2) =
σ̂71 + σ̂82 + σ̂93

3
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and

w(2) =
σ̂17 + σ̂28 + σ̂39

3
.

Note that the number of cells from one grid to itself is zero. So, a fifth point for
our graph is

w(0) =
σ̂11 + σ̂22 + . . .+ σ̂99

9
.

A witch hat graph is a graphical representation of these pairs of points: (−2,w(−2)),
(−1,w(−1)), (0,w(0)), (1,w(1)), and (2,w(2)). By construction, w(−1) = w(1)
and w(−2) = w(2) (recalling that the matrix of estimates is symmetric). Which is
convenient for computational purposes. It is worth noting that we could define a
graph in the E-W direction in a similar fashion. In general, a witch hat graph in
the E-W direction will differ from the one constructed to make comparisons in the
N-S direction.

Note. Making a graph of a 9×9 matrix of estimates would allow us to see that w(1)
= average of entries located three columns to the right of main diagonal. Similarly,
w(2) = average of entries located six columns to the right of main diagonal. How-
ever, these numbers (three and six) depend on the number of columns of lattice
in question.

σ̂11 σ̂12 σ̂13 σ̂14 σ̂15 σ̂16 σ̂17 σ̂18 σ̂19
σ̂21 σ̂22 σ̂23 σ̂24 σ̂25 σ̂26 σ̂27 σ̂28 σ̂29
σ̂31 σ̂32 σ̂33 σ̂34 σ̂35 σ̂36 σ̂37 σ̂38 σ̂39
σ̂41 σ̂42 σ̂43 σ̂44 σ̂45 σ̂46 σ̂47 σ̂48 σ̂49
σ̂51 σ̂52 σ̂53 σ̂54 σ̂55 σ̂56 σ̂57 σ̂58 σ̂59
σ̂61 σ̂62 σ̂63 σ̂64 σ̂65 σ̂66 σ̂67 σ̂68 σ̂69
σ̂71 σ̂72 σ̂73 σ̂74 σ̂75 σ̂76 σ̂77 σ̂78 σ̂79
σ̂81 σ̂82 σ̂83 σ̂84 σ̂85 σ̂86 σ̂87 σ̂88 σ̂89
σ̂91 σ̂92 σ̂93 σ̂94 σ̂95 σ̂96 σ̂97 σ̂98 σ̂99

Estimates in blue represent numbers that would be used to make graph in the E-W
direction. Estimates in red represent numbers that would be used to make graph
in the S-N direction. This suggests that using the ”second main diagonal” to plot
witch hat graphs at w(−1) = w(1) will result in a very different value.
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10. Figures 3 and 4 are positioned before section 4 in the manuscript, but the figures
rely on information about the climate model data from that section (e.g. the es-
timates are from 15 samples). Please cross reference the material from section 4
where needed to avoid confusion.

Thank you for this suggestion.

11. In the last paragraph on page 11, the authors state that the only meaningful corre-
lations are of TREFHT with PSL and PRECT with PSL. However, if TREFHT and
PRECT are individually correlated with PSL, shouldn’t TREFHT and PRECT also
be correlated to each other? Moreover, there is a contradiction between the phys-
ical explanation on lines 23-25, page 11 and the sign of the correlation between
PSL and PRECT (low pressure systems increase precipitation).

To address this question we created maps of the grid point correlations between
JJA mean 2m air temperature (TREFHT), sea level pressure (PSL), and precipita-
tion (PRECT) with sea level pressure (PSL) (Figure 2). What is clear between all
these figures is that there is a lot of structure to all these maps. The sign of the cor-
relation is regionally dependent. Therefore providing a mechanistic explanation of
the spatially averaged correlation is not going to be particularly meaningful. How-
ever it may be useful for readers to know that there is a lot of structure to these
maps and that the reason that the spatially averaged correlation between PSL and
PRECT is so small is not because local correlations are small. Rather the average
includes regions of large negative correlations as well as regions with large positive
correlations. Despite losing this regional information in the S matrix summary of
field covariances, this does not affect GMRF estimated field covariances between
these fields as can be seen within the ‘witch hat’ graphs.

12. The model simulations use prescribed sea surface temperatures, which strongly
constrain the near surface air temperature, so it seems surprising that the biggest
changes in cost are associated with the 2-m air temperature. Can the authors pro-
vide a physical explanation for their finding?

By our read of manuscript Figure 6, cost changes related to 2m air temperature
(TREFHT) are the smallest relative to the three other fields. It is true that speci-
fying sea surface temperatures will limit the model’s TREFHT response over the
ocean, however the models response to changes in parameters can affect the at-
mospheric boundary layer over the ocean including TREFHT. Moreover TREFHT
is less restricted over land which was an important fact explaining why TREFHT
showed the biggest qualitative differences in cost when using the Q matrix to in-
clude space dependencies within the cost. The latter is due to the sensitivity of
the Q operator to the sharp spatial structures that arise from model-observational
differences in and around the poorly resolved Andes mountains.
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13. The authors find that spatial dependencies are more important to capture than field
dependencies for the four selected outputs (PSL, TREFHT, U, PRECT). Do they
have any reason to suspect (or can they show) that the field dependencies will
dominate over spatial dependencies for other fields? If not, then this suggests that it
may not be critical to capture the field dependencies and that their method does not
offer many clear benefits over standard model assessment techniques. From their
example in figure 5 of optimizing model performance by changing two parameters
(c0 and Ke), it even looks like adding the spatial dependence alone would not
greatly affect the conclusions drawn from assuming spatial independence (i.e., that
high values of c0 and low values of Ke are best).

While the current results do not provide a strong case for why including field de-
pendencies is important, we were only looking at four fields within the tropics in
JJA. We don’t yet know whether field dependencies become important for other
fields, regions, or seasons. We elected to keep the scope of the present manuscript
focused on the mathematical treatment of GMRF. It is helpful to know that the
results look reasonable which would be hard to evaluate without this limited ex-
ample. We are in the process of generating results for 11 fields, 3 regions, and 4
seasons which will be reported separately. It also could be that the importance of
field dependencies may depend on what parameters are being varied.

14. Observational uncertainty does not appear to be taken into account in their method.
Can the authors comment on and suggest ways to incorporate observational uncer-
tainty into their test statistic?

This is an excellent and important question. The most obvious place to include this
information is within the S matrix. For instance if a grid point error variance is
known, it could be added to the diagonal elements. However we have already run
into a case where satellite observations of cloud fields include linear structures that
are obviously related to the satellite tracks. We suspect that the Q operator within
GMRF may be particularly sensitive to these artifacts in the data. We do not have
a full answer to this question. There is not much experience in the community as a
whole for quantifying these uncertainties and representing them within metrics of
climate model performance.

Response to Reviewer # 2 Reviewer comment given in blue.
Correlations in space and across variables were handled by Gaussian Markov Ran-
dom Fields (GMRFs). I had a hard time understanding whether this is an appropri-
ate technique or whether it was implemented correctly. In particular:

1. Equation 1 is introduced in the introduction and is said to be the culmination of the
subsequent derivations but is never fully explained. Better explanation is needed.
In particular, I dont think it makes sense to provide this equation in the introduction.

9



We will remove the specific details about GMRF, including equation (1) to a sub-
sequent section.

2. I think Eq. 1 is a log-likelihood function derived from assuming model errors fol-
low a multivariate Gaussian distribution (eq. 2) with the inverse covariance matrix
Σ−1 replaced by GMRF precision matrix. These points need clarification and the
reasonableness of assuming a multivariate Gaussian distribution for model output
and for approximating the covariance matrix with a GMRF precision matrix both
require further justification.

Currently climate model evaluation makes use of relatively short, few year model
integrations for testing the effects of uncertain parameters. When compared to the
10 to 30-year climatologies of observations the distribution of errors is approxi-
mately Gaussian (see Figure 3). The distribution of climate fields on very short,
hourly to daily time scales can be decidedly non-Gaussian which is not the case
for longer term means. We include here a few examples of monthly mean climate
model output that show an approximately Gaussian distribution. The reasonable-
ness for using GMRF to estimate the inverse covariance matrix is provided by the
‘witch-hat’ graphs.

3. I think the log-likelihood function in eq 1 is missing the following term: ln((2π)−n/2tr(Σ)−1/2).
Is this true? In any case, this derivation needs to be more clear.

Yes this is true, although it would include the determinant of the covariance ma-
trix not its trace. Within the statistics community the argument of the likelihood
function is referred to as the log-likelihood since the factor you are referring to is
a constant offset. However this can be confusing especially since this community
often also neglects the factor of 1

2 that should be included within the exponential
argument for a Gaussian distribution. We will make our statement more clear.

4. The precision matrix is only described for the 2x2 case. Are the “rules” on page 6
followed only for the 2x2 case, or are they followed for all cases?

Yes, the rules apply to all cases.

5. Because Q seems to be defined independently of the spatial autocorrelation in the
actual data, I find it hard to believe that it can be a good approximation for Σ−1

except by chance. In particular, I bet the “witch hat graph” for surface precipita-
tion alone (which has short autocorrelation length scales) looks very different than
that for surface temperature (which has long autocorrelation length scales) and that
Fig. 4 only looks reasonable for quantities which happen to have the autocorrela-
tion structure matching the precision matrix assumptions. I would like to see the
comparison between Q−1 and Σ (note Im asking for things in correlation-matrix
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space rather than precision matrix space because the former is easier to interpret
physically) for several different output fields to gain confidence in the method.
The fact that Q is defined independently of autocorrelation in the actual data is my
single biggest concern with this paper.

You are correct that the Q matrix is defined independently of field information. This
matrix is a differential operator which ‘senses’ how much fields change within the
neighborhood structure. The units come from scaling the Q matrix with S−1 using
the Kronecker product. Together the GMRF provides a decent approximation to
the inverse covariance matrix Σ−1. ‘Witch-hat’ graphs show observed variances
and covariances with the inverse precisions (implied variances/covariances) and
are being used to test how well GMRF capture observed space and field depen-
dencies. Figures 4 and 5 show several additional ‘witch-hat’ graphs to provide a
more complete evaluation of GMRFs representation of observed space and field
dependencies.

6. The fact that the precision matrix has a zero eigenvalue seems to be an obvious
result of the fact that Q indicates the neighbors of each cell and neighbors of the
last cell can be predicted from the others (because the cells which are its neighbors
have already tagged it as being their neighbor). I am surprised and alarmed that
your solution to this problem is to add a small perturbation to make your singular
matrix merely nearly-singular. It seems like this nearly-singular matrix will at best
have numerical issues and at worst isn’t actually solving the system you meant to
solve. Wouldnt it make more sense to replace the system with a matrix of 1 lower
dimension?

The issue is that Q matrix needs to have the same dimension as each field so chang-
ing its dimension is not the solution. Note that we only need to take an inverse of
the Q matrix for testing GMRF predictions of observed covariances within the
‘witch-hat’ graphs. Even then the R codes provided robust results.

Other Comments:

1. In the title and elsewhere, you call your method a “metric”. I think the benefit of
your approach is that it allows you to evaluate a log-likelihood function in order to
choose the best parameter settings to an uncertainty-quantification problem. While
the log-likelihood function does give you a scalar value for a particular set of pa-
rameters and is therefore a metric of sorts, I think emphasizing that youre defining
a metric is kind of missing the main point of what you’re doing. In particular, you
have to specify exactly what output you want to use to define a metric and I think
a benefit of your method is that it should work on a wide variety of output data
choices. In short, Id suggest changing ”metric” to ”method” throughout the text.
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We appreciate your thoughts on this matter and agree with your point. The term
“metric” is often used for climate model evaluation although that term does not
capture the fact that we are evaluating a signal to noise ratio for testing the null
hypothesis of whether changes in a climate model are significant. In other publica-
tions we sometimes refer to this normalized metric as a “test statistic”. We therefor
prefer using that term over “method”. We thank you for this suggestion.

2. using CAM3.1 is odd and detracts from the publication-worthiness of the paper
because it is an ancient model which nobody cares about anymore. Can you really
not find data from more recent model runs? It would be worth the effort.

CAM3.1 output is more than adequate for purposes of examining how GMRF
would be applied to climate model evaluation.

3. In eq. 2, you need to indicate that |x| is the determinant of x.

We can indicate this.

4. p. 6 line 8: ”fuller” should be ”more full”

Thanks for catching this.

5. You should define what the Kronecker product is for climate people, who may not
know off the top of their heads.

We can provide a the following example of how the Kronecker product works:
Consider the following 2×2 matrices

A =

(
1 4
2 5

)
and B =

(
1 3
0 4

)
.

The Kronecker product of A and B, A⊗B, is given by

A⊗B =

(
1(B) 4(B)
2(B) 5(B)

)
=


1 3 4 12
0 4 0 16
2 6 5 15
0 8 0 20


6. p. 7, line 18: youre missing a word between supplemental and carries.

Thanks for catching this.

7. p. 11 line 25: low pressure cooling the underlying surface would be a *positive*
correlation. Perhaps youre seeing a ”thermal low” effect?

12



See also response to item 12 from reviewer # 1. Because covariances vary by
region (e.g. Figure 2), we will back off from providing particular explanations for
explaining covariances that may only apply to particular regions of the domain.

8. You show in Fig. 5 that using GMRF or not doesnt make a big difference. Is this the
result of your particular choice of parameters and/or model version and/or output
variables? Taking the time to test your method in other cases would at a minimum
make your conclusions more robust and could potentially show that your method
has an important impact in certain circumstances.

While we agree that testing GMRF in all possible cases (with more fields, regions,
seasons, and model parameters) would provide a more thorough examination of
the question you raise of whether the GMRF can make an important difference, our
purpose for the present manuscript was to develop the mathematical application of
GMRF to climate model output. The effort represents several years of concerted
effort. The testing of GMRF in more cases is being developed with more scientific
goals in mind.

9. In the supplementary material, why assume x has means which are all zero?

It was not a necessary assumption, but it did facilitate the derivation without com-
plicating the expressions.
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JJA Correlation between PSL and TREFHT

JJA Correlation between PRECT and PSL

JJA Correlation between PRECT and TREFHT

Figure 2: JJA correlations between 2m air temperature (TREFHT), sea level pressure (PSL), and
precipitation (PRECT).
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Figure 3: Histograms of differences between observations and model output for four fields (U,
TREFHT, PSL, and PRECT) for an experiment that includes changes to cloud parameters C0 and ke.
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Figure 4: ‘Witch hat’ graphs testing GMRF approximations to empirical estimates of variances of
U, PSL, TREFHT, and PRECT.
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Figure 5: ‘Witch hat’ graphs testing GMRF approximations to empirical estimates of covariances
between TREFHT and PRECT.
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