Mathematical details to find Q for a 2×2 lattice.

Consider $\mathbf{x} \sim N\left(\mathbf{0}_{4 \times 1}, \mathbf{Q}_{4 \times 4}\right)$, a vector of measurements on a 2×2 lattice, as represented in Figure 1 of the main manuscript. Assume a neighborhood structure between the four elements of \mathbf{x}. In Figure 2 of the main manuscript, the neighbors for each element of \mathbf{x} are defined graphically. Given this structure, one can write expressions for the conditional means that reflect how information at each grid point might be related to its neighbors. Therefore,

$$
\begin{align*}
& E\left(x_{1} \mid x_{2}, x_{3}, x_{4}\right)=\beta_{12} x_{2}+\beta_{13} x_{3}, \tag{1}\\
& E\left(x_{2} \mid x_{1}, x_{3}, x_{4}\right)=\beta_{21} x_{1}+\beta_{24} x_{4}, \tag{2}\\
& E\left(x_{3} \mid x_{1}, x_{2}, x_{4}\right)=\beta_{31} x_{1}+\beta_{34} x_{4}, \tag{3}\\
& E\left(x_{4} \mid x_{1}, x_{2}, x_{3}\right)=\beta_{42} x_{2}+\beta_{43} x_{3} . \tag{4}
\end{align*}
$$

These expressions are used to find a relationship between the β coefficients and the elements of \mathbf{Q}. Since $\mathbf{x} \sim N\left(\mathbf{0}_{4 \times 1}, \mathbf{Q}_{4 \times 4}\right)$, the joint probability distribution of \mathbf{x} is given by,

$$
\begin{gathered}
f\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \propto \exp \left(-\frac{1}{2}\left(Q_{11} x_{1}^{2}+Q_{22} x_{2}^{2}+Q_{33} x_{3}^{2}+Q_{44} x_{4}^{2}+2 Q_{12} x_{1} x_{2}+2 Q_{13} x_{1} x_{3}+2 Q_{14} x_{1} x_{4}\right.\right. \\
\left.\left.+2 Q_{23} x_{2} x_{3}+2 Q_{24} x_{2} x_{4}+2 Q_{34} x_{3} x_{4}\right)\right) .
\end{gathered}
$$

Using this joint probability distribution, we derive the full conditional of x_{1} given x_{2}, x_{3}, x_{4},

$$
\begin{equation*}
f\left(x_{1} \mid x_{2}, x_{3}, x_{4}\right) \propto \exp \left\{-\frac{1}{2} Q_{11}\left(x_{1}^{2}-2 x_{1}\left(-\frac{Q_{12}}{Q_{11}} x_{2}-\frac{Q_{13}}{Q_{11}} x_{3}-\frac{Q_{14}}{Q_{11}} x_{4}\right)\right)\right\} \tag{5}
\end{equation*}
$$

This expression can be re-written as

$$
\begin{equation*}
f\left(x_{1} \mid x_{2}, x_{3}, x_{4}\right) \propto \exp \left\{-\frac{1}{2} Q_{11}\left(x_{1}-\left(-\frac{Q_{12}}{Q_{11}} x_{2}-\frac{Q_{13}}{Q_{11}} x_{3}-\frac{Q_{14}}{Q_{11}} x_{4}\right)\right)^{2}\right\} \tag{6}
\end{equation*}
$$

From matching (6) to the expression of a univariate normal distribution,

$$
\begin{equation*}
E\left(x_{1} \mid x_{2}, x_{3}, x_{4}\right)=-\frac{Q_{12}}{Q_{11}} x_{2}-\frac{Q_{13}}{Q_{11}} x_{3}-\frac{Q_{14}}{Q_{11}} x_{4}, \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Prec}\left(x_{1} \mid x_{2}, x_{3}, x_{4}\right)=Q_{11} . \tag{8}
\end{equation*}
$$

By comparing equations (1) and (7), we obtain

$$
\beta_{12}=-\frac{Q_{12}}{Q_{11}}, \quad \beta_{13}=-\frac{Q_{13}}{Q_{11}}, \quad \beta_{14}=-\frac{Q_{14}}{Q_{11}}=0
$$

Considering the full conditionals for x_{2}, x_{3} and x_{4} and its conditional expectations respectively, yield similar relationships between the β coefficients and the elements of \mathbf{Q} :

$$
\begin{array}{lll}
\beta_{21}=-\frac{Q_{21}}{Q_{22}}, & \beta_{23}=-\frac{Q_{23}}{Q_{22}}=0, & \beta_{24}=-\frac{Q_{24}}{Q_{44}} \\
\beta_{31}=-\frac{Q_{31}}{Q_{33}}, & \beta_{32}=-\frac{Q_{32}}{Q_{33}}=0, & \beta_{34}=-\frac{Q_{34}}{Q_{33}} \\
\beta_{41}=-\frac{Q_{41}}{Q_{44}}=0, & \beta_{42}=-\frac{Q_{42}}{Q_{44}}, & \beta_{43}=-\frac{Q_{43}}{Q_{44}}
\end{array}
$$

These relationships hold for an n dimensional distribution as established in Rue and Held [1]. If the conditional means and precisions can be written as

$$
\begin{gather*}
E\left(x_{i} \mid x_{-i}\right)=\mu_{i}+\sum_{j \neq i} \beta_{i j}\left(x_{j}-\mu_{j}\right) \quad \text { and } \tag{9}\\
\operatorname{Prec}\left(x_{i} \mid x_{-i}\right)=k_{i}>0 \tag{10}
\end{gather*}
$$

then $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ follows a multivariate normal distribution with mean $\boldsymbol{\mu}=\left(\mu_{1}, \mu_{2}, \ldots, \mu_{n}\right)$ and precision matrix \mathbf{Q} of entries $Q_{i j}$, where

$$
Q_{i j}= \begin{cases}-k_{i} \beta_{i j} & i \neq j \tag{11}\\ k_{i} & i=j\end{cases}
$$

provided $k_{i} \beta_{i j}=k_{j} \beta_{j i}, i \neq j$.
If we let $\operatorname{Prec}\left(x_{i} \mid x_{-i}\right)=2(i=1,2,3,4), \beta_{12}=\beta_{13}=\beta_{21}=\beta_{24}=\beta_{31}=\beta_{34}=\beta_{42}=$ $\beta_{43}=1 / 2$ and $\beta_{14}=\beta_{23}=\beta_{32}=\beta_{41}=0$ using equations (9)-(11), $\mathbf{x}=\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ follows a multivariate normal distribution with mean $\mu=(0,0,0,0)^{T}$ and precision matrix

$$
\mathbf{Q}=\left(\begin{array}{rrrr}
2 & -1 & -1 & 0 \\
-1 & 2 & 0 & -1 \\
-1 & 0 & 2 & -1 \\
0 & -1 & -1 & 2
\end{array}\right)
$$

Generalizing Q to deal with multiple fields.

The generalization of \mathbf{Q} to handle multiple fields is illustrated by a case with two fields, \mathbf{x} and \mathbf{y} which represent the difference between a model and observations for these fields. These observations are assumed to be on a 2×2 lattice, as shown in Figure 1.

Field One	
X_{1} X_{2} X_{3} X_{4}	

Field Two	
Y_{1}	Y_{2}
Y_{3}	Y_{4}

Figure 1: Two fields with observations \mathbf{x}, \mathbf{y} defined on a 2×2 lattice.

Firstly \mathbf{x} and \mathbf{y} are combined into one vector \mathbf{v} so that $\mathbf{v}=\left(v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}, v_{7}, v_{8}\right)^{T}=$ $\left(x_{1}, x_{2}, x_{3}, x_{4}, y_{1}, y_{2}, y_{3}, y_{4}\right)^{T}$. The covariance among these observations can be represented by a 2×2 matrix between the field $1, \mathbf{x}$, and the field $2, \mathbf{y}$,

$$
\mathbf{S}=\left(\begin{array}{ll}
\sigma_{11} & \sigma_{12} \\
\sigma_{12} & \sigma_{22}
\end{array}\right)
$$

where $\operatorname{Var}(\mathbf{x})=\sigma_{11}, \operatorname{Var}(\mathbf{y})=\sigma_{22}$, and $\operatorname{Cov}(\mathbf{x}, \mathbf{y})=\sigma_{12}$. Recalling that the correlation between fields 1 and 2 is defined as: $\rho=\frac{\sigma_{12}}{\sqrt{\sigma_{11} \sigma_{22}}}$, it is easy to verify that the inverse of \mathbf{S} is

$$
\mathbf{S}^{-1}=\left(\begin{array}{cc}
\frac{1}{\sigma_{11}\left(1-\rho^{2}\right)} & \frac{-\rho}{\left(1-\rho^{2}\right) \sqrt{\sigma_{11} \sigma_{22}}} \\
\frac{-\rho}{\left(1-\rho^{2}\right) \sqrt{\sigma_{11} \sigma_{22}}} & \frac{1}{\sigma_{11}\left(1-\rho^{2}\right)}
\end{array}\right) .
$$

Defining \mathbf{Q}^{*} as $\mathbf{S}^{-1} \otimes \mathbf{Q}$, the Kronecker product of \mathbf{S}^{-1} and \mathbf{Q}, then,

$$
\mathbf{Q}^{*}=\mathbf{S}^{-1} \otimes \mathbf{Q}=\left(\begin{array}{rr}
\frac{1}{\sigma_{11}\left(1-\rho^{2}\right)} \mathbf{Q} & \frac{-\rho}{\left(1-\rho^{2}\right) \sqrt{\sigma_{11} \sigma_{22}}} \mathbf{Q} \\
\frac{-\rho}{\left(1-\rho^{2}\right) \sqrt{\sigma_{11} \sigma_{22}}} \mathbf{Q} & \frac{1}{\sigma_{11}\left(1-\rho^{2}\right)} \\
\mathbf{Q}
\end{array}\right) .
$$

Field Two

Figure 2: Neighbors of x_{1} for a 2×2 lattice and two fields \mathbf{x} and \mathbf{y}.

To see what type of relationships are imposed by \mathbf{Q}^{*} on the elements of \mathbf{v}, consider the first element $v_{1}=x_{1}$. Also notice that the first row of \mathbf{Q}^{*} is,

$$
\left(\begin{array}{ccccccc}
\frac{2}{\sigma_{11}\left(1-\rho^{2}\right)} & \frac{-1}{\left(1-\rho^{2}\right) \sigma_{11}} & \frac{-1}{\left(1-\rho^{2}\right) \sigma_{11}} & 0 & \frac{-2 \rho}{\sqrt{\sigma_{11} \sigma_{22}}\left(1-\rho^{2}\right)} & \frac{\rho}{\sqrt{\sigma_{11} \sigma_{22}}\left(1-\rho^{2}\right)} & \frac{\rho}{\sqrt{\sigma_{11} \sigma_{22}}\left(1-\rho^{2}\right)} \tag{12}
\end{array} 0\right) .
$$

Using equations (9)-(11), it can be easily checked that the value for $\beta_{12}=\frac{-Q_{12}^{*}}{Q_{11}^{*}}=\frac{1}{2}$. The other β values can be determined in a similar fashion. Using these β coefficients, the equations for the conditional mean and precision of $v_{1}=x_{1}$ given the rest of the elements of \mathbf{v} are

$$
\begin{equation*}
E\left(v_{1} \mid \mathbf{v}_{-1}\right)=\frac{1}{2} x_{2}+\frac{1}{2} x_{3}+\frac{\rho \sigma_{11}}{\sqrt{\sigma_{11} \sigma_{22}}} y_{1}-\frac{\rho \sigma_{11}}{2 \sqrt{\sigma_{11} \sigma_{22}}} y_{2}-\frac{\rho \sigma_{11}}{2 \sqrt{\sigma_{11} \sigma_{22}}} y_{3} \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Prec}\left(v_{1} \mid \mathbf{v}_{-\mathbf{1}}\right)=\frac{1}{\sigma_{11}\left(1-\rho^{2}\right)} . \tag{14}
\end{equation*}
$$

The expression for the conditional mean can be rewritten in terms of the slope b of the linear regression between \mathbf{x} and $\mathbf{y}, b=\frac{\rho \sqrt{\sigma_{11}}}{\sqrt{\sigma_{22}}}$, with ρ equal to their correlation,

$$
\begin{equation*}
E\left(v_{1} \mid \mathbf{v}_{-\mathbf{1}}\right)=\frac{1}{2} x_{2}+\frac{1}{2} x_{3}+b y_{1}-\frac{b}{2} y_{2}-\frac{b}{2} y_{3} . \tag{15}
\end{equation*}
$$

Equation (15) implies that the neighbors of x_{1} are $x_{2}, x_{3}, y_{1}, y_{2}$ and y_{3}. Figure 2 shows a graphical display of all neighbors of x_{1} in the context of the two fields \mathbf{x}, \mathbf{y} and a 2×2 lattice.

References Cited

[1] Rue, H. and Held, L.: Gaussian Markov random fields, vol. 104, Chapman \& Hall/CRC, 2005.

