Articles | Volume 9, issue 4
https://doi.org/10.5194/gmd-9-1341-2016
https://doi.org/10.5194/gmd-9-1341-2016
Model description paper
 | 
11 Apr 2016
Model description paper |  | 11 Apr 2016

TerrSysMP–PDAF (version 1.0): a modular high-performance data assimilation framework for an integrated land surface–subsurface model

Wolfgang Kurtz, Guowei He, Stefan J. Kollet, Reed M. Maxwell, Harry Vereecken, and Harrie-Jan Hendricks Franssen

Related authors

HGS-PDAF (version 1.0): a modular data assimilation framework for an integrated surface and subsurface hydrological model
Qi Tang, Hugo Delottier, Wolfgang Kurtz, Lars Nerger, Oliver S. Schilling, and Philip Brunner
Geosci. Model Dev., 17, 3559–3578, https://doi.org/10.5194/gmd-17-3559-2024,https://doi.org/10.5194/gmd-17-3559-2024, 2024
Short summary
Improving soil moisture and runoff simulations at 3 km over Europe using land surface data assimilation
Bibi S. Naz, Wolfgang Kurtz, Carsten Montzka, Wendy Sharples, Klaus Goergen, Jessica Keune, Huilin Gao, Anne Springer, Harrie-Jan Hendricks Franssen, and Stefan Kollet
Hydrol. Earth Syst. Sci., 23, 277–301, https://doi.org/10.5194/hess-23-277-2019,https://doi.org/10.5194/hess-23-277-2019, 2019
Short summary
Is high-resolution inverse characterization of heterogeneous river bed hydraulic conductivities needed and possible?
W. Kurtz, H.-J. Hendricks Franssen, P. Brunner, and H. Vereecken
Hydrol. Earth Syst. Sci., 17, 3795–3813, https://doi.org/10.5194/hess-17-3795-2013,https://doi.org/10.5194/hess-17-3795-2013, 2013

Related subject area

Climate and Earth system modeling
Presentation, calibration and testing of the DCESS II Earth system model of intermediate complexity (version 1.0)
Esteban Fernández Villanueva and Gary Shaffer
Geosci. Model Dev., 18, 2161–2192, https://doi.org/10.5194/gmd-18-2161-2025,https://doi.org/10.5194/gmd-18-2161-2025, 2025
Short summary
Synthesizing global carbon–nitrogen coupling effects – the MAGICC coupled carbon–nitrogen cycle model v1.0
Gang Tang, Zebedee Nicholls, Alexander Norton, Sönke Zaehle, and Malte Meinshausen
Geosci. Model Dev., 18, 2193–2230, https://doi.org/10.5194/gmd-18-2193-2025,https://doi.org/10.5194/gmd-18-2193-2025, 2025
Short summary
Historical trends and controlling factors of isoprene emissions in CMIP6 Earth system models
Ngoc Thi Nhu Do, Kengo Sudo, Akihiko Ito, Louisa K. Emmons, Vaishali Naik, Kostas Tsigaridis, Øyvind Seland, Gerd A. Folberth, and Douglas I. Kelley
Geosci. Model Dev., 18, 2079–2109, https://doi.org/10.5194/gmd-18-2079-2025,https://doi.org/10.5194/gmd-18-2079-2025, 2025
Short summary
Investigating carbon and nitrogen conservation in reported CMIP6 Earth system model data
Gang Tang, Zebedee Nicholls, Chris Jones, Thomas Gasser, Alexander Norton, Tilo Ziehn, Alejandro Romero-Prieto, and Malte Meinshausen
Geosci. Model Dev., 18, 2111–2136, https://doi.org/10.5194/gmd-18-2111-2025,https://doi.org/10.5194/gmd-18-2111-2025, 2025
Short summary
From weather data to river runoff: using spatiotemporal convolutional networks for discharge forecasting
Florian Börgel, Sven Karsten, Karoline Rummel, and Ulf Gräwe
Geosci. Model Dev., 18, 2005–2019, https://doi.org/10.5194/gmd-18-2005-2025,https://doi.org/10.5194/gmd-18-2005-2025, 2025
Short summary

Cited articles

Anderson, J. L.: An ensemble adjustment Kalman filter for data assimilation, Mon. Weather Rev., 129, 2884–2903, https://doi.org/10.1175/1520-0493(2001)129<2884:AEAKFF>2.0.CO;2, 2001.
Anderson, J., Hoar, T., Raeder, K., Liu, H., Collins, N., Torn, R., and Avellano, A.: The data assimilation research testbed: a community facility, B. Am. Meteorol. Soc., 90, 1283–1296, https://doi.org/10.1175/2009bams2618.1, 2009.
Andreadis, K. M. and Lettenmaier, D. P.: Assimilating remotely sensed snow observations into a macroscale hydrology model, Adv. Water Resour., 29, 872–886, https://doi.org/10.1016/j.advwatres.2005.08.004, 2006.
Ashby, S. and Falgout, R.: A parallel multigrid preconditioned conjugate gradient algorithm for groundwater flow simulations, Nucl. Sci. Eng., 124, 145–159, 1996.
Bailey, R. T. and Baù, D.: Estimating geostatistical parameters and spatially-variable hydraulic conductivity within a catchment system using an ensemble smoother, Hydrol. Earth Syst. Sci., 16, 287–304, https://doi.org/10.5194/hess-16-287-2012, 2012.
Download
Short summary
This paper describes the development of a modular data assimilation (DA) system for the integrated Earth system model TerrSysMP with the help of the PDAF data assimilation library. Currently, pressure and soil moisture data can be used to update model states and parameters in the subsurface compartment of TerrSysMP. Results from an idealized twin experiment show that the developed DA system provides a good parallel performance and is also applicable for high-resolution modelling problems.
Share