Articles | Volume 9, issue 6
Geosci. Model Dev., 9, 2115–2128, 2016
https://doi.org/10.5194/gmd-9-2115-2016

Special issue: Nucleus for European Modelling of the Ocean - NEMO

Geosci. Model Dev., 9, 2115–2128, 2016
https://doi.org/10.5194/gmd-9-2115-2016
Development and technical paper
10 Jun 2016
Development and technical paper | 10 Jun 2016

Performance and results of the high-resolution biogeochemical model PELAGOS025 v1.0 within NEMO v3.4

Italo Epicoco et al.

Related authors

Parallel Implementation of the SHYFEM Model
Giorgio Micaletto, Ivano Barletta, Silvia Mocavero, Ivan Federico, Italo Epicoco, Giorgia Verri, Giovanni Coppini, Pasquale Schiano, Giovanni Aloisio, and Nadia Pinardi
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2021-319,https://doi.org/10.5194/gmd-2021-319, 2021
Revised manuscript under review for GMD
Short summary

Related subject area

Biogeosciences
ECOSMO II(CHL): a marine biogeochemical model for the North Atlantic and the Arctic
Veli Çağlar Yumruktepe, Annette Samuelsen, and Ute Daewel
Geosci. Model Dev., 15, 3901–3921, https://doi.org/10.5194/gmd-15-3901-2022,https://doi.org/10.5194/gmd-15-3901-2022, 2022
Short summary
Water Ecosystems Tool (WET) 1.0 – a new generation of flexible aquatic ecosystem model
Nicolas Azaña Schnedler-Meyer, Tobias Kuhlmann Andersen, Fenjuan Rose Schmidt Hu, Karsten Bolding, Anders Nielsen, and Dennis Trolle
Geosci. Model Dev., 15, 3861–3878, https://doi.org/10.5194/gmd-15-3861-2022,https://doi.org/10.5194/gmd-15-3861-2022, 2022
Short summary
Development of an open-source regional data assimilation system in PEcAn v. 1.7.2: application to carbon cycle reanalysis across the contiguous US using SIPNET
Hamze Dokoohaki, Bailey D. Morrison, Ann Raiho, Shawn P. Serbin, Katie Zarada, Luke Dramko, and Michael Dietze
Geosci. Model Dev., 15, 3233–3252, https://doi.org/10.5194/gmd-15-3233-2022,https://doi.org/10.5194/gmd-15-3233-2022, 2022
Short summary
Predicting global terrestrial biomes with the LeNet convolutional neural network
Hisashi Sato and Takeshi Ise
Geosci. Model Dev., 15, 3121–3132, https://doi.org/10.5194/gmd-15-3121-2022,https://doi.org/10.5194/gmd-15-3121-2022, 2022
Short summary
KGML-ag: a modeling framework of knowledge-guided machine learning to simulate agroecosystems: a case study of estimating N2O emission using data from mesocosm experiments
Licheng Liu, Shaoming Xu, Jinyun Tang, Kaiyu Guan, Timothy J. Griffis, Matthew D. Erickson, Alexander L. Frie, Xiaowei Jia, Taegon Kim, Lee T. Miller, Bin Peng, Shaowei Wu, Yufeng Yang, Wang Zhou, Vipin Kumar, and Zhenong Jin
Geosci. Model Dev., 15, 2839–2858, https://doi.org/10.5194/gmd-15-2839-2022,https://doi.org/10.5194/gmd-15-2839-2022, 2022
Short summary

Cited articles

Balaji, V., Redler, R., and Budich, R. G. P. (Eds.): Earth System Modelling Volume 4: IO and Postprocessing, Springer, Berlin, Heidelberg, Germany, published online, 2013.
Balay, S., Gropp, W. D., McInnes, L. C., and Smith, B. F.: Efficient management of parallelism in object oriented numerical software libraries, in: Modern Software Tools in Scientific Computing, edited by: Arge, E., Bruaset, A. M., and Langtangen, H. P., Springer Science and Business Media, LLC, 163–202, Boston, Massachusetts, USA, 1997.
Blackford, L. S., Choi, J., Cleary, A., Demmel, J., Dhillon, I., Dongarra, J., Hammarling, S., Henry, G., Petitet, A., Stanley, K., Walker, D., and Whaley, R. C.: ScaLAPACK: a portable linear algebra library for distributed memory computers – design issues and performance, in: Proceedings of the 1996 ACM/IEEE conference on Supercomputing, 17–22 November 1996, Pittsburgh, Pennsylvania, USA, 5 pp., 1996.
Claussen, M.: Earth system models, in: Understanding the Earth System: Compartments, Processes and Interactions, edited by: Ehlers, E. and Krafft, T., Springer, Heidelberg, Berlin, Germany, New York, USA, 147–162, 2000.
Download
Short summary
The present work aims at evaluating the scalability performance of a high-resolution global ocean biogeochemistry model (PELAGOS025) on massive parallel architectures and the benefits in terms of the time-to-solution reduction. The outcome of the analysis demonstrated that the lack of scalability is due to several factors such as the I/O operations, the memory contention, and the load unbalancing due to the memory structure of the biogeochemistry model component.