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Abstract. A new test statistic for climate model evaluation has been developed that potentially mit-

igates some of the limitations that exist for observing and representing field and space dependencies

of climate phenomena. Traditionally such dependencies have been ignored when climate models

have been evaluated against observational data, which makes it difficult to assess whether any given

model is simulating observed climate for the right reasons. The new statistic uses Gaussian Markov5

Random Fields for estimating field and space dependencies within a first order grid point neighbor-

hood structure. We illustrate the ability of Gaussian Markov Random Fields to represent empirical

estimates of field and space covariances using ‘witch hat’ graphs. We further use the new statistic

to evaluate the tropical response of a climate model (CAM3.1) to changes in two parameters im-

portant to its representation of cloud and precipitation physics. Overall, the inclusion of dependency10

information did not alter significantly the recognition of those regions of parameter space that best

approximated observations. However there were some qualitative differences in the shape of the

response surface that suggest how such a measure could affect estimates of model uncertainty.

1 Introduction

Climate scientists are interested in developing new metrics for assessing how well climate simula-15

tions reproduce observed climate for purposes of comparing models, driving model development,

and evaluating model prediction uncertainties (Gleckler et al., 2008; Reichler and Kim, 2008; Santer

et al., 2009; Knutti et al., 2010; Weigel et al., 2010; Braverman et al., 2011). Formal methods for

accomplishing these goals, such as Bayesian calibration, operate with a single test statistic1 for de-

termining likelihood measures of different model configurations. A level of skepticism exists within20

the climate assessment community concerning the sufficiency of any one metric to judge a climate

model’s scientific credibility. Climate phenomena involve interactions of multiple fields (observ-

ables) on a wide range of time and space scales from minutes to decades (and longer) and from
1A test statistic is a metric that includes information about the significance of modeling errors.
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meters to planetary scales. Thus there are plenty of challenges that exist for synthesizing the many

ways that a climate model can be tested against observational data.25

The most common approach to climate model evaluation among climate scientists is to display

maps of long-term means of well-known fields (e.g. temperature, sea-level pressure, precipitation)

whose distribution is familiar and well understood in order to identify sources of model error. Taylor

metrics that are often generated as part of model evaluation are based on spatial means of squared

grid point errors for individual fields (Taylor, 2001). Such measures neglect field and space depen-30

dencies that arise as a consequence of how the physics of the climate system correlate multiple

quantities in space. Neglecting these dependencies therefore ignores additional information that can

be used to test whether models are simulating observables for the right reasons.

Here we present a new test statistic based on Gaussian Markov Random Fields (GMRFs) that

addresses some of the challenges that currently exist for estimating the significance of modeling35

errors across multiple fields that takes into account field and space dependencies that exist within

observations. Perhaps one of the under-recognized challenges in this regard is the limited amount of

observations available to quantify dependencies. Data assimilation is commonly used to fill in gaps

in the observational record (Trenberth et al., 2008). While assimilation products help address some

aspects of the problem of how one compares point measurements to the scales resolved by climate40

models, these products include the space and field dependencies of the model that was used to assim-

ilate observations. The imprint of the reanalysis model is readily seen when comparing two or more

assimilation products, particularly quantities that are directly related to parameterized physics such

as precipitation and radiation. One of the advantages of Gaussian Markov Random Fields (GMRFs)

is that it only needs a limited amount of data to decipher space and field dependencies of climate45

phenomena. This is because GMRFs summarize relationship information as it is expressed across

fields of gridded data.

The present application of GMRFs operates on long-term means. While it may be possible to

extend GMRFs to capture time dependencies (Cressie and Wikle, 2011), the present application

represents an advance over more traditional metrics.50

The sections of this paper explain, test, and provide examples of how various components of

GMRF work. Section 2 gives a brief introduction to GMRFs and the use of a neighborhood structure

for estimating dependency information using a precision operator Q. In this section we also define

and discuss the Kronecker product and how it is used to generalize GMRFs to deal with more than

one field. Section 3 introduces a graph for testing the extent to which GMRFs represent observed55

variance-covariances of tropical temperature, precipitation, sea level pressure, and upper level winds.

Finally, in Section 4, we consider the field and space dependencies that are captured by the GMRF-

based metric within the response of an atmospheric general circulation model CAM3.1 to two model

parameters important to cloud and precipitation physics. What we learned in general is that including

the space and field dependencies provides some qualitatively different perspectives about which60
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model configurations are more similar to what is observed. For the example we consider, the effects

of space dependencies turn out to be more critical than field dependencies.

2 Gaussian Markov Random Fields (GMRFs)

A Gaussian Markov Random Field (GMRF) is a special case of a multivariate normal distribution.

The density of a normal random vector x = (x1,x2, ...,xn)T (where T denotes the operation of65

transposing a column to a row), with mean µ (n×1 vector) and covariance matrix Σ (n×n matrix),

is

f(x) = (2π)−n/2|Σ|− 1
2 exp

{
−1

2
(x−µ)TΣ−1(x−µ)

}
(1)

Here, µi = E(xi), Σij = Cov(xi,xj), Σii = V ar(xi)> 0, and |Σ| is the determinant of Σ. Esti-

mating Σ can be quite challenging in many contexts, especially for climate models where there is70

only limited data. All eigenvalues of Σ must be greater than zero, otherwise Σ−1 becomes a singular

matrix and it does not define a valid multivariate normal distribution. It can also be shown that if all

eigenvalues of Σ are positive then all eigenvalues of Σ−1 are also greater than zero. Rather than

estimating Σ and ensuring all eigenvalues of Σ−1 are positive, GMRFs makes use of the precision

matrix P = Σ−1. We denote x∼N(µ,P) to represent x as a multivariate normal distribution with75

vector mean µ and precision matrix P. GMRFs approximate f(x) using a sparse representation for

P by setting all precisions outside a neighborhood structure to zero. Thus GMRFs make the assump-

tion that points outside a neighborhood structure are conditionally independent. As we shall show

below, this limitation does not prevent GMRFs from capturing covariances outside the neighborhood

structure used to define precisions.80

The GMRF-based expression that we have developed for quantifying the significance of differ-

ences between model output and observations is

vTS−1⊗ (αI + (1−α)Q)v (2)

where v is the vector of differences between model output and observations with a length given by

the product of the number of observational fields and number of grid points, nobsnpts, α is a scalar85

with a value close to zero, I stands for an identity matrix (a diagonal matrix of ones) of dimension

npts corresponding to v, and Q is a precision operator of dimension npts×npts from a Gaussian

Markov Random Field (GMRF) induced by a first order neighborhood structure. This cost function

captures field dependencies through S−1 which is a matrix of dimension nobs×nobs where each of

its elements represents a spatial-average of grid point variances and covariances between fields. The90

spatial dependency between grids is approximated through Q. The quantity α could be interpreted

as a weight of the spatial relationship between grid cells. The Kronecker product ⊗ provides a

means for associating the different matrix dimensions of the metric, essentially combining its field
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and space components. Each of the following subsections provides additional information about the

derivation and application of equation (2).95

2.1 Precision operator of a GMRF

The precision operator of a GMRF Q provides a way to estimate dependencies among neighboring

grid cells. Q needs to be constructed such that it:

– Reflects the kind of spatial dependency we assume our data has.

– Yields a legitimate covariance matrix, Σ, i.e. symmetric and positive definite, so that it can be100

used to compute a likelihood function.
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Figure 1. Graphical representation of 2× 2 lattice and elements of x.
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Figure 2. Neighbors of x1, x2, x3 and x4

Consider x, a vector of measurements on a 2× 2 lattice, as represented in Figure 1. Assume a

neighborhood structure between the four elements of x. In Figure 2, the neighbors for each element
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of x are defined graphically. Given the neighborhood structure shown in Figure 2, the precision

matrix that works for this problem is

Q =


2 −1 −1 0

−1 2 0 −1

−1 0 2 −1

0 −1 −1 2


which follows these rules,

– Qij =−1, if xi and xj are neighbors.

– Qij = 0, if xi and xj are not neighbors.

– Qii gives the total number of neighbors of xi.105

While the implementation of GMRFs is simple, the theory and mathematics are rather involved. A

more full description of the mathematics of this example is provided in the supplemental material. It

may also not be immediately clear to a physical scientist that such a simple specification, where only

relationships among neighboring grid cells are taken into account, would be sufficient to quantify

correlated quantities across large distances. The mathematics of working with precisions allows110

one to infer the net effect of long distance relationships through relationship information that exists

among neighboring cells. While the GMRF approach does not include information about particular

teleconnection structures such as ENSO, the approach is sensitive to how changes in large scale

conditions induce local covariances across multiple fields within the entire domain. In this way

teleconnections are represented through a conditional dependence.115

A problem arises in that one of the eigenvalues of the Q matrix is 0, which implies that this

definition of the precision matrix does not induce an invertible covariance matrix. Although Q may

be inverted using the Moore-Penrose pseudoinverse, we have solved this problem by using αI+(1−
α)Q, instead of Q. If α is small, the neighborhood structure remains essentially unchanged. Section

3 describes our approach to specify a value for α.120

2.2 Generalizing concepts to deal with multiple fields

The generalization of Q to handle multiple fields involves a Kronecker product (⊗) between S−1

and Q. For reference, a Kronecker product of A⊗B where

A=

 1 4

2 5

 and B =

 1 3

0 4


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is given by

A⊗B =

 1(B) 4(B)

2(B) 5(B)

=


1 3 4 12

0 4 0 16

2 6 5 15

0 8 0 20

 .
Consider x and y which represent observations for two different fields of interest on a 2×2 lattice.

First, x and y are combined to form one vector v as follows: vT = (x1,x2,x3,x4,y1,y2,y3,y4). The

average covariances among these observations can be represented by a 2×2 matrix between the first

field, x, and the second field, y:

S =

 σ11 σ12

σ21 σ22


where V ar(x) = σ11, V ar(y) = σ22, and Cov(x,y) = σ12. Recalling that the correlation between

fields 1 and 2 is defined as: ρ= σ12√
σ11σ22

, one can show that the inverse of S is

S−1 =

 1
σ11(1−ρ2)

−ρ
(1−ρ2)√σ11σ22

−ρ
(1−ρ2)√σ11σ22

1
σ22(1−ρ2)

=

 S−111 S−112

S−121 S−122 .


If we consider the Kronecker product in equation (2) when α= 0,

S−1⊗Q =

 S−111 Q S−112 Q

S−121 Q S−122 Q


then

vTS−1⊗Qv = S−111 xTQx +S−112 yTQx +S−121 xTQy +S−122 yTQy.

In this last expression, one can see that the inverse of S in combination with the Kronecker product

with Q includes terms involving cross products between fields. The supplemental materials carries125

this expression one step further by estimating the conditional mean for the the first element of v to

illustrate how this element is related to itself and its neighbors across multiple fields.

3 A test of GMRF estimates of variance

GMRFs provide a way to approximate field and space dependencies contained in the inverse covari-

ance matrix Σ−1 of equation (1) by its GMRF equivalent S−1⊗(αI+(1−α)Q). In this section, we130

will test how well GMRFs are able to reproduce observed space and field dependencies. This may be

achieved by comparing field and spatial variance and covariance estimates obtained from the inverse

of the GMRF estimate of the precision matrix with those obtained empirically from observational

data. It turns out this comparison is sensitive to the value that is selected for α. By construction, the

optimal choice of α depends only on geometric considerations of the neighborhood model that is135

used for GMRF and the number of grid points in the fields and not the properties of the field data.
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We introduce a ‘witch hat’ graph that provides a compact summary of variance-covariance informa-

tion between these two methods in order to show that GMRFs do a reasonable job approximating

observed field and space relationships.

3.1 Finding an appropriate value of α140

In the effort to compare space and field dependencies approximated by GMRF with empirical esti-

mates we need to determine an optimal value for α. In order to carry out this comparison, we need

to find the inverse of S−1⊗ (αI+(1−α)Q), our proposed precision matrix based on GMRF. Using

results of Kronecker products, we have that
[
S−1⊗ (αI + (1−α)Q)

]−1
= S⊗(αI+(1−α)Q)−1.

Letting Q∗ = (αI + (1−α)Q)−1, then S⊗Q∗ for two fields can be written as S11Q
∗ S12Q

∗

S21Q
∗ S22Q

∗

 .
If n is the total number of grid points of the lattice, S⊗Q∗ is a 2n× 2n covariance matrix. Note

that each element of diag(SijQ
∗) contains the estimated variance or covariance at each grid point

for fields i and j using a GMRF where i can be equal to j. If we average these estimates across the

whole lattice, we obtain Gij , the GMRF estimate of the variance or covariance for fields i and j.

Therefore,145

Gij =
Sij
∑n
k=1Q

∗
kk

n
=
Sijtr(Q

∗)

n
(3)

where tr(Q∗) denotes the trace of Q∗ and Q∗kk are its diagonal elements. We will now select a value

for α that allows the GMRF estimate for field variances and covariances to be equal, on average,

to what has been calculated for S. In order to achieve this, Gij needs to equal Sij . Satisfying this

condition is equivalent to finding the solution for150

tr(Q∗)

n
= 1. (4)

It may not be so obvious what the diagonal elements of Q∗ are. However, one can use the fact that

tr(A) is equal to sum of its eigenvalues. In our case, if the eigenvalues of Q are λ1,λ2, ...,λn, the

eigenvalues of αI+ (1−α)Q are α+ (1−α)λ1,α+ (1−α)λ2, ...,α+ (1−α)λn. The eigenvalues

of Q∗ = (αI+(1−α)Q)−1 are (α+(1−α)λ1)−1,(α+(1−α)λ2)−1, ...,(α+(1−α)λn)−1. This155

implies that in order to satisfy equation (4), we need to find α from

f(α) =

n∑
i=1

1

n(α+ (1−α)λi)
= 1. (5)

Figure 3 shows the relationship between various values of α and f(α). The eigenvalues used

to obtain this figure correspond to the precision operator, Q, for a GMRF induced by a first order

neighborhood structure and considering a 128× 22 lattice (which is the dimension of our data).160

From the figure we can see that the curve crosses the value of 1 when α is close to 0. By using linear
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interpolation, we determine that α is approximately 0.0026. Note that this value is independent of

fields since equation (5) does not contain any field-specific information.
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Figure 3. α vs f(α).

3.2 ‘Witch hat’ comparison test165

To illustrate any differences that may exist between empirical estimates of the covariance matrix

Σ and its GMRF equivalent S⊗ (αI + (1−α)Q)−1, we rely on a graph that shows the spatial

average grid point variance and covariances as a function of distance for cells and their neighbors.

We compute the average entries of the covariance matrix corresponding to each grid cell and the

corresponding element to the north or east (for the positive distances) or to the south or west (for the170

negative distances) relative to the main diagonal of the matrix. The zero distance case is the average

of variances of the main diagonal. The cells corresponding to one or more grid cells away are mostly

on entries in parallel with the main diagonal. On average, covariances decrease with distance making

the graph have the shape of a witch’s hat. This graph is symmetric because covariance matrices are

symmetric.175

Figure 4 shows a ‘witch hat’ test of estimated variances for air temperatures simulated by the

Community Atmosphere Model version 3.1 (CAM3.1). The variances are estimated from 15 sam-

ples of two year mean summertime temperatures. Setting α= 1 provides a solution to equation (5),
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however, this will shut down the effect of Q and only the variances at the reference point (lag 0) will

be well represented. On the other hand, when α= 0.0026, we allow Q to play more of a role which180

results in a better representation of covariances at neighboring points (lags different of zero).
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Figure 4. ‘Witch hat’ graphs for air temperature on a 128× 22 lattice of the tropics from 30◦S to 30◦N. The

empirical estimates are given by the solid red line. The GMRF estimate is given by the dashed blue line.

4 Climate response to uncertain parameters

In this section we show how inclusion of field and space dependencies using GMRF affect com-

parisons of the Community Atmosphere Model (CAM3.1) (Collins et al., 2006) with observations.

We consider CAM3.1’s response to changes in parameter ke, which controls rain drop evaporation185

rates, and parameter c0, which controls precipitation efficiency through conversion of cloud water

to rain water. For this comparison we only consider the response for the June, July, and August

(JJA) seasonal mean between 30◦S to 30◦N on four variables including 2 meter air temperature

(TREFHT), 200-millibar zonal winds (U), sea level pressure (PSL), and precipitation (PRECT). Ex-

periments with CAM3.1 use observed climatological sea surface temperatures and sea ice extents.190

Each experiment with CAM3.1 is 32-years in duration.

The observational data that is used to evaluate the model comes from a reanalysis product ECMWF-

ERA interim (Uppala et al., 2005) for 2 m air temperature, 200-millibar zonal winds, and sea level

pressure and GPCP (Adler et al., 2009) for precipitation. We make use of approximately 30 years
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of JJA mean fields between 1979 and 2009. For constructing S, we calculate variances from 2-year195

means (i.e. 15 samples).

A total of 64 experiments were completed, varying each of the two parameters within an 8× 8

lattice. For each experiment we calculate three versions of the GMRF test statistic which we refer

to as a ‘cost’ (equation 2). The first version is the traditional cost based on the assumption of space

and field independence where the off diagonal components of S are set to zero and setting α= 1200

. This approach is similar to what has been done previously for Taylor (2001). The second version

of evaluating the cost takes field dependencies into account by including all components of S and

setting α= 1. The third version for the cost takes field and space dependencies into account by

including all components of S and setting α= 0.0026.

The correlation matrix, R, corresponding to the S matrix of 2-year JJA seasonal mean variances205

and covariances, as estimated from 30 years of observations, is:

PRECT PSL TREFHT U

PRECT 1 -0.219 -0.047 0.015

PSL -0.219 1 -0.313 -0.112

TREFHT -0.047 -0.313 1 -0.145

U 0.015 -0.112 -0.145 1

The primary field correlations are the values of (-0.313) and (-0.219) occurring between sea level

pressure (PSL) and 2 m air temperature (TREFHT), and precipitation (PRECT) and sea level pres-

sure (PSL), respectively. Maps of the grid point correlations between these fields show a lot of210

structure with regions of both positive and negative correlations. Therefore, providing a mechanistic

explanation of the spatially averaged correlation is not particularly meaningful. Despite losing re-

gional information in the S matrix summary of field covariances, GMRF estimated field covariances

as seen within ‘witch hat’ graphs are reasonable as compared to empirical estimates (see supplemen-

tal).215

Figure 5 shows a comparison of the three versions of the GMRF-based cost for the 64 experiments

within an 8× 8 lattice. All versions of cost result in qualitatively similar results with high and low

cost values roughly in the same portions of parameter space. The main difference among the versions

of cost comes from taking space dependencies into account within the field-space version. In this

case, extremely low values of ke result in higher metric values. Figure 6 examines the reasons for this220

by graphing the different field contributions to the GMRF-based costs for a slice where c0 = 0.0035

which corresponds to one of the rows of the lattice. By plotting everything differenced from metric

values at ke = 3× 10−6, one can learn that the biggest qualitative difference comes from cost values

associated with 2 m air temperature. Closer inspection of differences between model output and

observations of 2 m air temperature (not shown) indicates that the traditional cost is likely reflecting225

large-scale differences over the southern hemisphere oceans. Inclusion of space dependencies places

much greater significance on smaller-scale anomalies occurring over the continents, particularly over
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Figure 5. Three versions of the GMRF-based cost as a function of two CAM3.1 parameters ke and c0 that

assumes the data has (a) field and space independence, (b) field dependencies, and (c) field and space depen-

dencies. Each color represents ten percentiles of the cost distribution. The cost is shown relative to the value of

the default model configuration.

the Andes Mountains. This finding is a result of the mathematics of GMRF. It does not imply that

the large-scale errors are of lesser scientific importance. It only means that GMRF is less sensitive

to large-scale anomalies, perhaps because they are associated with fewer degrees of freedom than230

highly structured errors. Understanding whether and how these distinctions aid model assessment

needs further study. We do find it reassuring that GMRF-based metrics of distance to observations

are similar, at least in the example provided, to a traditional metric.

5 Summary

We have developed a new test statistic as a scalar measure of model skill or cost for evaluating the235

extent to which climate model output captures observed field and space relationships using Gaussian

Markov Random Fields (GMRFs). The challenge has been that few observations exist for estab-

lishing a meaningful observational basis for quantifying field and space relationships of climate

phenomena. Much of the data that is typically used for model evaluation is suspected of having its

own relationship biases introduced by the numerical model that is used to synthesize measurements240

into gridded products. The GMRF-based metric overcomes some of these limitations by consider-

ing field and space variations within a neighborhood structure thereby lowering the metric’s data

requirements. The form of the metric separates space and field dependencies using a Kronecker

product that, when multiplied out, has all the terms necessary to represent how different points in

space are tied together across multiple field. We also include a scalar α that weights the importance245

of spatial relationships between grid cells. Its optimal value turns out to be independent of the data

type which aids the use of GMRFs for comparing model output to data across multiple fields. Using
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Figure 6. Different field contributions to the GMRF-based costs for a slice of Figure 5 where c0 = 0.0035. Cost

values are relative to the default parameter setting for ke. Note that total cost (black dashed line) is a weighted

sum of field contributions as given by S−1 with contributions from sea level pressure (PSL, red line), 2-m air

temperature (TREFHT, green line), 200-millibar zonal winds (U, blue line), and total precipitation (PRECT,

cyan line).

‘witch hat’ graphs, we show a first order (nearest neighborhood) structure does an excellent job of

capturing empirical estimates of field and space relationships for various lag-windows or distances.

We have applied three versions of cost that selectively turn on or off field and space dependencies250

in a climate model (CAM3.1) output against observational products for tropical JJA climatologies

for 2 m air temperature, sea level pressure, precipitation, and 200-millibar zonal winds. The results

show subtle, but potentially important differences among these versions of the cost which may prove

beneficial for selecting models that capture observed climate phenomena for the right reasons.

6 Code and data availability255

R code and data for generating Figures 5 and 6 can be obtained through https://zenodo.org/record/33765,

Nosedal-Sanchez et al. (2015)
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