
Response to reviewer # 1 and #2 input on ”A new
metric for climate models that includes field and

spatial dependencies using Gaussian Markov
Random Fields” by Nosedal-Sanchez et al.

May 21, 2016

Response to Reviewer # 1 Reviewer comment given in blue.

1. Conditional independence is an assumption underlying Markov random fields. For
three variables A, B, and C, the joint probability distribution of A and B condi-
tioned on C, written as p(A,B|C), can be factored into the product p(A|C) times
p(B|C) for all values of C if A and B are conditionally independent of C. The
authors should argue, or preferably demonstrate, that the necessary conditional in-
dependence properties approximately hold for the application of their method to
climate model fields. The feedbacks across scales in the climate system and the
coupled nature of the physical equations may serve as a basis for some degree
of conditional independence, though I expect some cases where p(A|C) is a poor
approximation of p(A|B,C) as implied by conditional independence.

The assumption of conditional independence (for estimating precisions among
points outside a neighborhood structure) does not need to be met exactly in or-
der for GMRF to represent a useful step forward toward the goals outlined in the
introduction. The assumption facilitates the sparse representation of the precision
matrix and therefore is convenient. It enables us to capture some but perhaps not
the full extent of the dependencies that exist across space and fields in the cli-
mate data. The witch-hat graphs provide a measure of how well GMRF captures
observed covariances. One could enlarge the neighborhood structure indicating
conditional dependencies of the precision matrix beyond nearest neighbors, but we
felt that the present treatment was adequate.

2. The authors appear to neglect temporal relationships in the method and example,
even though such relationships are prevalent in the climate system. A perturbation
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in the pattern of sea surface temperature in the tropics, for example, may take
months before the signal shows up in the spatial distribution of precipitation in the
mid-latitudes. While introducing temporal correlations into their method is beyond
the scope of the manuscript and not required at this stage, it would still be beneficial
to readers if the authors described how their method could be extended is this way.

It is common for climate model evaluation to place most of its emphasis on long-
term means and that is our target application. GMRFs may be extended to include
temporal relationships (e.g. Cressie and Wikle, 2011), but we did not attempt to
develop those ideas in the present manuscript. Note that the assumption that the
distribution of errors are Gaussian does not hold as well on short(er) time scales.
The text mentions that the effects of teleconnection patterns shape local covari-
ances (through a set of processes that are influenced by anomalously low or high
pressures). Space-field GMRFs would be sensitive to these effects since the tele-
connections shape long term means. We will update the text to provide more in-
formation about the possibility to extend the analysis to include temporal relation-
ships.

Statistics for Spatio-Temporal Data, by Noel Cressie and Christopher K. Wikle.
Wiley, Hoboken, NJ, 2011 (588 pp.)

3. The opening paragraph states that there is skepticism in using a scalar metric to
assess climate model performance. This gives the impression that everything gets
boiled down to a single number, which isn’t the case. Climate models are often
assessed using a vector of scalar quantities (e.g. as in Gleckler et al), a scalar
measure of a vector field, or combinations of these and other metrics. A single
field projected on a Taylor diagram, for example, considers two orthogonal scalar
quantities (centered rms and correlation). Please clarify the description.

We agree with the reviewer’s point that the scientific community makes use of
many metrics to judge a model’s credibility. The section explaining our point was
poorly written. The issue is not that climate scientists already make use of many
metrics in model selection. We needed to first say that formal methods for model
calibration operate on a single scalar metric. The scientific community is skeptical
that a scalar metric (and therefore formal calibration methods) could adequately
capture all the scientific sensibilities that are needed for judging model acceptabil-
ity. We will clarify this point.

4. The opening paragraph also describes the need to account for spatial and field
dependencies. Field dependence is an essential feature of your methodology, so it
would be useful to readers to provide a specific example of what you mean by field
dependence early in the introduction.
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Thanks for this suggestion. We will provide an example.

5. The first sentence in the second paragraph in the introduction is a little awkward
and should be rewritten (lines 12-15, page 3). There is an observational record
of climate, but not an observational record of a climate model. Moreover, this
statement seems to suggest that data assimilation is primarily a data imputation
method, which it really isn’t. Data assimilation minimizes the differences between
the model state and observations, while insuring that the state fields abide by con-
servation laws (mass, energy, and momentum) and other important physical de-
pendencies. This paragraph overall seems to imply that the models don’t do a very
good job with the dependencies, which is arguable. I have confidence that the
models are getting many of the large scale dependencies about right (e.g. equa-
tor to pole gradients, land-ocean contrasts, temperature dependence of water vapor
through Clausius-Clapeyron, etc).

In this paragraph we wish to make the point that there exists a very limited ob-
servational record on which to estimate space and field dependencies of climate
phenomena. Likely the best synthesis of these dependencies are from reanalysis
products for some of the reasons you state. However there is a catch. The mod-
els used for data assimilation rely on their own physics packages to predict cloud
characteristics and their radiative effects. Moreover, the data assimilation strate-
gies for generating these products do not attempt to conserve mass, energy, and
momentum, particularly between analysis steps. So the products are both a re-
flection of the observations that go into them and the physics and fluid motions of
the model. Figure 1 below provides an illustration of this point. It shows that a
multivariate measure of the distance between NCEP and ERA40, which are two
reanalysis products, and CAM3.1 were nearly as different from one another as
CAM3.1 was to them. Seasonally and regionally, the two products contained up-
wards of 200 Wm−2 differences in shortwave radiation reaching the surface which
is emblematic of the different parameterizations each model uses for estimating
cloud distributions and their radiative properties.

6. It’s a good idea to present the general idea behind the metric in equation (1) in the
introduction, though I found myself flipping back and forth between the introduc-
tion and section 2 to make better sense of the information. To make it easier for
readers to get through the introduction without getting hung up on details, perhaps
you could introduce the concept in more general terms. Also, the symbol Z is used
for the metric in this section, but it doesn’t appear elsewhere in the manuscript and
should be dropped. And the times symbol in ’nobs x npts’ on line 3, page 4 suggests
that v is a matrix with nobs rows and npts columns. I recommend changing it to
nobsnpts.
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NCEP ERA40 

CAM3.1

Figure 1: Average distance between two data assimilation products, NCEP (Kalnay et al.,1996);
Kistler et al. 2001) and ERA40 (Uppala et al. 2005), is a good fraction of the distance to CAM3.1
(Community Atmosphere Model version 3.1). The length of each segment is based on the metric
used in Jackson et al., (2008) and described by Mu et al., (2003) and includes shortwave radiation
to surface, 2 m air temperature, surface sensible heat flux, relative humidity, air temperature, zonal
winds, and sea level pressure from 1990 to 2001.

These are very good suggestions and clarifications. We will update the text.

7. There is a typo in the lower right element of the S inverse matrix on line 11, page 7.
The sigma index should be 22, instead of 11. For consistency, use the same indices
for off-diagonal terms (e.g. S12 is used for the lower left term on line 11, while
S21 is used on line 13 page 7).

Thanks for catching this error.

8. Regarding the alpha parameter, please provide references or further information
about the statement that alpha depends only on the geometry of the neighborhood
and not on the details of the fields. I have other questions about alpha. How much
does it vary going from a first order neighborhood to a higher order neighborhood?
Can alpha be extended from a scalar to a vector to optimize the covariances in
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different regions in the neighborhood?

Equation (5) shows that α is only dependent on the eigenvalues of the Q matrix.
The Q matrix itself is only a function of the domain (e.g. geometry and number of
latitude and longitude grid points) and the neighborhood structure. Thus we would
expect the value for α to be affected if we use a higher order neighborhood. We
started the task of building a Q matrix with a higher order neighborhood structure,
however implementing it correctly requires a lot of attention to detail to deal with
how the stencil changes as one approaches a boundary and this task will require
more time to complete than we have at the moment. Thus we don’t know how
much α would be affected. Because the higher order Q matrix will have more than
one singular vector, we came to the realization that the concept of α may need to
be expanded to accommodate all of the Q matrix singular vectors. Thus the answer
to the question is not straight-forward and would require further consideration. In
response to your last question, since α in the way we have been using it exists as
an extension of the Q matrix, it does not make sense to use it to accommodate
covariances for particular regions which may be field dependent.

9. The witch hat plots are convenient, but take some effort to get used to. It would be
useful it you first stepped the readers through the concept with a simple example.
How much does the shape of the witch hat depend on the selected indexing for the
neighborhood? E.g. swapping x3 and x4 in figure 1 appears arbitrary, but results in
a different Q. Does the averaging of the cells for a given distance from the diagonal
hide information that could be important? Are there other simple ways to show the
differences between the empirical and GMRF estimates (e.g. Hinton diagrams)?

The results would not be altered by how boxes are indexed within a Q matrix that
correctly identifies the neighborhood structure around each grid cell. The reason
to present a summary of the covariance matrix in terms of a ‘witch hat’ graph is
because there is not much variation in the estimate of the variances/covariances
along any of the diagonals. There can be small deviations in the symmetry that
occur because of how neighboring cells are indexed particularly as one approaches
a boundary. An example of this deviation is provided below. However a fairly ac-
curate estimate of the ‘witch hat’ could be constructed as an average of variances
or covariances along the various diagonals relative to the main diagonal. However,
as the example illustrates, this is not as simple as an evaluation of the distance to
the diagonal. We construct our covariances for the ‘witch hat’ graph by explicitly
identifying those cells that are a given distance from the diagonal (see example
below). Hinton diagrams provide a graphic view of the size of values within a ma-
trix. ‘witch hat’ graphs allow us to compare GMRF implied variances/covariances
with those estimated empirically from data. The text explaining witch hats will be
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further clarified.

Example of the construction of a ‘witch hat’.

We will describe the construction of a witch hat graph for a 3× 3 lattice, like the
one shown below.

1 2 3
4 5 6
7 8 9

Suppose that variance estimates are available at each of the 9 grid points for one
field, for example S11Q∗. In this case, S11Q∗ is a 9×9 matrix.

Like any other graph, a witch hat graph is formed by points. We will find the points
that define a witch hat graph that makes comparisons in the N - S direction. From
the figure shown above, it is clear that grid cells 1,2,3,4,5, and 6, have one grid cell
below them: 4, 5, 6, 7, 8, and 9, respectively. Now, we use these numbers to form
pairs: (4,1),(5,2),(6,3),(7,4),(8,5), and (9,6). Then, using the corresponding
elements of our matrix of estimates, we compute the following average:

w(−1) =
σ̂41 + σ̂52 + σ̂63 + σ̂74 + σ̂85 + σ̂96

6

(where σ̂i j = σ̂(i, j) = element located on ith row and jth column of matrix of
estimates).

Thus, we define (−1,w(−1)) as one point of our witch hat graph. Let us find
another point. Again, using the same figure, it is clear that grid cells 4,5,6,7,8, and
9, have one grid cell above them: 1,2,3,4,5, and 6, respectively. As we did before,
we proceed to form pairs with these numbers: (1,4),(2,5),(3,6),(4,7),(5,8), and
(6,9). Then, we use the corresponding elements of our matrix of estimates to
compute another average:

w(1) =
σ̂14 + σ̂25 + σ̂36 + σ̂47 + σ̂58 + σ̂69

6

This couple of numbers, (1,w(1)), gives another point of the witch hat graph. Do-
ing something similar, with grid cells that have neighbours located two rows down
or up of themselves, we obtain:

w(−2) =
σ̂71 + σ̂82 + σ̂93

3
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and

w(2) =
σ̂17 + σ̂28 + σ̂39

3
.

Note that the number of cells from one grid to itself is zero. So, a fifth point for
our graph is

w(0) =
σ̂11 + σ̂22 + . . .+ σ̂99

9
.

A witch hat graph is a graphical representation of these pairs of points: (−2,w(−2)),
(−1,w(−1)), (0,w(0)), (1,w(1)), and (2,w(2)). By construction, w(−1) = w(1)
and w(−2) = w(2) (recalling that the matrix of estimates is symmetric). Which is
convenient for computational purposes. It is worth noting that we could define a
graph in the E-W direction in a similar fashion. In general, a witch hat graph in
the E-W direction will differ from the one constructed to make comparisons in the
N-S direction.

Note. Making a graph of a 9×9 matrix of estimates would allow us to see that w(1)
= average of entries located three columns to the right of main diagonal. Similarly,
w(2) = average of entries located six columns to the right of main diagonal. How-
ever, these numbers (three and six) depend on the number of columns of lattice
in question.

σ̂11 σ̂12 σ̂13 σ̂14 σ̂15 σ̂16 σ̂17 σ̂18 σ̂19
σ̂21 σ̂22 σ̂23 σ̂24 σ̂25 σ̂26 σ̂27 σ̂28 σ̂29
σ̂31 σ̂32 σ̂33 σ̂34 σ̂35 σ̂36 σ̂37 σ̂38 σ̂39
σ̂41 σ̂42 σ̂43 σ̂44 σ̂45 σ̂46 σ̂47 σ̂48 σ̂49
σ̂51 σ̂52 σ̂53 σ̂54 σ̂55 σ̂56 σ̂57 σ̂58 σ̂59
σ̂61 σ̂62 σ̂63 σ̂64 σ̂65 σ̂66 σ̂67 σ̂68 σ̂69
σ̂71 σ̂72 σ̂73 σ̂74 σ̂75 σ̂76 σ̂77 σ̂78 σ̂79
σ̂81 σ̂82 σ̂83 σ̂84 σ̂85 σ̂86 σ̂87 σ̂88 σ̂89
σ̂91 σ̂92 σ̂93 σ̂94 σ̂95 σ̂96 σ̂97 σ̂98 σ̂99

Estimates in blue represent numbers that would be used to make graph in the E-W
direction. Estimates in red represent numbers that would be used to make graph
in the S-N direction. This suggests that using the ”second main diagonal” to plot
witch hat graphs at w(−1) = w(1) will result in a very different value.
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10. Figures 3 and 4 are positioned before section 4 in the manuscript, but the figures
rely on information about the climate model data from that section (e.g. the es-
timates are from 15 samples). Please cross reference the material from section 4
where needed to avoid confusion.

Thank you for this suggestion.

11. In the last paragraph on page 11, the authors state that the only meaningful corre-
lations are of TREFHT with PSL and PRECT with PSL. However, if TREFHT and
PRECT are individually correlated with PSL, shouldn’t TREFHT and PRECT also
be correlated to each other? Moreover, there is a contradiction between the phys-
ical explanation on lines 23-25, page 11 and the sign of the correlation between
PSL and PRECT (low pressure systems increase precipitation).

To address this question we created maps of the grid point correlations between
JJA mean 2m air temperature (TREFHT), sea level pressure (PSL), and precipita-
tion (PRECT) with sea level pressure (PSL) (Figure 2). What is clear between all
these figures is that there is a lot of structure to all these maps. The sign of the cor-
relation is regionally dependent. Therefore providing a mechanistic explanation of
the spatially averaged correlation is not going to be particularly meaningful. How-
ever it may be useful for readers to know that there is a lot of structure to these
maps and that the reason that the spatially averaged correlation between PSL and
PRECT is so small is not because local correlations are small. Rather the average
includes regions of large negative correlations as well as regions with large positive
correlations. Despite losing this regional information in the S matrix summary of
field covariances, this does not affect GMRF estimated field covariances between
these fields as can be seen within the ‘witch hat’ graphs.

12. The model simulations use prescribed sea surface temperatures, which strongly
constrain the near surface air temperature, so it seems surprising that the biggest
changes in cost are associated with the 2-m air temperature. Can the authors pro-
vide a physical explanation for their finding?

By our read of manuscript Figure 6, cost changes related to 2m air temperature
(TREFHT) are the smallest relative to the three other fields. It is true that speci-
fying sea surface temperatures will limit the model’s TREFHT response over the
ocean, however the models response to changes in parameters can affect the at-
mospheric boundary layer over the ocean including TREFHT. Moreover TREFHT
is less restricted over land which was an important fact explaining why TREFHT
showed the biggest qualitative differences in cost when using the Q matrix to in-
clude space dependencies within the cost. The latter is due to the sensitivity of
the Q operator to the sharp spatial structures that arise from model-observational
differences in and around the poorly resolved Andes mountains.
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13. The authors find that spatial dependencies are more important to capture than field
dependencies for the four selected outputs (PSL, TREFHT, U, PRECT). Do they
have any reason to suspect (or can they show) that the field dependencies will
dominate over spatial dependencies for other fields? If not, then this suggests that it
may not be critical to capture the field dependencies and that their method does not
offer many clear benefits over standard model assessment techniques. From their
example in figure 5 of optimizing model performance by changing two parameters
(c0 and Ke), it even looks like adding the spatial dependence alone would not
greatly affect the conclusions drawn from assuming spatial independence (i.e., that
high values of c0 and low values of Ke are best).

While the current results do not provide a strong case for why including field de-
pendencies is important, we were only looking at four fields within the tropics in
JJA. We don’t yet know whether field dependencies become important for other
fields, regions, or seasons. We elected to keep the scope of the present manuscript
focused on the mathematical treatment of GMRF. It is helpful to know that the
results look reasonable which would be hard to evaluate without this limited ex-
ample. We are in the process of generating results for 11 fields, 3 regions, and 4
seasons which will be reported separately. It also could be that the importance of
field dependencies may depend on what parameters are being varied.

14. Observational uncertainty does not appear to be taken into account in their method.
Can the authors comment on and suggest ways to incorporate observational uncer-
tainty into their test statistic?

This is an excellent and important question. The most obvious place to include this
information is within the S matrix. For instance if a grid point error variance is
known, it could be added to the diagonal elements. However we have already run
into a case where satellite observations of cloud fields include linear structures that
are obviously related to the satellite tracks. We suspect that the Q operator within
GMRF may be particularly sensitive to these artifacts in the data. We do not have
a full answer to this question. There is not much experience in the community as a
whole for quantifying these uncertainties and representing them within metrics of
climate model performance.

Response to Reviewer # 2 Reviewer comment given in blue.
Correlations in space and across variables were handled by Gaussian Markov Ran-
dom Fields (GMRFs). I had a hard time understanding whether this is an appropri-
ate technique or whether it was implemented correctly. In particular:

1. Equation 1 is introduced in the introduction and is said to be the culmination of the
subsequent derivations but is never fully explained. Better explanation is needed.
In particular, I dont think it makes sense to provide this equation in the introduction.
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We will remove the specific details about GMRF, including equation (1) to a sub-
sequent section.

2. I think Eq. 1 is a log-likelihood function derived from assuming model errors fol-
low a multivariate Gaussian distribution (eq. 2) with the inverse covariance matrix
Σ−1 replaced by GMRF precision matrix. These points need clarification and the
reasonableness of assuming a multivariate Gaussian distribution for model output
and for approximating the covariance matrix with a GMRF precision matrix both
require further justification.

Currently climate model evaluation makes use of relatively short, few year model
integrations for testing the effects of uncertain parameters. When compared to the
10 to 30-year climatologies of observations the distribution of errors is approxi-
mately Gaussian (see Figure 3). The distribution of climate fields on very short,
hourly to daily time scales can be decidedly non-Gaussian which is not the case
for longer term means. We include here a few examples of monthly mean climate
model output that show an approximately Gaussian distribution. The reasonable-
ness for using GMRF to estimate the inverse covariance matrix is provided by the
‘witch-hat’ graphs.

3. I think the log-likelihood function in eq 1 is missing the following term: ln((2π)−n/2tr(Σ)−1/2).
Is this true? In any case, this derivation needs to be more clear.

Yes this is true, although it would include the determinant of the covariance ma-
trix not its trace. Within the statistics community the argument of the likelihood
function is referred to as the log-likelihood since the factor you are referring to is
a constant offset. However this can be confusing especially since this community
often also neglects the factor of 1

2 that should be included within the exponential
argument for a Gaussian distribution. We will make our statement more clear.

4. The precision matrix is only described for the 2x2 case. Are the “rules” on page 6
followed only for the 2x2 case, or are they followed for all cases?

Yes, the rules apply to all cases.

5. Because Q seems to be defined independently of the spatial autocorrelation in the
actual data, I find it hard to believe that it can be a good approximation for Σ−1

except by chance. In particular, I bet the “witch hat graph” for surface precipita-
tion alone (which has short autocorrelation length scales) looks very different than
that for surface temperature (which has long autocorrelation length scales) and that
Fig. 4 only looks reasonable for quantities which happen to have the autocorrela-
tion structure matching the precision matrix assumptions. I would like to see the
comparison between Q−1 and Σ (note Im asking for things in correlation-matrix
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space rather than precision matrix space because the former is easier to interpret
physically) for several different output fields to gain confidence in the method.
The fact that Q is defined independently of autocorrelation in the actual data is my
single biggest concern with this paper.

You are correct that the Q matrix is defined independently of field information. This
matrix is a differential operator which ‘senses’ how much fields change within the
neighborhood structure. The units come from scaling the Q matrix with S−1 using
the Kronecker product. Together the GMRF provides a decent approximation to
the inverse covariance matrix Σ−1. ‘Witch-hat’ graphs show observed variances
and covariances with the inverse precisions (implied variances/covariances) and
are being used to test how well GMRF capture observed space and field depen-
dencies. Figures 4 and 5 show several additional ‘witch-hat’ graphs to provide a
more complete evaluation of GMRFs representation of observed space and field
dependencies.

6. The fact that the precision matrix has a zero eigenvalue seems to be an obvious
result of the fact that Q indicates the neighbors of each cell and neighbors of the
last cell can be predicted from the others (because the cells which are its neighbors
have already tagged it as being their neighbor). I am surprised and alarmed that
your solution to this problem is to add a small perturbation to make your singular
matrix merely nearly-singular. It seems like this nearly-singular matrix will at best
have numerical issues and at worst isn’t actually solving the system you meant to
solve. Wouldnt it make more sense to replace the system with a matrix of 1 lower
dimension?

The issue is that Q matrix needs to have the same dimension as each field so chang-
ing its dimension is not the solution. Note that we only need to take an inverse of
the Q matrix for testing GMRF predictions of observed covariances within the
‘witch-hat’ graphs. Even then the R codes provided robust results.

Other Comments:

1. In the title and elsewhere, you call your method a “metric”. I think the benefit of
your approach is that it allows you to evaluate a log-likelihood function in order to
choose the best parameter settings to an uncertainty-quantification problem. While
the log-likelihood function does give you a scalar value for a particular set of pa-
rameters and is therefore a metric of sorts, I think emphasizing that youre defining
a metric is kind of missing the main point of what you’re doing. In particular, you
have to specify exactly what output you want to use to define a metric and I think
a benefit of your method is that it should work on a wide variety of output data
choices. In short, Id suggest changing ”metric” to ”method” throughout the text.
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We appreciate your thoughts on this matter and agree with your point. The term
“metric” is often used for climate model evaluation although that term does not
capture the fact that we are evaluating a signal to noise ratio for testing the null
hypothesis of whether changes in a climate model are significant. In other publica-
tions we sometimes refer to this normalized metric as a “test statistic”. We therefor
prefer using that term over “method”. We thank you for this suggestion.

2. using CAM3.1 is odd and detracts from the publication-worthiness of the paper
because it is an ancient model which nobody cares about anymore. Can you really
not find data from more recent model runs? It would be worth the effort.

CAM3.1 output is more than adequate for purposes of examining how GMRF
would be applied to climate model evaluation.

3. In eq. 2, you need to indicate that |x| is the determinant of x.

We can indicate this.

4. p. 6 line 8: ”fuller” should be ”more full”

Thanks for catching this.

5. You should define what the Kronecker product is for climate people, who may not
know off the top of their heads.

We can provide the following example of how the Kronecker product works: Con-
sider the following 2×2 matrices

A =

(
1 4
2 5

)
and B =

(
1 3
0 4

)
.

The Kronecker product of A and B, A⊗B, is given by

A⊗B =

(
1(B) 4(B)
2(B) 5(B)

)
=


1 3 4 12
0 4 0 16
2 6 5 15
0 8 0 20


6. p. 7, line 18: youre missing a word between supplemental and carries.

Thanks for catching this.

7. p. 11 line 25: low pressure cooling the underlying surface would be a *positive*
correlation. Perhaps youre seeing a ”thermal low” effect?
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See also response to item 12 from reviewer # 1. Because covariances vary by
region (e.g. Figure 2), we will back off from providing particular explanations for
explaining covariances that may only apply to particular regions of the domain.

8. You show in Fig. 5 that using GMRF or not doesnt make a big difference. Is this the
result of your particular choice of parameters and/or model version and/or output
variables? Taking the time to test your method in other cases would at a minimum
make your conclusions more robust and could potentially show that your method
has an important impact in certain circumstances.

While we agree that testing GMRF in all possible cases (with more fields, regions,
seasons, and model parameters) would provide a more thorough examination of
the question you raise of whether the GMRF can make an important difference, our
purpose for the present manuscript was to develop the mathematical application of
GMRF to climate model output. The effort represents several years of concerted
effort. The testing of GMRF in more cases is being developed with more scientific
goals in mind.

9. In the supplementary material, why assume x has means which are all zero?

It was not a necessary assumption, but it did facilitate the derivation without com-
plicating the expressions.
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JJA Correlation between PSL and TREFHT

JJA Correlation between PRECT and PSL

JJA Correlation between PRECT and TREFHT

Figure 2: JJA correlations between 2m air temperature (TREFHT), sea level pressure (PSL), and
precipitation (PRECT).
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Figure 3: Histograms of differences between observations and model output for four fields (U,
TREFHT, PSL, and PRECT) for an experiment that includes changes to cloud parameters C0 and ke.
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Figure 4: ‘Witch hat’ graphs testing GMRF approximations to empirical estimates of variances of
U, PSL, TREFHT, and PRECT.
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Figure 5: ‘Witch hat’ graphs testing GMRF approximations to empirical estimates of covariances
between TREFHT and PRECT.
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Abstract. A new metric
:::
test

:::::::
statistic for climate model evaluation has been developed that potentially

mitigates some of the limitations that exist for observing and representing field and space dependen-

cies of climate phenomena. Traditionally such dependencies have been ignored when climate models

have been evaluated against observational data, which makes it difficult to assess whether any given

model is simulating observed climate for the right reasons. The new metric
::::::
statistic uses Gaussian5

Markov Random Fields for estimating field and space dependencies within a first order grid point

neighborhood structure. We illustrate the ability of Gaussian Markov Random Fields to represent

empirical estimates of field and space covariances using ‘witch hat’ graphs. We further use the new

metric
::::::
statistic

:
to evaluate the tropical response of a climate model (CAM3.1) to changes in two

parameters important to its representation of cloud and precipitation physics. Overall, the inclusion10

of dependency information did not alter significantly the recognition of those regions of parame-

ter space that best approximated observations. However there were some qualitative differences in

the shape of the response surface that suggest how such a measure could affect estimates of model

uncertainty.

1 Introduction15

Within the climate assessment community, there is an interest to develop metrics of how well
:::::::
Climate

:::::::
scientists

:::
are

::::::::
interested

::
in
::::::::::
developing

:::
new

:::::::
metrics

:::
for

::::::::
assessing

:::
how

::::
well

:::::::
climate simulations repro-

duce observed climate for purposes of comparing models, driving model development, and evaluat-

ing model prediction uncertainties (Gleckler et al., 2008; Reichler and Kim, 2008; Santer et al., 2009; Knutti et al., 2010; Weigel et al., 2010) .

Nevertheless, a certain
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Gleckler et al., 2008; Reichler and Kim, 2008; Santer et al., 2009; Knutti et al., 2010; Weigel et al., 2010; Braverman et al., 2011) .20

::::::
Formal

:::::::
methods

:::
for

::::::::::::
accomplishing

:::::
these

:::::
goals,

::::
such

:::
as

::::::::
Bayesian

:::::::::
calibration,

:::::::
operate

::::
with

:
a
::::::
single

:::
test

::::::
statistic1

::
for

::::::::::
determining

:::::::::
likelihood

:::::::
measures

:::
of

:::::::
different

:::::
model

:::::::::::::
configurations.

::
A level of skep-

ticism exists about whether a scalar metric can be sufficiently informative for these purposes
:::::
within

1
:
A
:::
test

:::::
statistic

:
is
::

a
::::
metric

:::
that

::::::
includes

::::::::
information

:::
about

:::
the

::::::::
significance

::
of

::::::
modeling

:::::
errors.
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::
the

:::::::
climate

:::::::::
assessment

::::::::::
community

::::::::::
concerning

:::
the

:::::::::
sufficiency

::
of

:::
any

::::
one

::::::
metric

::
to

:::::
judge

:
a
:::::::
climate

::::::
model’s

::::::::
scientific

:::::::::
credibility. Climate phenomena involve interactions of multiple quantities

:::::
fields25

:::::::::::
(observables)

:
on a wide range of time and space scales from minutes to decades (and longer)

and from meters to planetary scales. Thus it can be challenging to summarize what is physically

meaningful.
::::
there

:::
are

::::::
plenty

::
of

:::::::::
challenges

::::
that

::::
exist

:::
for

::::::::::
synthesizing

:::
the

:::::
many

:::::
ways

::::
that

:
a
:::::::
climate

:::::
model

::::
can

:::
be

:::::
tested

::::::
against

:::::::::::
observational

:::::
data.

The most common approach to climate model evaluation among climate scientists is to display30

maps of long-term means of well-known quantities
::::
fields (e.g. temperature, sea-level pressure, pre-

cipitation) whose distribution is familiar and well understood in order to identify sources of model

error. The Taylor metric that is
:::::
Taylor

::::::
metrics

::::
that

:::
are often generated as part of model evaluation is

::
are

:
based on spatial means of squared grid point errors for individual quantities

::::
fields

:
(Taylor, 2001).

Such measures neglect field and space dependencies and thus may be insensitive to mechanisms35

giving rise to model errors. There is a need to develop metrics that can evaluate whether a model

is capturing observed spaceand field relationships sufficiently well (Braverman et al., 2011) . The

hope is that by accounting for relationship information within climate model metrics, they will

prove to be more useful for scientific evaluation
:::
that

:::::
arise

::
as

:
a
:::::::::::

consequence
:::
of

::::
how

:::
the

::::::
physics

:::
of

::
the

:::::::
climate

::::::
system

::::::::
correlate

:::::::
multiple

:::::::::
quantities

::
in

:::::
space.

:::::::::
Neglecting

::::
these

::::::::::::
dependencies

::::::::
therefore40

::::::
ignores

:::::::::
additional

::::::::::
information

:::
that

::::
can

::
be

::::
used

:::
to

:::
test

:::::::
whether

:::::::
models

:::
are

:::::::::
simulating

::::::::::
observables

::
for

:::
the

:::::
right

:::::::
reasons.

Given that there is only a
::::
Here

:::
we

::::::
present

::
a
::::
new

:::
test

::::::
statistic

:::::
based

:::
on

::::::::
Gaussian

::::::
Markov

::::::::
Random

:::::
Fields

::::::::
(GMRFs)

:::
that

::::::::
addresses

:::::
some

::
of

:::
the

:::::::::
challenges

:::
that

::::::::
currently

::::
exist

:::
for

::::::::
estimating

:::
the

::::::::::
significance

::
of

::::::::
modeling

:::::
errors

::::::
across

:::::::
multiple

:::::
fields

::::
that

::::
takes

::::
into

:::::::
account

::::
field

::::
and

:::::
space

:::::::::::
dependencies

::::
that45

::::
exist

:::::
within

::::::::::::
observations.

::::::
Perhaps

::::
one

::
of

:::
the

:::::::::::::::
under-recognized

:::::::::
challenges

::
in

:::
this

::::::
regard

::
is

:::
the lim-

ited amount of observations available to quantify field and space relationships of climate phenomena,

data assimilation is the most common approach
:::::::::::
dependencies.

::::
Data

:::::::::::
assimilation

:
is
:::::::::
commonly

:::::
used

to fill in gaps in the observational record of a climate model (Trenberth et al., 2008). While assimi-

lation data products help solve
:::::::
products

::::
help

::::::
address

:
some aspects of the problem of how one com-50

pares point measurements to the scales resolved by climate models, these data products include the

space and field dependencies of the model that was used to assimilate the data. Here we introduce

a new kind of metric based on
:::::::::::
observations.

:::
The

:::::::
imprint

::
of
::::

the
::::::::
reanalysis

::::::
model

::
is

::::::
readily

:::::
seen

::::
when

:::::::::
comparing

::::
two

::
or

:::::
more

::::::::::
assimilation

::::::::
products,

::::::::::
particularly

::::::::
quantities

::::
that

:::
are

:::::::
directly

::::::
related

::
to

::::::::::::
parameterized

::::::
physics

:::::
such

::
as

:::::::::::
precipitation

::::
and

::::::::
radiation.

::::
One

::
of

::::
the

:::::::::
advantages

:::
of Gaussian55

Markov Random Fields that only needs limited
::::::::
(GMRFs)

::
is

:::
that

::
it
:::::

only
:::::
needs

::
a

::::::
limited

:::::::
amount

::
of data to decipher space and field dependencies of climate phenomena.

:::
This

:::
is

:::::::
because

:::::::
GMRFs

:::::::::
summarize

::::::::::
relationship

::::::::::
information

::
as

:
it
::
is
:::::::::
expressed

:::::
across

:::::
fields

::
of

:::::::
gridded

::::
data.

:
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:::
The

:::::::
present

:::::::::
application

:::
of

:::::::
GMRFs

:::::::
operates

:::
on

:::::::::
long-term

::::::
means.

:::::
While

::
it
::::

may
:::

be
:::::::
possible

:::
to

:::::
extend

::::::::
GMRFs

::
to

:::::::
capture

::::
time

:::::::::::
dependencies

:::::::::::::::::::::::
(Cressie and Wikle, 2011) ,

:::
the

:::::::
present

::::::::::
application60

::::::::
represents

::
an

:::::::
advance

::::
over

:::::
more

:::::::::
traditional

:::::::
metrics.

We define a new Z-test statistic, alternatively referred to as a log-likelihood or cost for assessing

the significance of a discrepancy between model output and observations. The statistic makes use of

Gaussian Markov Random Fields to estimate field and space dependencies that exist within gridded

climate model output that can be assessed against space and field dependent observational data. The65

matrix form of the test statistic is given by:

vTS−1⊗ (αI + (1−α)Q)v

where v is the vector of differences between model output and observations with a length given

by the product of the number of observational fields and number of grid points, nobs×npts, α is

a scalar with a value close to zero, I stands for an identity matrix (a diagonal matrix of ones) of a70

dimension corresponding to v, and Q is a precision matrix of dimension npts×npts from a Gaussian

Markov Random Field (GMRF) induced by a first order neighborhood structure. This cost function

captures field dependenciesthrough S−1 which is a matrix of dimension nobs×nobs where each of

its elements represents a spatial-average of grid point variances and covariances between fields. The

spatial dependency between grids is approximated through Q. The quantity α could be interpreted as75

a weight of the spatial relationship between grid cells. The Kronecker product ⊗ provides a means

for associating the different matrix dimensions of the metric, essentially combining its field and

space components.

The sections of this paper explain, test, and provide examples of how various components of

equation (2)
::::::
GMRF work. Section 2 gives a brief introduction to GMRFs . This section will allow us80

to understand how
:::
and

:::
the

::::
use

::
of

:
a
::::::::::::
neighborhood

::::::::
structure

:::
for

:::::::::
estimating

::::::::::
dependency

::::::::::
information

::::
using

::
a

:::::::
precision

:::::::
operator

:
Qis obtained and the information that it provides about spatial dependency

between grid cells. In this section we also define and discuss Kronecker products, and how
:::
the

::::::::
Kronecker

:::::::
product

:::
and

::::
how

::
it

::
is

::::
used

::
to

:::::::::
generalize

:::::::
GMRFs to use this concept to generalize GMRF

ideas to deal with more than one field. Section 3 introduces a graph for testing the extent to which85

equation (2) captures
:::::::
GMRFs

::::::::
represent observed variance-covariances of tropical temperature, pre-

cipitation, sea level pressure, and upper level winds. Finally, in Section 4, we consider the field

and space dependencies that are captured by the GMRF-based metric within the response of an

atmospheric general circulation model CAM3.1 to two model parameters important to cloud and

precipitation physics. What we learned in general is that including the space and field dependencies90

provides some qualitatively different perspectives about which model configurations are more simi-

lar to what is observed. For the example we consider, the effects of space dependencies turn out to

be more critical than field dependencies.
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2 Gaussian Markov Random Fields (GMRFs)

A Gaussian Markov Random Field (GMRF) is a special case of a multivariate normal distribution,95

one that satisfies additional properties related to conditional independence. The density of a normal

random vector x = (x1,x2, ...,xn)T (where T denotes the operation of transposing a column to a

row), with mean µ (n× 1 vector) and covariance matrix Σ (n×n matrix), is

f(x) = (2π)−n/2|Σ|− 1
2 exp

{
−1

2
(x−µ)TΣ−1(x−µ)

}
(1)

Here, µi = E(xi), Σij = Cov(xi,xj), and Σii = V ar(xi)> 0. ,
::::
and

:::
|Σ|

::
is
:::
the

:::::::::::
determinant

::
of

:::
Σ.100

:::::::::
Estimating

::
Σ

:::
can

:::
be

::::
quite

::::::::::
challenging

::
in

:::::
many

::::::::
contexts,

::::::::
especially

:::
for

::::::
climate

:::::::
models

:::::
where

:::::
there

:
is
::::
only

:::::::
limited

::::
data.

:
All eigenvalues of Σ must be greater than zero, otherwise Σ

::::
Σ−1 becomes a

singular matrix and does
:
it
::::
does

:::
not

:
define a valid multivariate normal distribution. It can also be

shown that if all eigenvalues of Σ are positive then all eigenvalues of Σ−1 are also greater than zero.

We define Q = Σ−1 and refer to Q as
:::::
Rather

::::
than

:::::::::
estimating

::
Σ
::::

and
::::::::
ensuring

::
all

::::::::::
eigenvalues

:::
of105

::::
Σ−1

:::
are

:::::::
positive,

:::::::
GMRFs

::::::
makes

:::
use

::
of

:
the precision matrix , and denote x∼N(µ,Q)

:::::::::
P = Σ−1.

:::
We

:::::
denote

:::::::::::
x∼N(µ,P)

:
to represent x as a multivariate normal distribution with vector mean µ and

precision matrix Q.
::
P.

:::::::
GMRFs

:::::::::::
approximate

::::
f(x)

:::::
using

::
a
::::::
sparse

::::::::::::
representation

:::
for

::
P

:::
by

::::::
setting

::
all

:::::::::
precisions

::::::
outside

::
a
::::::::::::
neighborhood

::::::::
structure

::
to

:::::
zero.

:::::
Thus

:::::::
GMRFs

:::::
make

:::
the

::::::::::
assumption

::::
that

:::::
points

::::::
outside

:
a
::::::::::::
neighborhood

::::::::
structure

::
are

:::::::::::
conditionally

:::::::::::
independent.

:::
As

:::
we

::::
shall

:::::
show

:::::
below,

::::
this110

::::::::
limitation

::::
does

:::
not

:::::::
prevent

:::::::
GMRFs

::::
from

::::::::
capturing

::::::::::
covariances

::::::
outside

:::
the

::::::::::::
neighborhood

::::::::
structure

::::
used

::
to

:::::
define

:::::::::
precisions.

:

2.1 Precision matrix of a GMRF

The precision matrix Q is an operator for obtaining information about dependencies among neighboring

grid
:::
The

:::::::::::
GMRF-based

:::::::::
expression

:::
that

:::
we

::::
have

:::::::::
developed

::
for

::::::::::
quantifying

:::
the

::::::::::
significance

::
of

:::::::::
differences115

:::::::
between

:::::
model

::::::
output

:::
and

:::::::::::
observations

::
is

vTS−1⊗ (αI + (1−α)Q)v
:::::::::::::::::::::::

(2)

:::::
where

::
v

::
is

:::
the

:::::
vector

::
of

::::::::::
differences

:::::::
between

:::::
model

::::::
output

::::
and

::::::::::
observations

::::
with

::
a

:::::
length

:::::
given

:::
by

::
the

:::::::
product

::
of

:::
the

:::::::
number

::
of

:::::::::::
observational

:::::
fields

::::
and

::::::
number

:::
of

:::
grid

::::::
points,

::::::::
nobsnpts,::

α
::
is

:
a
::::::

scalar

::::
with

:
a
:::::
value

:::::
close

::
to

::::
zero,

::
I

:::::
stands

:::
for

:::
an

::::::
identity

::::::
matrix

::
(a

::::::::
diagonal

:::::
matrix

:::
of

:::::
ones)

::
of

:::::::::
dimension120

:::
npts:::::::::::::

corresponding
::
to

::
v,

::::
and

::
Q

::
is

:
a
::::::::

precision
::::::::
operator

::
of

:::::::::
dimension

::::::::::
npts×npts ::::

from
::
a
::::::::
Gaussian

::::::
Markov

::::::::
Random

::::
Field

::::::::
(GMRF)

:::::::
induced

::
by

::
a

:::
first

:::::
order

::::::::::::
neighborhood

::::::::
structure.

::::
This

:::
cost

::::::::
function

:::::::
captures

::::
field

:::::::::::
dependencies

:::::::
through

::::
S−1

:::::
which

::
is

:
a
::::::
matrix

::
of

:::::::::
dimension

::::::::::
nobs×nobs:::::

where
::::
each

:::
of

::
its

:::::::
elements

:::::::::
represents

:
a
:::::::::::::
spatial-average

::
of

::::
grid

::::
point

::::::::
variances

::::
and

::::::::::
covariances

:::::::
between

:::::
fields.

::::
The

:::::
spatial

::::::::::
dependency

::::::::
between

::::
grids

::
is

::::::::::::
approximated

::::::
through

:::
Q.

::::
The

:::::::
quantity

::
α

:::::
could

::
be

::::::::::
interpreted125

::
as

:
a
:::::::

weight
::
of

:::
the

::::::
spatial

:::::::::::
relationship

:::::::
between

::::
grid

:::::
cells.

::::
The

:::::::::
Kronecker

:::::::
product

::
⊗

::::::::
provides

::
a

:::::
means

:::
for

:::::::::
associating

::::
the

:::::::
different

::::::
matrix

:::::::::
dimensions

:::
of

:::
the

::::::
metric,

:::::::::
essentially

:::::::::
combining

:::
its

::::
field
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:::
and

:::::
space

::::::::::
components.

:::::
Each

::
of

:::
the

::::::::
following

::::::::::
subsections

:::::::
provides

:::::::::
additional

::::::::::
information

:::::
about

:::
the

::::::::
derivation

:::
and

::::::::::
application

::
of

:::::::
equation

::::
(2).

2.1
:::::::
Precision

::::::::
operator

::
of

::
a
:::::::
GMRF130

:::
The

::::::::
precision

:::::::
operator

::
of

::
a
::::::
GMRF

::
Q

::::::::
provides

:
a
::::
way

::
to

:::::::
estimate

:::::::::::
dependencies

::::::
among

:::::::::::
neighboring

:::
grid

:
cells. Although Q is sparse, its inverse, as a model for the covariance matrix Σ, presumes all

grid points are conditionally dependent. Q needs to be constructed such that it:

– Reflects the kind of spatial dependency we assume our data has.

– Yields a legitimate covariance matrix, Σ, i.e. symmetric and positive definite, so that it can be135

used to compute a likelihood function.

X1

X3

X2

X4

Figure 1. Graphical representation of 2× 2 lattice and elements of x.

X1

X3

X2

X4

X1

X3

X2

X4

X1

X3

X2

X4

X1

X3

X2

X4

Figure 2. Neighbors of x1, x2, x3 and x4

Consider x, a vector of measurements on a 2× 2 lattice, as represented in Figure 1. Assume a

neighborhood structure between the four elements of x. In Figure 2, the neighbors for each element

5



of x are defined graphically. Given the neighborhood structure shown in Figure 2, the precision

matrix that works for this problem is

Q =


2 −1 −1 0

−1 2 0 −1

−1 0 2 −1

0 −1 −1 2


which follows these rules,

– Qij =−1, if xi and xj are neighbors.

– Qij = 0, if xi and xj are not neighbors.

– Qii gives the total number of neighbors of xi.140

While the implementation of GMRFs is simple, the theory and mathematics are rather involved.

A fuller
::::
more

::::
full description of the mathematics of this example is provided in the supplemental

material. It may also not be immediately clear to a physical scientist that such a simple specification,

where only relationships among neighboring grid cells are taken into account, would be sufficient

to quantify correlated quantities across large distances. The mathematics of working with precisions145

allows one to infer the net effect of long distance relationships through relationship information

that exists among neighboring cells. While the GMRF approach does not include information about

particular teleconnection structures such as ENSO, the approach is sensitive to how changes in large

scale conditions induce local covariances across multiple fields within the entire domain. In this way

teleconnections are represented through a conditional dependence.150

A problem arises in that one of the eigenvalues of the Q matrix is 0, which implies that this

definition of the precision matrix does not induce an invertible covariance matrix. This problem is

solved by using αI + (1−α)Q, instead of Q. If α is small, the neighborhood structure remains

essentially unchanged. Section 3 describes our approach to specifying
::::::
specify

:
a value for α.

2.2 Generalizing concepts to deal with multiple fields155

The generalization of Q to handle multiple fields will be illustrated by an example using
::::::
involves

::
a

::::::::
Kronecker

:::::::
product

:::
(⊗)

::::::::
between

::::
S−1

:::
and

:::
Q.

:::
For

::::::::
reference,

::
a
:::::::::
Kronecker

::::::
product

::
of

::::::
A⊗B

::::::
where

A=

 1 4

2 5

 and B =

 1 3

0 4


:::::::::::::::::::::::::::::::
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:
is
:::::
given

:::
by

A⊗B =

 1(B) 4(B)

2(B) 5(B)

=


1 3 4 12

0 4 0 16

2 6 5 15

0 8 0 20

 .
:::::::::::::::::::::::::::::::::::::::::::

:::::::
Consider

:
x and y which represent observations for two different fields of interest . These observations

are taken on a 2× 2 lattice. First, x and y are combined to form one vector v as follows: vT =

(x1,x2,x3,x4,y1,y2,y3,y4). The average covariances among these observations can be represented

by a 2× 2 matrix between the first field, x, and the second field, y:

S =

 σ11 σ12

σ21 σ22


::::::::::::::::

S =

 σ11 σ12

σ12 σ22


where V ar(x) = σ11, V ar(y) = σ22, and Cov(x,y) = σ12. Recalling that the correlation between

fields 1 and 2 is defined as: ρ= σ12√
σ11σ22

, one may
::
can

:
show that the inverse of S is

S−1 =

 1
σ11(1−ρ2)

−ρ
(1−ρ2)√σ11σ22

−ρ
(1−ρ2)√σ11σ22

1
σ22(1−ρ2)

=

 S−111 S−112

S−121 S−122 .


If we consider the Kronecker product in Equation 1

:::::::
equation

::
(2)

:
when α= 0,

S−1⊗Q =

 S−111 Q S−112 Q

S−121 Q S−122 Q


then

vTS−1⊗Qv = S−111 xTQx +S−112 yTQx +S−121 xTQy +S−122 yTQy.

In this last expression, one can see that the inverse of S in combination with the Kronecker product

with Q includes terms involving cross products between fields. The supplemental
::::::::
materials carries160

this expression one step further by estimating the conditional mean for the the first element of v to

illustrate how this element is related to itself and its neighbors across multiple fields.

3 A test of GMRF estimates of variance

GMRFs provide a way to approximate field and space dependencies contained in the inverse covari-

ance matrix Σ−1 of equation(1
::
(1) by its GMRF equivalent S−1⊗ (αI+ (1−α)Q). In this section,165

we will test how well GMRF
::::::
GMRFs

:
are able to reproduce observed space and field dependencies.
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This may be achieved by comparing field and spatial variance and covariance estimates obtained

from the inverse of the GMRF equation
:::::::
estimate

::
of

:::
the

::::::::
precision

:::::
matrix

:
with those obtained empiri-

cally from observational data. It turns out this comparison is sensitive to the value that is selected for

α. Fortunately
:::
By

::::::::::
construction, the optimal choice of α depends only on geometric considerations of170

the neighborhood model that is used for GMRF and the number of grid points in the fields and not

the properties of the field data. We introduce a ‘witch hat’ graph that provides a compact summary

of variance-covariance information between these two methods in order to show that GMRFs do a

reasonable job approximating observed field and space relationships.

3.1 Finding an appropriate value of α175

In the effort to compare space and field dependencies approximated by GMRF with empirical esti-

mates we need to determine an optimal value for α. In order to carry out this comparison, we need

to find the inverse of S−1⊗ (αI+(1−α)Q), our proposed precision matrix based on GMRF. Using

results of Kronecker products, we have that
[
S−1⊗ (αI + (1−α)Q)

]−1
= S⊗(αI+(1−α)Q)−1.

Letting Q∗ = (αI + (1−α)Q)−1, then S⊗Q∗ for two fields can be written as S11Q
∗ S12Q

∗

S21Q
∗ S22Q

∗

 .
If n is the total number of grid points of the lattice, S⊗Q∗ is a (2×n)× (2×n)

:::::::
2n× 2n covariance

matrix. Note that each element of diag(SijQ
∗) contains the estimated variance or covariance at each

grid point for fields i and j using a GMRF where i can be equal to j. If we average these estimates

across the whole lattice, we obtain Gij , the GMRF estimate of the variance or covariance
:::
for

:::::
fields

:
i
:::
and

::
j. Therefore,180

Gij =
Sij
∑n
k=1Q

∗
kk

n
=
Sijtr(Q

∗)

n
(3)

where tr(Q∗) denotes the trace of Q∗ and Q∗kk are its diagonal elements. We will now select a value

for α that allows the GMRF estimate for field variances and covariances to be equal, on average,

to what has been calculated for S. In order to achieve this, Gij needs to equal Sij . Satisfying this

condition is equivalent to finding the solution for185

tr(Q∗)

n
= 1. (4)

It may not be so obvious what the diagonal elements of Q∗ are. However, one can use the fact

that for any matrix A that admits a Singular Value Decomposition, tr(A) is equal to sum of its

eigenvalues. In our case, if the eigenvalues of Q are λ1,λ2, ...,λn, the eigenvalues of αI+(1−α)Q

are α+(1−α)λ1,α+(1−α)λ2, ...,α+(1−α)λn. The eigenvalues of Q∗ = (αI+(1−α)Q)−1 are190

(α+ (1−α)λ1)−1,(α+ (1−α)λ2)−1, ...,(α+ (1−α)λn)−1. This implies that in order to satisfy

8



Equation 4
:::::::
equation

::
(4), we need to find α from

f(α) =

n∑
i=1

1

n(α+ (1−α)λi)
= 1. (5)

Figure 3 shows the relationship between various values of α and f(α). The eigenvalues used to

obtain this figure correspond to a precision matrix
::
the

::::::::
precision

::::::::
operator, Q, for a GMRF induced195

by a first order neighborhood structure and considering a 128× 22 lattice (which is the dimension

of our data). From the figure we can see that the curve crosses the value of 1 when α is close to 0.

By using linear interpolation, we determine that α is approximately 0.0026.
::::
Note

:::
that

::::
this

:::::
value

::
is

::::::::::
independent

::
of

:::::
fields

::::
since

::::::::
equation

:::
(5)

::::
does

:::
not

::::::
contain

::::
any

::::::::::
field-specific

:::::::::::
information.

0.0 0.2 0.4 0.6 0.8 1.0

0.
6

0.
8

1.
0

1.
2

α

f(α)

Figure 3. α vs f(α).

200

3.2 ‘Witch hat’ comparison test

To illustrate any differences that may exist between empirical estimates of the covariance matrix

Σ and its GMRF equivalent S⊗ (αI + (1−α)Q)−1, we rely on a graph that shows the spatial

average grid point variance and covariances as a function of distance for cells and their neighbors.

We compute the average entries of the covariance matrix corresponding to each grid cell and the205

corresponding element to the north
::
or

::::
east (for the positive distances) or to the south

::
or

::::
west

:
(for

the negative distances) relative to the main diagonal of the matrix. The zero distance case is the

9



average of variances of the main diagonal. Alternatively, we can produce a graph that considers the

east and west directions
:::
The

::::
cells

::::::::::::
corresponding

::
to

:::
one

:::
or

::::
more

::::
grid

::::
cells

:::::
away

:::
are

:::::
mostly

:::
on

::::::
entries

::
in

::::::
parallel

::::
with

:::
the

::::
main

::::::::
diagonal. On average, covariances decrease with distance making the graph210

have the shape of a witch’s hat. This graph is symmetric because covariance matrices are symmetric.

Figure 4 shows a witch hat
:::::
‘witch

::::
hat’

:
test of estimated variances for air temperatures simulated

by the Community Atmosphere Model version 3.1 (CAM3.1). The variances are estimated from 15

samples of two year mean summertime temperatures. Setting α= 1 provides a solution to equa-

tion
:
(5), however, this will shut down the effect of Q and only the variances at the reference point215

(lag 0) will be well estimated
::::::::::
represented. On the other hand, when α= 0.0026, we allow Q to play

more of a role which results in a better representation of covariances at neighboring points (lags

different of zero).

−4 −2 0 2 4

0.0
0.1

0.2
0.3

 α = 0.0026

empirical
GMRF

−4 −2 0 2 4

0.0
0.1

0.2
0.3

α = 1

Distance Distance 

Va
ria

nc
e 

Va
ria

nc
e 

Figure 4. ‘Witch hat’ graphs for air temperature on a 128× 22 lattice of the tropics from 30◦S to 30◦N. The

empirical estimates are given by the solid red line. The GMRF estimate is given by the dashed blue line.

4 Climate response to uncertain parameters

In this section we show how inclusion of field and space dependencies using GMRF affect com-220

parisons of the Community Atmosphere Model (CAM3.1) (Collins et al., 2006) with observations.

We consider CAM3.1’s response to to changes in parameter ke, which controls rain drop evapo-

ration rates, and parameter c0, which controls precipitation efficiency through conversion of cloud

10



water to rain water. For this comparison we only consider the response for the June, July, and Au-

gust (JJA) seasonal mean between 30◦S to 30◦N on four variables including 2 meter air temperature225

(TREFHT), 200-millibar zonal winds (U), sea level pressure (PSL), and precipitation (PRECT). Ex-

periments with CAM3.1 use observed climatological sea surface temperatures and sea ice extents.

Each experiment with CAM3.1 is 32-years in duration.

The observational data that is used to evaluate the model comes from a reanalysis product ECMWF-

ERA interim (Uppala et al., 2005) for 2 m air temperature, 200-millibar zonal winds, and sea level230

pressure and GPCP (Adler et al., 2009) for precipitation. We make use of approximately 30 years

of JJA mean fields between 1979 and 2009. For constructing S, we calculate variances from 2-year

means (i.e. 15 samples).

A total of 64 experiments were completed, varying each of the two parameters within an 8×8 lat-

tice. For each experiment we calculate three versions of GMRF-based cost(equation
::
the

::::::
GMRF

::::
test235

::::::
statistic

:::::
which

:::
we

::::
refer

::
to

::
as

::
a
:::::
‘cost’

::::::::
(equation 2). The first version is the traditional cost based on the

assumption of space and field independence set here by setting
:::::
where

:
the off diagonal components

of S
::
are

:::
set to zero and setting α= 1 . This approach is similar to what has been done previously for

Taylor (2001). The second version of evaluating the cost takes field dependencies into account by

including all components of S and setting α= 1. The third version for the cost takes field and space240

dependencies into account by including all components of S and setting α= 0.0026.

The correlation matrix, R, corresponding to the S matrix of 2-year JJA seasonal mean variances

and covariances, as estimated from 30 years of observations, is:

PRECT PSL TREFHT U

PRECT 1 -0.219 -0.047 0.015

PSL -0.219 1 -0.313 -0.112

TREFHT -0.047 -0.313 1 -0.145

U 0.015 -0.112 -0.145 1

The primary field correlations are the values of (-0.313) and (-0.219) occurring between sea level245

pressure (PSL) and 2 m air temperature (TREFHT), and precipitation (PRECT) and sea level pres-

sure (PSL), respectively. These correlations make physical sense in that precipitation mainly occurs

within low pressure storm systems which tends to cool the underlying surface. The other correlations

are minimal and there is not a good physical argument supporting their relationship.
::::
Maps

:::
of

:::
the

:::
grid

:::::
point

::::::::::
correlations

::::::::
between

::::
these

::::::
fields

::::
show

::
a
:::
lot

::
of

::::::::
structure

::::
with

:::::::
regions

::
of

:::::
both

:::::::
positive250

:::
and

:::::::
negative

:::::::::::
correlations.

:::::::::
Therefore,

::::::::
providing

:
a
::::::::::
mechanistic

::::::::::
explanation

:::
of

:::
the

:::::::
spatially

::::::::
averaged

:::::::::
correlation

:
is
:::
not

::::::::::
particularly

::::::::::
meaningful.

::::::
Despite

::::::
losing

:::::::
regional

:::::::::
information

::
in

:::
the

::
S

:::::
matrix

::::::::
summary

::
of

::::
field

::::::::::
covariances,

::::::
GMRF

::::::::
estimated

::::
field

::::::::::
covariances

::
as

::::
seen

:::::
within

::::::
‘witch

:::
hat’

::::::
graphs

:::
are

:::::::::
reasonable

::
as

::::::::
compared

::
to

::::::::
empirical

::::::::
estimates

::::
(see

::::::::::::
supplemental).

:

Figure 5 shows a comparison of the three versions of the GMRF-based cost for the 64 experiments255

within an 8× 8 lattice. All versions of cost result in qualitatively similar results with high and low
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Figure 5. Three versions of the GMRF-based cost as a function of two CAM3.1 parameters ke and c0 that

assumes the data has (a) field and space independence, (b) field dependencies, and (c) field and space depen-

dencies. Each color represents ten percentiles of the cost distribution. The cost is shown relative to the value of

the default model configuration.

cost values roughly in the same portions of parameter space. The main difference among the versions

of cost comes from taking space dependencies into account within the field-space version. In this

case, extremely low values of ke result in higher metric values. Figure 6 examines the reasons for this

by graphing the different field contributions to the GMRF-based costs for a slice where c0 = 0.0035260

which corresponds to one of the rows of the lattice. By plotting everything differenced from metric

values at ke = 3× 10−6, one can learn that the biggest qualitative difference comes from cost values

associated with 2 m air temperature. Closer inspection of differences between model output and

observations of 2 m air temperature (not shown) indicates that the traditional cost is likely reflecting

large-scale differences over the southern hemisphere oceans. Inclusion of space dependencies places265

much greater significance on smaller-scale anomalies occurring over the continents, particularly over

the Andes Mountains. This finding is a result of the mathematics of GMRF. It does not imply that

the large-scale errors are of lesser scientific importance. It only means that GMRF is less sensitive

to large-scale anomalies, perhaps because they are associated with fewer degrees of freedom than

highly structured errors. Understanding whether and how these distinctions aid model assessment270

needs further study. We do find it reassuring that GMRF-based metrics of distance to observations

are similar, at least in the example provided, to a traditional metric.

5 Summary

We have developed a new test statistic as a scalar measure of model skill or cost for evaluating the

extent to which climate model output captures observed field and space relationships using Gaussian275

Markov Random Fields (GMRFs). The challenge has been that few observations exist for estab-
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Figure 6. Different field contributions to the GMRF-based costs for a slice of Figure 5 where c0 = 0.0035. Cost

values are relative to the default parameter setting for ke. Note that total cost (black dashed line) is a weighted

sum of field contributions as given by S−1 with contributions from sea level pressure (PSL, red line), 2-m air

temperature (TREFHT, green line), 200-millibar zonal winds (U, blue line), and total precipitation (PRECT,

cyan line).

lishing a meaningful observational basis for quantifying field and space relationships of climate

phenomena. Much of the data that is typically used for model evaluation is suspected of having its

own relationship biases introduced by the numerical model that is used to synthesize measurements

into gridded products. The GMRF-based metric overcomes some of these limitations by consider-280

ing field and space variations within a neighborhood structure thereby lowering the metric’s data

requirements. The form of the metric separates space and field dependencies using a Kronecker

product that, when multiplied out, has all the terms necessary to represent how different points in

space are tied together across multiple field. We also include a scalar α that weights the importance

of spatial relationships between grid cells. Its optimal value turns out to be independent of the data285

type which aids the use of GMRFs for comparing model output to data across multiple fields. Using

‘witch hat’ graphs, we show a first order (nearest neighborhood) structure does an excellent job of

capturing empirical estimates of field and space relationships
::
for

::::::
various

:::::::::::
lag-windows

::
or

::::::::
distances.

We have applied three versions of cost that selectively turn on or off field and space dependencies
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in a climate model (CAM3.1) output against observational products for tropical JJA climatologies290

for 2 m air temperature, sea level pressure, precipitation, and 200-millibar zonal winds. The results

show subtle, but potentially important differences among these versions of the cost which may prove

beneficial for selecting models that capture observed climate phenomena for the right reasons.

6 Code and data availability

R code and data for generating figures
::::::
Figures

:
5 and 6 can be obtained through https://zenodo.org/record/33765,295

Nosedal-Sanchez et al. (2015)
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Mathematical details to find Q for a 2× 2 lattice.

Consider x ∼ N(04×1,Q4×4), a vector of measurements on a 2 × 2 lattice, as represented in
Figure 1 of the main manuscript. Assume a neighborhood structure between the four elements
of x. In Figure 2 of the main manuscript, the neighbors for each element of x are defined
graphically. Given this structure, one can write expressions for the conditional means that
reflect how information at each grid point might be related to its neighbors. Therefore,

E(x1|x2, x3, x4) = β12x2 + β13x3, (1)

E(x2|x1, x3, x4) = β21x1 + β24x4, (2)

E(x3|x1, x2, x4) = β31x1 + β34x4, (3)

E(x4|x1, x2, x3) = β42x2 + β43x3. (4)

These expressions are used to find a relationship between the β coefficients and the elements
of Q. Since x ∼ N(04×1,Q4×4), the joint probability distribution of x is given by,

f(x1, x2, x3, x4) ∝ exp(−1
2
(Q11x

2
1 +Q22x

2
2 +Q33x

2
3 +Q44x

2
4 + 2Q12x1x2 + 2Q13x1x3 + 2Q14x1x4

+2Q23x2x3 + 2Q24x2x4 + 2Q34x3x4)).

Using this joint probability distribution, we derive the full conditional of x1 given x2, x3, x4,

f(x1|x2, x3, x4) ∝ exp

{
−1

2
Q11

(
x21 − 2x1

(
−Q12

Q11

x2 −
Q13

Q11

x3 −
Q14

Q11

x4

))}
. (5)

This expression can be re-written as

f(x1|x2, x3, x4) ∝ exp

{
−1

2
Q11

(
x1 −

(
−Q12

Q11

x2 −
Q13

Q11

x3 −
Q14

Q11

x4

))2
}
. (6)
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From matching (6) to the expression of a univariate normal distribution,

E(x1|x2, x3, x4) = −Q12

Q11

x2 −
Q13

Q11

x3 −
Q14

Q11

x4, (7)

and
Prec(x1|x2, x3, x4) = Q11. (8)

By comparing equations (1) and (7), we obtain

β12 = −Q12

Q11

, β13 = −Q13

Q11

, β14 = −Q14

Q11

= 0.

Considering the full conditionals for x2, x3 and x4 and its conditional expectations respectively,
yield similar relationships between the β coefficients and the elements of Q:

β21 = −Q21

Q22

, β23 = −Q23

Q22

= 0, β24 = −Q24

Q44

β31 = −Q31

Q33

, β32 = −Q32

Q33

= 0, β34 = −Q34

Q33

β41 = −Q41

Q44

= 0, β42 = −Q42

Q44

, β43 = −Q43

Q44

.

These relationships hold for an n dimensional distribution as established in Rue and Held [1].
If the conditional means and precisions can be written as

E(xi|x−i) = µi +
∑
j 6=i

βij(xj − µj) and (9)

Prec(xi|x−i) = ki > 0, (10)

then x = (x1, x2, . . . , xn) follows a multivariate normal distribution with mean µ = (µ1, µ2, . . . , µn)
and precision matrix Q of entries Qij, where

Qij =

{
−kiβij i 6= j
ki i = j

(11)

provided kiβij = kjβji, i 6= j.

If we let Prec(xi|x−i) = 2 (i = 1, 2, 3, 4), β12 = β13 = β21 = β24 = β31 = β34 = β42 =
β43 = 1/2 and β14 = β23 = β32 = β41 = 0 using equations (9)-(11), x = (x1, x2, x3, x4) follows
a multivariate normal distribution with mean µ = (0, 0, 0, 0)T and precision matrix

Q =


2 −1 −1 0
−1 2 0 −1
−1 0 2 −1

0 −1 −1 2

 .
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Generalizing Q to deal with multiple fields.

The generalization of Q to handle multiple fields is illustrated by a case with two fields, x
and y which represent the difference between a model and observations for these fields. These
observations are assumed to be on a 2× 2 lattice, as shown in Figure 1.

X1

X3

X2

X4

Field One

Y1

Y3

Y2

Y4

Field Two

Figure 1: Two fields with observations x, y defined on a 2× 2 lattice.

Firstly x and y are combined into one vector v so that v = (v1, v2, v3, v4, v5, v6, v7, v8)
T =

(x1, x2, x3, x4, y1, y2, y3, y4)
T . The covariance among these observations can be represented by

a 2× 2 matrix between the field 1, x, and the field 2, y,

S =

(
σ11 σ12
σ12 σ22

)
,

where V ar(x) = σ11, V ar(y) = σ22, and Cov(x,y) = σ12. Recalling that the correlation
between fields 1 and 2 is defined as: ρ = σ12√

σ11σ22
, it is easy to verify that the inverse of S is

S−1 =

(
1

σ11(1−ρ2)
−ρ

(1−ρ2)√σ11σ22
−ρ

(1−ρ2)√σ11σ22
1

σ11(1−ρ2)

)
.

Defining Q∗ as S−1 ⊗Q, the Kronecker product of S−1 and Q, then,

Q∗ = S−1 ⊗Q =

(
1

σ11(1−ρ2)Q
−ρ

(1−ρ2)√σ11σ22 Q
−ρ

(1−ρ2)√σ11σ22 Q
1

σ11(1−ρ2)Q

)
.
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Figure 2: Neighbors of x1 for a 2× 2 lattice and two fields x and y.

To see what type of relationships are imposed by Q∗ on the elements of v, consider the first
element v1 = x1. Also notice that the first row of Q∗ is,(

2
σ11(1−ρ2)

−1
(1−ρ2)σ11

−1
(1−ρ2)σ11 0 −2ρ√

σ11σ22(1−ρ2)
ρ√

σ11σ22(1−ρ2)
ρ√

σ11σ22(1−ρ2) 0
)
. (12)

Using equations (9)-(11), it can be easily checked that the value for β12 =
−Q∗

12

Q∗
11

= 1
2
. The other

β values can be determined in a similar fashion. Using these β coefficients, the equations for
the conditional mean and precision of v1 = x1 given the rest of the elements of v are

E(v1|v−1) =
1

2
x2 +

1

2
x3 +

ρσ11√
σ11σ22

y1 −
ρσ11

2
√
σ11σ22

y2 −
ρσ11

2
√
σ11σ22

y3 (13)

and

Prec(v1|v−1) =
1

σ11(1− ρ2)
. (14)

The expression for the conditional mean can be rewritten in terms of the slope b of the linear
regression between x and y, b =

ρ
√
σ11√
σ22

, with ρ equal to their correlation,

E(v1|v−1) =
1

2
x2 +

1

2
x3 + by1 −

b

2
y2 −

b

2
y3. (15)

Equation (15) implies that the neighbors of x1 are x2, x3, y1, y2 and y3. Figure 2 shows a
graphical display of all neighbors of x1 in the context of the two fields x, y and a 2×2 lattice.
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Interpretation of S matrix

Reviewers raised the question about the physical interpretation of the correlation matrix R,
corresponding to the S matrix of 2-year JJA seasonal mean variances and covariances. We
noted that it is difficult to ascribe a particular interpretation to these numbers since taking
a spatial average may result in a small correlation from fields that have large but opposing
correlations. Figure 3 shows maps of the grid point correlations between JJA mean 2m air
temperature (TREFHT), sea level pressure (PSL), and precipitation (PRECT) with sea level
pressure (PSL). What is clear between all these figures is that there is a lot of structure to all
these maps. The sign of the correlation is regionally dependent. This is the case for 2m air
temperature (TREFHT) and precipitation (PRECT) which has a near zero correlation within
the correlation matrix R but have regionally very high correlations. Figure 4 shows that the
‘witch hat’ test of the GMRF-based estimate of covariances between these two fields show
that GMRFs are doing a reasonable job.
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Figure 3: JJA correlations between 2m air temperature (TREFHT), sea level pressure (PSL),
and precipitation (PRECT).
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Figure 4: ‘Witch hat’ graphs testing GMRF approximations to empirical estimates of covari-
ances between TREFHT and PRECT.
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