Articles | Volume 8, issue 11
Geosci. Model Dev., 8, 3579–3591, 2015
https://doi.org/10.5194/gmd-8-3579-2015

Special issue: Community software to support the delivery of CMIP5

Geosci. Model Dev., 8, 3579–3591, 2015
https://doi.org/10.5194/gmd-8-3579-2015

Development and technical paper 06 Nov 2015

Development and technical paper | 06 Nov 2015

An automatic and effective parameter optimization method for model tuning

T. Zhang et al.

Related authors

An effective parameter optimization with radiation balance constraint in CAM5 (version 5.3)
Li Wu, Tao Zhang, Yi Qin, and Wei Xue
Geosci. Model Dev., 13, 41–53, https://doi.org/10.5194/gmd-13-41-2020,https://doi.org/10.5194/gmd-13-41-2020, 2020
Short summary
Automatic tuning of the Community Atmospheric Model (CAM5) by using short-term hindcasts with an improved downhill simplex optimization method
Tao Zhang, Minghua Zhang, Wuyin Lin, Yanluan Lin, Wei Xue, Haiyang Yu, Juanxiong He, Xiaoge Xin, Hsi-Yen Ma, Shaocheng Xie, and Weimin Zheng
Geosci. Model Dev., 11, 5189–5201, https://doi.org/10.5194/gmd-11-5189-2018,https://doi.org/10.5194/gmd-11-5189-2018, 2018
Short summary
Parameter calibration in global soil carbon models using surrogate-based optimization
Haoyu Xu, Tao Zhang, Yiqi Luo, Xin Huang, and Wei Xue
Geosci. Model Dev., 11, 3027–3044, https://doi.org/10.5194/gmd-11-3027-2018,https://doi.org/10.5194/gmd-11-3027-2018, 2018
Short summary

Related subject area

Climate and Earth system modeling
ESM-Tools version 5.0: a modular infrastructure for stand-alone and coupled Earth system modelling (ESM)
Dirk Barbi, Nadine Wieters, Paul Gierz, Miguel Andrés-Martínez, Deniz Ural, Fatemeh Chegini, Sara Khosravi, and Luisa Cristini
Geosci. Model Dev., 14, 4051–4067, https://doi.org/10.5194/gmd-14-4051-2021,https://doi.org/10.5194/gmd-14-4051-2021, 2021
Performance of the Adriatic Sea and Coast (AdriSC) climate component – a COAWST V3.3-based coupled atmosphere–ocean modelling suite: atmospheric dataset
Cléa Denamiel, Petra Pranić, Damir Ivanković, Iva Tojčić, and Ivica Vilibić
Geosci. Model Dev., 14, 3995–4017, https://doi.org/10.5194/gmd-14-3995-2021,https://doi.org/10.5194/gmd-14-3995-2021, 2021
Short summary
Model of Early Diagenesis in the Upper Sediment with Adaptable complexity – MEDUSA (v. 2): a time-dependent biogeochemical sediment module for Earth system models, process analysis and teaching
Guy Munhoven
Geosci. Model Dev., 14, 3603–3631, https://doi.org/10.5194/gmd-14-3603-2021,https://doi.org/10.5194/gmd-14-3603-2021, 2021
Short summary
A Markov chain method for weighting climate model ensembles
Max Kulinich, Yanan Fan, Spiridon Penev, Jason P. Evans, and Roman Olson
Geosci. Model Dev., 14, 3539–3551, https://doi.org/10.5194/gmd-14-3539-2021,https://doi.org/10.5194/gmd-14-3539-2021, 2021
Short summary
Building indoor model in PALM-4U: indoor climate, energy demand, and the interaction between buildings and the urban microclimate
Jens Pfafferott, Sascha Rißmann, Matthias Sühring, Farah Kanani-Sühring, and Björn Maronga
Geosci. Model Dev., 14, 3511–3519, https://doi.org/10.5194/gmd-14-3511-2021,https://doi.org/10.5194/gmd-14-3511-2021, 2021
Short summary

Cited articles

Adler, R. F., Huffman, G. J., Chang, A., Ferraro, R., Xie, P.-P., Janowiak, J., Rudolf, B., Schneider, U., Curtis, S., Bolvin, D., Gruber, A., Susskind, J., Arkin, P., and Nelkin, E.: The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979–present), J. Hydrometeorol., 4, 1147–1167, 2003.
Aksoy, A., Zhang, F., and Nielsen-Gammon, J. W.: Ensemble-based simultaneous state and parameter estimation with MM5, Geophys. Res. Lett., 33, L12801, https://doi.org/10.1029/2006GL026186, 2006.
Allen, M. R., Stott, P. A., Mitchell, J. F., Schnur, R., and Delworth, T. L.: Quantifying the uncertainty in forecasts of anthropogenic climate change, Nature, 407, 617–620, 2000.
Arulampalam, M., Maskell, S., Gordon, N., and Clapp, T.: A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking, Signal Processing, IEEE T., 50, 174–188, 2002.
Bardenet, R., Brendel, M., Kégl, B., and Sebag, M.: Collaborative hyperparameter tuning, in: Proceedings of the 30th International Conference on Machine Learning (ICML-13), 16–21 June 2013, Atlanta, Georgia, USA, 199–207, 2013.
Download
Short summary
A “three-step” methodology is proposed to effectively obtain the optimum combination of some key parameters in cloud and convective parameterizations according to a comprehensive objective evaluation metrics. The optimal results improve the metrics performance by 9%. A software framework can automatically execute any part of the “three-step” calibration strategy. The proposed methodology and framework can easily be applied to other GCMs to speed up the model development process.