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Abstract. Physical parameterizations in general circula-

tion models (GCMs), having various uncertain parameters,

greatly impact model performance and model climate sensi-

tivity. Traditional manual and empirical tuning of these pa-

rameters is time-consuming and ineffective. In this study, a

“three-step” methodology is proposed to automatically and

effectively obtain the optimum combination of some key pa-

rameters in cloud and convective parameterizations accord-

ing to a comprehensive objective evaluation metrics. Dif-

ferent from the traditional optimization methods, two extra

steps, one determining the model’s sensitivity to the param-

eters and the other choosing the optimum initial value for

those sensitive parameters, are introduced before the down-

hill simplex method. This new method reduces the number of

parameters to be tuned and accelerates the convergence of the

downhill simplex method. Atmospheric GCM simulation re-

sults show that the optimum combination of these parameters

determined using this method is able to improve the model’s

overall performance by 9 %. The proposed methodology and

software framework can be easily applied to other GCMs to

speed up the model development process, especially regard-

ing unavoidable comprehensive parameter tuning during the

model development stage.

1 Introduction

Due to their current relatively low model resolutions, gen-

eral circulation models (GCMs) need to parameterize vari-

ous sub-grid-scale processes. Physical parameterizations aim

to approximate the overall statistical outcomes of various

sub-grid-scale physics (Williams, 2005). However, due to

the complexities involved in these processes, parameteriza-

tions representing sub-grid-scale physical processes unavoid-

ably involve some empirical or statistical parameters (Hack

et al., 1994), especially within cloud and convective parame-

terizations. Consequently, these parameterizations introduce

uncertainties into climate simulations using GCMs (Warren

and Schneider, 1979). In general, these uncertain parameters

need to be calibrated or constrained when new parameteriza-

tion schemes are developed and integrated into models (L. Li

et al., 2013).

Traditionally, the uncertain parameters are manually tuned

by comprehensive comparisons of model simulations with

available observations. Such an approach is subjective, labor-

intensive, and hard to extend (Hakkarainen et al., 2012; Allen

et al., 2000). By contrast, the automatic parameter calibra-

tion techniques have progressed quickly because of their

efficiency, effectiveness and broader applications (Bardenet

et al., 2013; Elkinton et al., 2008; Jakumeit et al., 2005;

Chen et al., 1999). In previous studies applying to GCMs,

the methods can be categorized into three major types based

on the probability distribution function (PDF) method, opti-

mization algorithms, and data assimilation techniques.
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For the PDF method, the confidence ranges of the opti-

mization parameters are evaluated based on likelihood and

Bayesian estimation. Cameron et al. (1999) approximate the

forecast by the generalized likelihood uncertain estimation

(Beven and Binley, 1992), a method obtaining parameter un-

certainty ranges of a specific confidence level. The Bayesian

Markov chain Monte Carlo (MCMC) method (Gilks, 1995)

is widely used to obtain posterior probability distributions

from prior knowledge. A couple of specific algorithms

based on the MCMC theory are used to calibrate models

in the previous literatures, such as Metropolis–Hasting (Sun

et al., 2013), the adaptive Metropolis algorithm (Hararuk

et al., 2014), and multiple very fast simulated annealing

(MVFSA) (Jackson et al., 2008). The MVFSA method is 1 to

2 orders of magnitude faster than the Metropolis–Hasting al-

gorithm (Jackson et al., 2004). However, these methods only

attempt to determine the most likely area of uncertain param-

eters and cannot directly give the best combination of uncer-

tain parameters with an optimum metrics value. Moreover,

the PDF heavily depends on the likelihood function assumed,

which is usually difficult to determine for climate system

model tuning problems.

Optimization algorithms can be used to search the maxi-

mum or minimum metrics value in a given parametric space.

Severijns and Hazeleger (2005) calibrate parameters of radi-

ation, clouds, and convection in the Speedy model with the

downhill simplex (Press et al., 1992; Nelder and Mead, 1965)

to improve the radiation budget at the top of the atmosphere

and at the surface, as well as the large-scale circulation. The

downhill simplex is a fast convergence algorithm when the

parametric space is not high-dimensional. However, it is a lo-

cal optimization algorithm, not aiming to find the global op-

timal solution. Moreover, the algorithm has convergence is-

sues when the simplex becomes ill-conditioned. Besides the

downhill simplex, a few global optimization algorithms are

introduced to tune uncertain parameters of climate system

models, such as simulated stochastic approximation anneal-

ing (SSRR) (Yang et al., 2013), MVFSA (Yang et al., 2014),

and multi-objective particle swarm optimization (MOPSO)

(Gill et al., 2006). SSRR requires at least 10 000 steps to get

a stable solution (Liang et al., 2013), and MVFSA also re-

quires thousands of steps to get a stable solution (Jackson

et al., 2004). MOPSO needs dozens of individual cases in

each iteration. All these global optimization algorithms re-

quire a large number of model runs and very high computa-

tional cost during the model tuning process.

The data assimilation method has been well addressed for

state estimation, and can be a potential solution for param-

eter estimation. Aksoy et al. (2006) estimates the parameter

uncertainty in a mesoscale model (Grell et al., 1994) using

the ensemble Kalman filter (EnKF). Santitissadeekorn and

Jones (2015) presents a two-step filtering for the joint state

parameter estimation with a combination method of particle

filtering (PF) and EnKF. The EnKF and PF use an ensem-

ble of model simulations to estimate the background error

covariance, which approximate the traditional Kalman fil-

ter with a recurrence process (Evensen, 2003; Arulampalam

et al., 2002). The accuracy of the error covariance relies on

samples. In general, the larger the ensemble size, the more

accurate the estimates are. The limitation of ensemble size

for practice use and imperfect models make it difficult to se-

lect representative samples (Poterjoy et al., 2014). Moreover,

as with the MOPSO method, they require a large number of

model runs in each iteration with greatly increased computa-

tional cost.

A climate system model is a strongly nonlinear system,

having a large number of uncertain parameters. As a re-

sult, the parametric space of a climate system model is high-

dimensional, multi-modal, strongly nonlinear, and insepara-

ble. More seriously, one model run of a climate system model

might require tens or even hundreds of years of simulation to

get scientifically meaningful results.

To overcome these challenges, we propose a “three-step”

strategy to calibrate the uncertain parameters in climate

system models effectively and efficiently. First, the Morris

method (Morris, 1991; Campolongo et al., 2007), a global

sensitivity analysis method, is chosen to eliminate the in-

sensitive parameters by analyzing the main and interactive

effects among parameters. Another global method by Sobol

(Sobol, 2001) is used to validate the results of the Morris

method. Second, a pre-processing of initial values of selected

parameters is presented to accelerate the convergence of opti-

mization algorithm and to resolve the issue of ill-conditioned

problems. Finally, the downhill simplex algorithm is used to

solve the optimization problem because of its low computa-

tional cost and fast convergence for low-dimensional space.

Taking into account the complex configuration and manipu-

lation of model tuning, an automatic workflow is designed

and implemented to make the calibration process more ef-

ficient. The method and workflow can be easily applied to

GCMs to speed up model development processes.

The paper is organized as follows. Section 2 introduces the

proposed automatic workflow. Section 3 describes the de-

tails of the example model, reference data, and calibration

metrics. The three-step calibration strategy is presented in

Sect. 4. Section 5 evaluates the calibration results, followed

by a summary in Sect. 6.

2 The end-to-end automatic calibration workflow

We design a software framework for the overall control of

the tuning practice. This framework can automatically ex-

ecute any part of our proposed three-step calibration strat-

egy, determine the optimal parameters, and produce its cor-

responding diagnostic results. It incorporates various tuning

methods and facilitates model tuning processes with mini-

mal manual management. It effectively manages the depen-

dence and calling sequences of various procedures, including

parameter sampling, sensitivity analysis and initial value se-
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lection, model configuration and running, and evaluation of

model outputs using user-provided metrics. Users only need

to specify the model to tune, the parameters to be tuned with

their valid ranges, and the calibration method to use.

There are four main modules within the framework as

shown in Fig. 1. The scheduler module manages model sim-

ulations with the capability for simultaneous runs. It also

coordinates different tasks to reduce the contention and im-

prove throughput. Simulation diagnosis and evaluation are

included in a post-processing module. The preparation mod-

ule contains various sensitivity analysis and sampling meth-

ods, such as the Morris (Morris, 1991; Campolongo et al.,

2007), Sobol (Sobol, 2001), full factorial (FF) (Raktoe et al.,

1981), Latin hypercube (LH) (McKay et al., 1979), Morris

one-at-a-time (MOAT) (Morris, 1991), and central compos-

ite designs (CCD) (Hader and Park, 1978) methods. The sen-

sitivity analysis is able to eliminate the duplicated samples

to reduce unnecessary model runs. A MCMC method based

on adaptive Metropolis–Hastings algorithms is also provided

to get the posterior distribution of uncertain parameters. The

tuning algorithm module offers various local and global opti-

mization algorithms including the downhill simplex, genetic

algorithm, particle swarm optimization, differential evolu-

tion and simulated annealing. In addition, all the intermediate

metrics and their corresponding parameters within the frame-

work are stored in a MySQL database and can be used for

posterior knowledge analysis. More importantly, the work-

flow is flexible and expandable for easy integration of other

advanced algorithms as well as tools like the Problem Solv-

ing Environment for Uncertainty Analysis and Design Explo-

ration (PSUADE) (Tong, 2005) and the Design Analysis Kit

for Optimization and Terascale Applications (DAKOTA) (El-

dred et al., 2007). Although uncertainty quantification toolk-

its such as PSUADE and DAKOTA support various calibra-

tion and uncertainty analysis methods and pre-defined func-

tion interfaces, they cannot organize the above model tuning

process as effectively as the proposed model tuning frame-

work.

3 Model description and reference metrics

We use the Grid-point Atmospheric Model of IAP LASG

version 2 (GAMIL2) as an example for the demonstration of

the tuning workflow and our calibration strategy. GAMIL2 is

the atmospheric component of the Flexible Global–Ocean–

Atmosphere–Land System Model grid version 2 (FGOALS-

g2), which participated in the CMIP5 (the fifth phase of

the Coupled Model Intercomparison Project) program. The

horizontal resolution is 2.8 ◦× 2.8 ◦, with 26 vertical levels.

GAMIL2 uses a finite-difference scheme that conserves mass

and energy (Wang et al., 2004). A two-step shape-preserving

advection scheme (Yu, 1994) is used for tracer advection.

Compared to the pervious version, GAMIL2 has modifica-

tions in cloud-related processes (L. Li et al., 2013), such as

the deep convection parameterization (Zhang and Mu, 2005),

the convective cloud fraction (Xu and Krueger, 1991), the

cloud microphysics (Morrison and Gettelman, 2008), and

the stratiform fractional cloud condensation scheme (Zhang

et al., 2003). More details are in L. Li et al. (2013). Empir-

ical tunable parameters are selected from schemes of deep

convection, shallow convection, and cloud fraction schemes

(Table 1). Default parameter values are from the model con-

figuration for CMIP5 experiments.

To save computational cost, atmosphere-only simulations

are conducted for 5 years using prescribed seasonal climatol-

ogy (no interannual variation) of SST and sea ice. Previous

studies have shown that a 5-year type of simulation is enough

to capture the basic characteristics of simulated mean climate

states (Golaz et al., 2011; Lin et al., 2013). The goal of these

simulations is not to determine their resemblance to observa-

tions, but to compare the results between the control simula-

tion and various tuned simulations.

Model tuning results depend on the reference metrics used.

For a simple justification, we use some conventional climate

variables for the evaluation. Wind, humidity, and geopoten-

tial height are from the European Center for Medium-Range

Weather Forecasts (ECMWF) Re-Analysis (ERA)–Interim

reanalysis from 1989 to 2004 (Simmons et al., 2007). We use

the GPCP (Global Precipitation Climatology Project, Adler

et al., 2003) for precipitation and the ERBE (Earth Radiation

Budget Experiment, Barkstrom, 1984) for radiative fields.

All observational and reanalysis data are gridded to the same

grid as GAMIL2 before the comparison. Note that the refer-

ence metrics can be extended, depending on the model per-

formance requirement.

The reference metrics, including various variables in Ta-

ble 2, is used to quantitatively evaluate the performance of

overall simulation skills (Murphy et al., 2004; Gleckler et al.,

2008; Reichler and Kim, 2008). The calibration RMSE is de-

fined as the spatial standard deviation (SD) of the model sim-

ulation against observations/re-analysis, as in Eq. (1) (Taylor,

2001; Yang et al., 2013). For an easy comparison, we normal-

ize the RMSE of each simulation output by that of the con-

trol simulation using default parameter values. We introduce

an improvement index to evaluate the tuning results, which

weight each variable equally and compute the average nor-

malized RMSE. The index indicates an overall improvement

of the performance of the tuned simulation relative to the

control simulation based on a number of model outputs (Ta-

ble 2). If the index is less than 1, it means the tuned simula-

tion gets better performance than the control run. The smaller

this value, the better the improvement is.

(σFm )
2 =

I∑
i=1

w(i)(xFm(i)− xFo (i))2 (1)

(σFr )
2 =

I∑
i=1

w(i)(xFr (i)− xFo (i))2 (2)

www.geosci-model-dev.net/8/3579/2015/ Geosci. Model Dev., 8, 3579–3591, 2015



3582 T. Zhang et al.: Parameter optimization method for model tuning

Sensi&vity	
  parameters	
  and	
  
posterior	
  distribu&on 

Op&miza&on	
  
parameters	
   

Analysis	
  results 

Prepara&on	
  Module 
  Sampling：FACT,	
  LHS,	
  MOAT 

Sensi&vity	
  analysis：MORRIS,	
  SOBOL 

Posterior	
  distribu&on：MCMC 

Tuning	
  algorithm	
  Module 
  Local	
  algorithm：Down-­‐hill 

Global	
  algorithm：PSO，DE 

Diagnose	
  
analysis 

Post	
  Processing	
  Module 
  Management	
  of	
  results	
  file	
   

Management	
  of	
  observa&on	
  data 

Metrics	
  diagnose	
   

Scheduler	
  Module 
  

Schedule 
Monitor 
Recover 

Simulate 

Simulate 

Simulate 

Universal	
   set	
   of	
  
parameters	
   and	
  
ini&al	
  range 

Figure 1. The structure of the automatic calibration workflow. The input of the workflow is the parameter set interest and their initial value

ranges. The output is the optimal parameters and their corresponding diagnostic results after calibration. The preparation module provides the

parameter sensitivity analysis. The tuning algorithm module offers local and global optimization algorithms including the downhill simplex,

genetic algorithm, particle swarm optimization, differential evolution, and simulated annealing. The scheduler module schedules as many

as cases to run simultaneously and coordinates different tasks over a parallel system. The post-processing module is responsible for metrics
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χ2 = 1

NF

NF∑
F=1

(
σFm

σFr
)2 (3)

xFm(i) is the model outputs, and xFo (i) is the corresponding

observation or reanalysis data. xFr (i) is model outputs from

the control simulation using the default values for the param-

eters in Table 1. w is the weight due to the different grid area

on a regular latitude–longitude grid on the sphere. I is the

total grid number in model. NF is the number of the chosen

variables.

4 Method

4.1 Parameter tuning with global and local

optimization methods

Parameter tuning for a climate system model is intended to

solve a global optimization problem in theory. As the well-

known global optimization algorithms, traditional evolution-

ary algorithms, such as the genetic algorithm (Goldberg

et al., 1989), differential evolutionary (DE) (Storn and Price,

1995), and particle swarm optimization (PSO) (Kennedy,

2010) algorithms, can approach the global optimal solution,

but generally require high computational cost (Hegerty et al.,

2009; Shi and Eberhart, 1999). This is because these algo-

rithms are designed following biological evolution of sur-

vival of the fittest. In contrast, the local algorithms utilize the

greedy strategy, and thus may tap into a locally optimal solu-

tion after convergence. The advantage of local algorithms is

the low computational cost due to the relatively fewer sam-

ples required. In this sense, the local optimization algorithms

are the viable options considering their significantly reduced

computational cost.

We choose the downhill simplex method for climate model

tuning considering its relatively low computation cost. The

downhill simplex method searches the optimal solution by

changing the shape of a simplex, which represents the op-

timal direction and step length. A simplex is a geometry,

consisting of N+1 vertexes and their interconnecting edges,

where N is the number of calibration parameters. One vertex

stands for a pair of a set of parameters and their improvement

index as defined in Eq. (3). The new vertex is determined by

expanding or shrinking the vertex with the highest metrics

value, leading to a new simplex (Press et al., 1992; Nelder

and Mead, 1965).

Two performance criteria are used to evaluate the effec-

tiveness and efficiency of the optimization algorithms in this

study. Selection of optimization algorithms for parameter
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Table 1. A summary of parameters to be tuned in GAMIL2. The default and final tuned optimum values are also shown. The valid range of

each parameter is also included. Note that only four sensitive parameters are tuned and have optimum values.

Parameter Description Default Range Optimal

c0 Rainwater autoconversion coefficient for deep

convection

3.0× 10−4 1.× 10−4–5.4× 10−3 5.427294× 10−4

ke Evaporation efficiency for deep convection 7.5× 10−6 5× 10−7–5× 10−5 –

capelmt Threshold value for cape for deep convection 80 20–200 –

rhminl Threshold RH for low clouds 0.915 0.8–0.95 0.917661

rhminh Threshold RH for high clouds 0.78 0.6–0.9 0.6289215

c0_shc Rainwater autoconversion coefficient for shallow

convection

5× 10−5 3× 10−5–2× 10−4 –

cmftau Characteristic adjustment timescale of shallow

capes

7200 900–14 400 7198.048

Table 2. Atmospheric fields included in the evaluation metrics and their sources.

Variable Observation Variable Observation

Meridional wind at 850 hPa ECMWF Geopotential Z at 500 hPa ECMWF

Meridional wind at 200 hPa ECMWF Total precipitation rate GPCP

Zonal wind at 850 hPa ECMWF Long-wave cloud forcing ERBE

Zonal wind at 200 hPa ECMWF Short-wave cloud forcing ERBE

Temperature at 850 hPa ECMWF Long-wave upward flux at TOA ERBE

Temperature at 200 hPa ECMWF Clear-sky long-wave upward flux at TOA ERBE

Specific humidity at 850 hPa ECMWF Short-wave net flux at TOA ERBE

Specific humidity at 400 hPa ECMWF Clear-sky short-wave net flux at TOA ERBE

calibration of climate system models is a balance between

model improvement (effectiveness) and computational cost

(efficiency). In this study, model improvement is measured

by an index defined in Eq. (3). The lower this value is, the

better the model tuning is. Computational cost is measured

by “core hours”, which stands for the computational effi-

ciency. It is computed by (Nstep)× (Nsize)× (the number of

processes of a single model run) × (hours used for a single

5-year model run ). Nstep is the total number of iterations of

optimization algorithms for convergence.Nsize is the number

of model runs during each iteration, and it is 1 for the down-

hill simplex method. In the GAMIL2 case, each model run

takes 6 h using 30 processes.

According to tuning GAMIL2, two global methods, PSO

and DE, give better tuning effectiveness than the downhill

simplex method, but their computational costs are approxi-

mately 4 and 5 times, respectively, those of the downhill sim-

plex method (Table 3).

To improve the effectiveness of the downhill simplex

method, we propose two important steps to significantly im-

prove its performance. In the first step, the number of tuning

parameters is reduced by eliminating the insensitive parame-

ters. In the second step, fast convergence is achieved by pre-

selecting proper initial values for the parameters before using

the downhill simplex method.

4.2 Parameter sensitivity analysis

The number of uncertain parameters in physical param-

eterizations of a climate system model is quite large.

Most optimization algorithms, such as PSO, the downhill

simplex method, and the simulated annealing algorithm

(Van Laarhoven and Aarts, 1987), are ineffective in high-

dimensional problems. Iterations for convergence will in-

crease exponentially with the number of tuning parameters.

In addition, climate models generally need a long simulation

to have meaningful results. Therefore, the high-dimensional

parameter tuning problem suffers from an extremely high

computational cost. It is necessary to reduce the parameter

dimension before the optimization.

Parameter sensitivity analysis can be divided into local and

global methods (Gan et al., 2014). The local method deter-

mines the sensitivity of a single parameter by perturbing one

parameter with all other parameters fixed. Consequently, it

does not consider the combined sensitivity of multiple pa-

rameters. On the other hand, the global method perturbs all

the parameters to explore the sensitivity of the whole para-

metric space. In this study, the Morris method (Morris, 1991;

Campolongo et al., 2007), a global method, is used to screen

out the sensitive parameters. Another global method (Sobol,

2001) is used to validate the results of the Morris method.
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Table 3. Effectiveness and efficiency comparison between the original downhill simplex method and the two global methods. Nstep is the

total number of calibrating iterations for convergence. Nsize is the number of model runs during each iteration. Core hours is computed by

Nstep × Nsize× {the number of processes of a single model run}× {hours used for a single 5-year model run}. In the GAMIL2 case, each

model run takes 6 h and uses 30 processes.

Improvement index Nstep Nsize Core hours

Downhill_1_step 0.9585 80 1 14 400

PSO 0.9115 24 12 51 840

DE 0.9421 33 12 71 280

The Morris method, based on the MOAT sampling strat-

egy, reduces the number of samples required by other global

sensitivity methods (J. Li et al., 2013). Note that a sam-

ple is a set of all parameters, not just one parameter. The

method is described briefly here, and more details can be

found in Morris (1991). Assuming we have k parameters, rel-

ative to a random sample S1 = {x1,x2, . . .,xk}, another sam-

ple S2 = {x1,x2, . . .,xi +1i, . . .,xk} can be constructed by

perturbing the ith parameter by 1i , where 1i is a perturba-

tion of this parameter. The elementary effect of the ith pa-

rameter xi is defined as

di = f (S2)− f (S1)

1i
, (4)

where f stands for the improvement index as defined in

Eq. (3). A third sample S3 = {x1,x2, . . .,xi +1i, . . .,xj +
1j , . . .,xk} can be generated by perturbing another param-

eter, where j is not i. In doing so k times, we will get

k+ 1 samples {S1,S2, . . .,Sk+1} and k elementary effects

{d1,d2, . . .,dk} after perturbing all the parameters. The vec-

tor of {S1,S2, . . .,Sk+1} is called a trajectory. This procedure

is repeated for r iterations, and finally we get r trajectories.

The starting point of any trajectory is selected randomly as

well as the ordering of the parameters to perturb and the 1

for each perturbation in one trajectory. In practice, a number

of 10 to 50 trajectories is enough to determine the feasible

sensitivity of parameters (Gan et al., 2014; Morris, 1991). In

this study, we have a total of seven parameters, and 80 simu-

lations are conducted.

We define D = {Di(t)}, where t is the t th trajectory, and i

is the ith elementary effect of the parameter xi . µi , the mean

of |di |, and σi , the standard deviation of di , are used to mea-

sure the parameter sensitivity, defined as

µi =
r∑
t=1

|di(t)|
r
; (5)

σi =
r∑
t=1

√
(di(t)−µi)2/r. (6)

µi estimates the effect of xi on the model improvement index

as defined in Eq. (3), while σi assesses the interactive effect

of xi with other parameters. Those parameters with large µi
and σi are the sensitive parameters. The Morris method re-

sults are shown in Fig. 2.
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Figure 2. Scatter diagram showing the parameter sensitivity using

the Morris sensitivity analysis. The x axis stands for the main effect

sensitivity of a single parameter. The y axis stands for the inter-

active effect sensitivity among multi-parameters. In GAMIL2, c0,

rhminl, rhminh, and cmftau have high sensitivity and ke, c0_shc,

and capelmt have low sensitivity.

The parameter elimination step is critical for the final re-

sult of model tuning. To validate the results obtained by the

Morris method, we compare the results with a benchmark

method (Sobol, 2001). Based on variance decomposition,

the Sobol method requires more samples than the Morris

method, leading to a higher computation cost. The variance

of the model output can be decomposed as Eq. (7), where

n is the number of parameters, Vi is the variance of the ith

parameter, and Vij is the variance of the interactive effect be-

tween the ith and j th parameters, and so on. The total sensi-

tivity effect of the ith parameter can be presented as Eq. (8),

where V−i is the total variance except for the xi parameter.

The Sobol results are shown in Fig. 3. The screened-out pa-

rameters are the same as those of the Morris method.

V =
n∑
i=1

Vi +
∑

1≤i<j≤n
Vij + . . .+V1,2,...,n (7)

STi = 1− V−i
V

(8)
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total sensitivity in Eq. (8) is denoted by the size of the color area.

The total sensitivities of ke, c0_shc, and capelmt are less than 0.5 in

terms of each variable.

4.3 Proper initial value selection for the downhill

simplex method

The downhill simplex method is a local optimization algo-

rithm and its convergence performance strongly depends on

the quality of the initial values. We need to find the parame-

ters with the smaller metrics around the final solution. More-

over, we have to finish the searching as fast as possible with

minimal overhead. For these two objectives, a hierarchical

sampling strategy based on the single parameter perturbation

(SPP) sample method is used. The SPP is similar to local sen-

sitivity methods, in which only one parameter is perturbed at

one time with other parameters fixed. The perturbation sam-

ples are uniformly distributed across parametric space. First,

the improvement index as defined in Eq. (3) of each param-

eter sample is computed. The distance is defined as the dif-

ference between the improvement indexes using two adja-

cent samples, i.e., the model response measured by a certain

percentage change of one parameter. We call this step the

first-level sampling. The specific perturbation size for one

parameter can be set based on user experience. In our im-

plementation, the user needs to set the number of samples.

For the first-level sampling, we can use a larger perturbation

size to reduce computational cost. If the distance between

two adjacent samples is greater than a predefined threshold,

more SPP samples between the previous two adjacent sam-

ples are conducted, and this is called the second-level sam-

pling. Finally, k+1 samples with the best improvement index

value are chosen as the candidate initial values for the opti-

mization method. With this hierarchical sampling strategy,

we can determine the local parametric space for the final so-

lution and can accelerate the convergence of the following

downhill simplex method. This procedure is described in Al-

gorithm 1. It is easy to implement and has lower overhead

compared to other complex adaptive sampling methods.
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6 Conclusions

An effective and efficient three-step method for GCM phys-
ical parameter tuning is proposed. Compared with conven-
tional methods, a parameter sensitivity analysis step and
a proper initial value selection step are introduced before the
low cost downhill simplex method. This effectively reduces
the computational cost with an overall good performance.
In addition, an automatic parameter calibration workflow is
designed and implemented to enhance operational efficiency
and support different uncertainty quantification analysis and
calibration strategies. Evaluation of the method and work-
flow by calibrating GAMIL2 model indicates the three-step
method outperforms the two global optimization methods
(PSO and DE) in both effectiveness and efficiency. A bet-
ter trade-off between accuracy and computational cost is
achieved compared with the two-step method and the orig-
inal downhill simplex method. The optimal results of the
three-step method demonstrate that most of the variables are
improved compared with the control simulation, especially
for the radiation related ones. The mechanism analysis is
conducted to explain why these radiation related variables
have an overall improvement. In future work, more analy-
ses are needed to better understand the model behavior along
with the physical parameter changes. The choosing of ap-
propriate reference metrics and related observations are very
important for the final tuned model performance. In future
studies, we are going to use the more reliable and accurate
observations, and add some constraint conditions for param-
eters tuning to construct a more comprehensive and reliable
metrics.TS1
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At the same time, inappropriate initial values may lead

to ill-conditioned simplex geometry, which can be found in

the model tuning process. One issue we meet is that some

vertexes in the downhill simplex optimization may have the

same values for one or more parameters. As a result, these

parameters remain invariant during the optimization, and this

may degrade the quality of the final solution as well as the

convergence speed. A simplex checking is conducted to keep

as many different values of parameters as possible during the

process of looking for initial values. Well-conditioned sim-

plex geometry will increase the parameter freedom for op-

timization. In our implementation (Algorithm 1), the vertex

leading to the ill-conditioned simplex is replaced by another

parameter sample that gives another minimum improvement

index value.

These methods mentioned above are summarized as the

initial value pre-processing of the downhill simplex algo-

rithm. Sometimes, the samples used during the initial value

selection are the same as those in the parameter sensitivity

analysis step. In this case, one model run can be used in both

steps to further reduce the computational cost.

www.geosci-model-dev.net/8/3579/2015/ Geosci. Model Dev., 8, 3579–3591, 2015
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Table 4. The same as Table 3 but showing the comparison among the three downhill simplex methods.

Improvement index Nstep Nsize Core hours

Downhill_1_step 0.9585 80 1 14 400

Downhill_2_steps 0.9257 25+ 34 1 10 620

Downhill_3_steps 0.9099 80+ 25+ 50 1 27 900

Figure 4. Taylor diagram of the climate mean state of each output

variable from 2002 to 2004 of EXP and CNTL.

4.4 Evaluation of the proposed strategy

The effectiveness and efficiency of the three traditional al-

gorithms are compared in Table 3. “Downhill_1_step” rep-

resents the original downhill simplex method, which is one

of the most widely used local optimization algorithms and

has been successfully used in the Speedy model (Severi-

jns and Hazeleger, 2005). PSO and DE are the most widely

used global optimization algorithms and are easy to use. Al-

though “Downhill_1_step” achieves slightly worse improve-

ment compared to the two global optimization methods (Ta-

ble 3), its computation cost is much less (only 20 and 28 %

of DE and PSO, respectively).

Two extra steps are included before the original down-

hill simplex method to overcome its limited effectiveness on

model performance improvement. The “Downhill_2_steps”

method includes an initial value pre-processing step before

the downhill simplex method, and the “Downhill_3_steps”

method further introduces another step to eliminate insen-

sitive parameters for tuning by sensitivity analysis. The two

steps bring in additional overhead, 80 samples for the param-

eter sensitivity analysis with the Morris method, and 25 sam-

ples for the initial value pre-processing. Tables 3 and 4 show

that the proposed “Downhill_3_steps” achieves the best ef-

fectiveness, improving the model’s overall performance by

Figure 5. Improvement indices over the global, tropical and mid–

high latitudes of the Northern and Southern Hemisphere (MLN and

MLS) for each variable of the EXP simulation.

9 %. It overcomes the inherent ineffectiveness of the original

downhill simplex method with a much lower computational

cost than global methods.

5 Analysis of model optimal results

This section compares the default simulation and the tuned

simulation by the three-step method, with a focus on the

cloud and TOA radiation changes. Table 1 shows the values

of the four pairs of sensitive parameters between the control

(labeled as CNTL) and optimized (labeled as EXP) simula-

tions. Significant change is found for c0, which represents the

auto-conversion coefficient in the deep convection scheme,

and rhminh, which represents the threshold relative humidity

for high cloud appearance. The other two parameters have

negligible change of the values before and after the tuning,

and thus it is expected that their impacts on model perfor-

mance will be accordingly small.

The overall improvement after the tuning from the con-

trol simulation can be found in the Taylor diagram (Fig. 4),

with improvement for almost all the variables, especially for

the meridional winds and mid-tropospheric (400 hPa) humid-

ity. Improvements for the other variables are relatively small.

The change in terms of the RMSE factor over the globe and
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Figure 6. Pressure–latitude distributions of relative humidity and cloud fraction of EXP (a, d), CNTL (b, e), and EXP-CNTL (c, f).

three regions (tropics, SH middle and high latitudes and NH

middle and high latitudes) are shown in Fig. 5. First, radia-

tive fields and moisture are improved over all four areas. By

contrast, wind and temperature field changes are more di-

verse among different areas. For example, temperatures over

the tropics become worse compared to the control run. There

is an overall improvement at the SH middle and high lat-

itudes for all variables except for the 200 hPa temperature.

Winds and precipitation at the NH middle and high lati-

tudes become slightly worse in the tuned simulation. Such

changes are somewhat intriguing and we attempt to relate

these changes to the two parameters significantly tuned.

With a reduced RH threshold for high cloud (from 0.78

in CNTL to 0.63 in EXP, Table 1), the stratiform condensa-

tion rate increases and the atmospheric humidity decreases

(Zhang et al., 2003). In addition, with an increased auto-

conversion coefficient in the deep convection, less conden-

sate is detrained to the environment. As a result, the mid-

dle and upper troposphere is overall drier, especially over

the tropics, where deep convection dominates the vertical

moisture transport (Fig. 6c). Although the middle and upper

troposphere becomes drier over the tropics, the reduced RH

threshold for high cloud makes clouds easier to be present.

Consequently, middle and high clouds increase over the

globe, especially over the middle and high latitudes, with the

largest increase up to 4–5 % (Fig. 6f). In the tropics, due to

the drier tendency induced by the reduced detrainment, high

cloud increase is relatively small (2–3 %) compared to the
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Figure 7. Meridional distributions of the annual mean difference between EXP/CNTL and observations of TOA outgoing long-wave radia-

tion (a), TOA clear-sky outgoing long-wave radiation (b), TOA long-wave cloud forcing (c), TOA net short-wave flux (d), TOA clear-sky

net short-wave flux (e), and TOA short-wave cloud forcing (f).

middle and high latitudes. On the contrary, low cloud below

800 hPa decreases by 1–2 % over the middle and high lat-

itudes, with slightly decreased RH (Fig. 6) because of the

negligible change of RH threshold for low cloud (Table 1).

Overall, the combined effects of all relevant parameteriza-

tions lead to the changes in atmospheric humidity and cloud

fraction.

Changes in moisture and cloud fields impact radiative

fields. With reference to ERBE, TOA outgoing long-wave

radiation (OLR) is improved at the mid-latitudes for EXP,

but it is degraded over the tropics (Fig. 7a). Compared with

the CNTL, middle and high cloud significantly increase in

the EXP (Fig. 6). Consequently, it enhances the blocking ef-

fect on the long-wave upward flux at TOA (FLUT), reducing

the FLUT in mid-latitudes of the Southern Hemisphere and

Northern Hemisphere (Fig. 7a). Clear-sky OLR increases for

the EXP and this is due to the drier upper troposphere in the

EXP (Fig. 6). The decrease in the atmospheric water vapor

reduces the greenhouse effect. Therefore, it emits more out-

going long-wave radiation and reduces the negative bias of

clear-sky long-wave upward flux at TOA (FLUTC, Fig. 7b).

Long-wave cloud forcing (LWCF) at the middle and high lat-

itudes is improved due to the improvement in the FLUT in

these areas (Fig. 7c), but improvement in the tropics is negli-

gible due to the cancellation between the FLUT and FLUTC.

Overall, the tuned simulation has a TOA radiation imbalance

of 0.08 W m−2, which is better than that of the control run

(0.8 W m−2).

TOA clear-sky short-waves are the same between the con-

trol and the tuned simulation since both simulations have the

same surface albedo. With increased clouds, the tuned simu-

lation has smaller TOA short-waves absorbed than the con-

trol. Compared with ERBE, the tuned simulation has better

TOA short-waves absorbed at the middle and high latitudes,

but it slightly degrades over the tropics.
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6 Conclusions

An effective and efficient three-step method for GCM phys-

ical parameter tuning is proposed. Compared with conven-

tional methods, a parameter sensitivity analysis step and

a proper initial value selection step are introduced before the

low-cost downhill simplex method. This effectively reduces

the computational cost with an overall good performance.

In addition, an automatic parameter calibration workflow is

designed and implemented to enhance operational efficiency

and support different uncertainty quantification analysis and

calibration strategies. Evaluation of the method and work-

flow by calibrating the GAMIL2 model indicates that the

three-step method outperforms the two global optimization

methods (PSO and DE) in both effectiveness and efficiency.

A better trade-off between accuracy and computational cost

is achieved compared with the two-step method and the orig-

inal downhill simplex method. The optimal results of the

three-step method demonstrate that most of the variables are

improved compared with the control simulation, especially

for the radiation-related ones. The mechanism analysis is

conducted to explain why these radiation-related variables

have an overall improvement. In future work, more analy-

ses are needed to better understand the model behavior along

with the physical parameter changes. The choice of appro-

priate reference metrics and related observations are very

important for the final tuned model performance. In future

studies, we are going to use the more reliable and accurate

observations, and add some constraint conditions for param-

eter tuning to construct a more comprehensive and reliable

metrics.
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