Articles | Volume 8, issue 4
https://doi.org/10.5194/gmd-8-1097-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/gmd-8-1097-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Modelling climate change responses in tropical forests: similar productivity estimates across five models, but different mechanisms and responses
L. Rowland
CORRESPONDING AUTHOR
School of GeoSciences, University of Edinburgh, Edinburgh, UK
A. Harper
College of Engineering, Mathematics, and Physical Science, University of Exeter, Exeter, UK
B. O. Christoffersen
School of GeoSciences, University of Edinburgh, Edinburgh, UK
Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, USA
D. R. Galbraith
School of Geography, University of Leeds, Leeds, UK
H. M. A. Imbuzeiro
Grupo de Pesquisas em Interação Atmosfera-Biosfera, Universidade Federal de Viçosa, Minas Gerias, Brazil
T. L. Powell
Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
C. Doughty
Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, UK
N. M. Levine
Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
Y. Malhi
Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, UK
S. R. Saleska
Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, USA
P. R. Moorcroft
Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
P. Meir
School of GeoSciences, University of Edinburgh, Edinburgh, UK
Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
M. Williams
School of GeoSciences, University of Edinburgh, Edinburgh, UK
Related authors
Bradley O. Christoffersen, Manuel Gloor, Sophie Fauset, Nikolaos M. Fyllas, David R. Galbraith, Timothy R. Baker, Bart Kruijt, Lucy Rowland, Rosie A. Fisher, Oliver J. Binks, Sanna Sevanto, Chonggang Xu, Steven Jansen, Brendan Choat, Maurizio Mencuccini, Nate G. McDowell, and Patrick Meir
Geosci. Model Dev., 9, 4227–4255, https://doi.org/10.5194/gmd-9-4227-2016, https://doi.org/10.5194/gmd-9-4227-2016, 2016
Short summary
Short summary
We developed a plant hydraulics model for tropical forests based on established plant physiological theory, and parameterized it by conducting a pantropical hydraulic trait survey. We show that a substantial amount of trait diversity can be represented in the model by a reduced set of trait dimensions. The fully parameterized model is able capture tree-level variation in water status and improves simulations of total ecosystem transpiration, showing how to incorporate hydraulic traits in models.
Fabien H. Wagner, Bruno Hérault, Damien Bonal, Clément Stahl, Liana O. Anderson, Timothy R. Baker, Gabriel Sebastian Becker, Hans Beeckman, Danilo Boanerges Souza, Paulo Cesar Botosso, David M. J. S. Bowman, Achim Bräuning, Benjamin Brede, Foster Irving Brown, Jesus Julio Camarero, Plínio Barbosa Camargo, Fernanda C. G. Cardoso, Fabrício Alvim Carvalho, Wendeson Castro, Rubens Koloski Chagas, Jérome Chave, Emmanuel N. Chidumayo, Deborah A. Clark, Flavia Regina Capellotto Costa, Camille Couralet, Paulo Henrique da Silva Mauricio, Helmut Dalitz, Vinicius Resende de Castro, Jaçanan Eloisa de Freitas Milani, Edilson Consuelo de Oliveira, Luciano de Souza Arruda, Jean-Louis Devineau, David M. Drew, Oliver Dünisch, Giselda Durigan, Elisha Elifuraha, Marcio Fedele, Ligia Ferreira Fedele, Afonso Figueiredo Filho, César Augusto Guimarães Finger, Augusto César Franco, João Lima Freitas Júnior, Franklin Galvão, Aster Gebrekirstos, Robert Gliniars, Paulo Maurício Lima de Alencastro Graça, Anthony D. Griffiths, James Grogan, Kaiyu Guan, Jürgen Homeier, Maria Raquel Kanieski, Lip Khoon Kho, Jennifer Koenig, Sintia Valerio Kohler, Julia Krepkowski, José Pires Lemos-Filho, Diana Lieberman, Milton Eugene Lieberman, Claudio Sergio Lisi, Tomaz Longhi Santos, José Luis López Ayala, Eduardo Eijji Maeda, Yadvinder Malhi, Vivian R. B. Maria, Marcia C. M. Marques, Renato Marques, Hector Maza Chamba, Lawrence Mbwambo, Karina Liana Lisboa Melgaço, Hooz Angela Mendivelso, Brett P. Murphy, Joseph J. O'Brien, Steven F. Oberbauer, Naoki Okada, Raphaël Pélissier, Lynda D. Prior, Fidel Alejandro Roig, Michael Ross, Davi Rodrigo Rossatto, Vivien Rossi, Lucy Rowland, Ervan Rutishauser, Hellen Santana, Mark Schulze, Diogo Selhorst, Williamar Rodrigues Silva, Marcos Silveira, Susanne Spannl, Michael D. Swaine, José Julio Toledo, Marcos Miranda Toledo, Marisol Toledo, Takeshi Toma, Mario Tomazello Filho, Juan Ignacio Valdez Hernández, Jan Verbesselt, Simone Aparecida Vieira, Grégoire Vincent, Carolina Volkmer de Castilho, Franziska Volland, Martin Worbes, Magda Lea Bolzan Zanon, and Luiz E. O. C. Aragão
Biogeosciences, 13, 2537–2562, https://doi.org/10.5194/bg-13-2537-2016, https://doi.org/10.5194/bg-13-2537-2016, 2016
Kristiina Visakorpi, Sofia Gripenberg, Yadvinder Malhi, and Terhi Riutta
Web Ecol., 24, 97–113, https://doi.org/10.5194/we-24-97-2024, https://doi.org/10.5194/we-24-97-2024, 2024
Short summary
Short summary
Plant-feeding insects can have large impacts on the photosynthetic rate of their host plants. Through reducing photosynthesis, and thus carbon assimilation by the plant, these impacts might have large-scale influences on ecosystem carbon cycling. Nevertheless, these effects are rarely considered in ecosystem-level studies. Here we propose an approach to incorporating these changes in plant physiology into estimates of ecosystem productivity.
Xiaoran Zhu, Dong Chen, Maruko Kogure, Elizabeth Hoy, Logan T. Berner, Amy L. Breen, Abhishek Chatterjee, Scott J. Davidson, Gerald V. Frost, Teresa N. Hollingsworth, Go Iwahana, Randi R. Jandt, Anja N. Kade, Tatiana V. Loboda, Matt J. Macander, Michelle Mack, Charles E. Miller, Eric A. Miller, Susan M. Natali, Martha K. Raynolds, Adrian V. Rocha, Shiro Tsuyuzaki, Craig E. Tweedie, Donald A. Walker, Mathew Williams, Xin Xu, Yingtong Zhang, Nancy French, and Scott Goetz
Earth Syst. Sci. Data, 16, 3687–3703, https://doi.org/10.5194/essd-16-3687-2024, https://doi.org/10.5194/essd-16-3687-2024, 2024
Short summary
Short summary
The Arctic tundra is experiencing widespread physical and biological changes, largely in response to warming, yet scientific understanding of tundra ecology and change remains limited due to relatively limited accessibility and studies compared to other terrestrial biomes. To support synthesis research and inform future studies, we created the Synthesized Alaskan Tundra Field Dataset (SATFiD), which brings together field datasets and includes vegetation, active-layer, and fire properties.
Mathew Williams, David T. Milodowski, Thomas Luke Smallman, Kyle G. Dexter, Gabi C. Hegerl, Iain M. McNicol, Michael O'Sullivan, Carla M. Roesch, Casey M. Ryan, Stephen Sitch, and Aude Valade
EGUsphere, https://doi.org/10.5194/egusphere-2024-2497, https://doi.org/10.5194/egusphere-2024-2497, 2024
Short summary
Short summary
Southern African woodlands are important in both regional and global carbon cycles. A new carbon analysis created by combining satellite data with ecosystem modelling shows that the region has a neutral C balance overall, but with important spatial variations. Patterns of biomass and C balance across the region are the outcome of climate controls on production, vegetation-fire interactions, which determine mortality of vegetation, and spatial variations in vegetation function.
Junyan Ding, Polly Buotte, Roger Bales, Bradley Christoffersen, Rosie A. Fisher, Michael Goulden, Ryan Knox, Lara Kueppers, Jacquelyn Shuman, Chonggang Xu, and Charles D. Koven
Biogeosciences, 20, 4491–4510, https://doi.org/10.5194/bg-20-4491-2023, https://doi.org/10.5194/bg-20-4491-2023, 2023
Short summary
Short summary
We used a vegetation model to investigate how the different combinations of plant rooting depths and the sensitivity of leaves and stems to drying lead to differential responses of a pine forest to drought conditions in California, USA. We found that rooting depths are the strongest control in that ecosystem. Deep roots allow trees to fully utilize the soil water during a normal year but result in prolonged depletion of soil moisture during a severe drought and hence a high tree mortality risk.
Chonggang Xu, Bradley Christoffersen, Zachary Robbins, Ryan Knox, Rosie A. Fisher, Rutuja Chitra-Tarak, Martijn Slot, Kurt Solander, Lara Kueppers, Charles Koven, and Nate McDowell
Geosci. Model Dev., 16, 6267–6283, https://doi.org/10.5194/gmd-16-6267-2023, https://doi.org/10.5194/gmd-16-6267-2023, 2023
Short summary
Short summary
We introduce a plant hydrodynamic model for the U.S. Department of Energy (DOE)-sponsored model, the Functionally Assembled Terrestrial Ecosystem Simulator (FATES). To better understand this new model system and its functionality in tropical forest ecosystems, we conducted a global parameter sensitivity analysis at Barro Colorado Island, Panama. We identified the key parameters that affect the simulated plant hydrodynamics to guide both modeling and field campaign studies.
Luana S. Basso, Chris Wilson, Martyn P. Chipperfield, Graciela Tejada, Henrique L. G. Cassol, Egídio Arai, Mathew Williams, T. Luke Smallman, Wouter Peters, Stijn Naus, John B. Miller, and Manuel Gloor
Atmos. Chem. Phys., 23, 9685–9723, https://doi.org/10.5194/acp-23-9685-2023, https://doi.org/10.5194/acp-23-9685-2023, 2023
Short summary
Short summary
The Amazon’s carbon balance may have changed due to forest degradation, deforestation and warmer climate. We used an atmospheric model and atmospheric CO2 observations to quantify Amazonian carbon emissions (2010–2018). The region was a small carbon source to the atmosphere, mostly due to fire emissions. Forest uptake compensated for ~ 50 % of the fire emissions, meaning that the remaining forest is still a small carbon sink. We found no clear evidence of weakening carbon uptake over the period.
David T. Milodowski, T. Luke Smallman, and Mathew Williams
Biogeosciences, 20, 3301–3327, https://doi.org/10.5194/bg-20-3301-2023, https://doi.org/10.5194/bg-20-3301-2023, 2023
Short summary
Short summary
Model–data fusion (MDF) allows us to combine ecosystem models with Earth observation data. Fragmented landscapes, with a mosaic of contrasting ecosystems, pose a challenge for MDF. We develop a novel MDF framework to estimate the carbon balance of fragmented landscapes and show the importance of accounting for ecosystem heterogeneity to prevent scale-dependent bias in estimated carbon fluxes, disturbance fluxes in particular, and to improve ecological fidelity of the calibrated models.
Vasileios Myrgiotis, Thomas Luke Smallman, and Mathew Williams
Biogeosciences, 19, 4147–4170, https://doi.org/10.5194/bg-19-4147-2022, https://doi.org/10.5194/bg-19-4147-2022, 2022
Short summary
Short summary
This study shows that livestock grazing and grass cutting can determine whether a grassland is adding (source) or removing (sink) carbon (C) to/from the atmosphere. The annual C balance of 1855 managed grassland fields in Great Britain was quantified for 2017–2018 using process modelling and earth observation data. The examined fields were, on average, small C sinks, but the summer drought of 2018 led to a 9-fold increase in the number of fields that became C sources in 2018 compared to 2017.
Marina Corrêa Scalon, Imma Oliveras Menor, Renata Freitag, Karine S. Peixoto, Sami W. Rifai, Beatriz Schwantes Marimon, Ben Hur Marimon Junior, and Yadvinder Malhi
Biogeosciences, 19, 3649–3661, https://doi.org/10.5194/bg-19-3649-2022, https://doi.org/10.5194/bg-19-3649-2022, 2022
Short summary
Short summary
We investigated dynamic nutrient flow and demand in a typical savanna and a transition forest to understand how similar soils and the same climate dominated by savanna vegetation can also support forest-like formations. Savanna relied on nutrient resorption from wood, and nutrient demand was equally partitioned between leaves, wood and fine roots. Transition forest relied on resorption from the canopy biomass and nutrient demand was predominantly driven by leaves.
Félicien Meunier, Sruthi M. Krishna Moorthy, Marc Peaucelle, Kim Calders, Louise Terryn, Wim Verbruggen, Chang Liu, Ninni Saarinen, Niall Origo, Joanne Nightingale, Mathias Disney, Yadvinder Malhi, and Hans Verbeeck
Geosci. Model Dev., 15, 4783–4803, https://doi.org/10.5194/gmd-15-4783-2022, https://doi.org/10.5194/gmd-15-4783-2022, 2022
Short summary
Short summary
We integrated state-of-the-art observations of the structure of the vegetation in a temperate forest to constrain a vegetation model that aims to reproduce such an ecosystem in silico. We showed that the use of this information helps to constrain the model structure, its critical parameters, as well as its initial state. This research confirms the critical importance of the representation of the vegetation structure in vegetation models and proposes a method to overcome this challenge.
Evan Baker, Anna B. Harper, Daniel Williamson, and Peter Challenor
Geosci. Model Dev., 15, 1913–1929, https://doi.org/10.5194/gmd-15-1913-2022, https://doi.org/10.5194/gmd-15-1913-2022, 2022
Short summary
Short summary
We have adapted machine learning techniques to build a model of the land surface in Great Britain. The model was trained using data from a very complex land surface model called JULES. Our model is faster at producing simulations and predictions and can investigate many different scenarios, which can be used to improve our understanding of the climate and could also be used to help make local decisions.
Yan Yang, A. Anthony Bloom, Shuang Ma, Paul Levine, Alexander Norton, Nicholas C. Parazoo, John T. Reager, John Worden, Gregory R. Quetin, T. Luke Smallman, Mathew Williams, Liang Xu, and Sassan Saatchi
Geosci. Model Dev., 15, 1789–1802, https://doi.org/10.5194/gmd-15-1789-2022, https://doi.org/10.5194/gmd-15-1789-2022, 2022
Short summary
Short summary
Global carbon and water have large uncertainties that are hard to quantify in current regional and global models. Field observations provide opportunities for better calibration and validation of current modeling of carbon and water. With the unique structure of CARDAMOM, we have utilized the data assimilation capability and designed the benchmarking framework by using field observations in modeling. Results show that data assimilation improves model performance in different aspects.
Stephanie G. Stettz, Nicholas C. Parazoo, A. Anthony Bloom, Peter D. Blanken, David R. Bowling, Sean P. Burns, Cédric Bacour, Fabienne Maignan, Brett Raczka, Alexander J. Norton, Ian Baker, Mathew Williams, Mingjie Shi, Yongguang Zhang, and Bo Qiu
Biogeosciences, 19, 541–558, https://doi.org/10.5194/bg-19-541-2022, https://doi.org/10.5194/bg-19-541-2022, 2022
Short summary
Short summary
Uncertainty in the response of photosynthesis to temperature poses a major challenge to predicting the response of forests to climate change. In this paper, we study how photosynthesis in a mountainous evergreen forest is limited by temperature. This study highlights that cold temperature is a key factor that controls spring photosynthesis. Including the cold-temperature limitation in an ecosystem model improved its ability to simulate spring photosynthesis.
Thomas Luke Smallman, David Thomas Milodowski, Eráclito Sousa Neto, Gerbrand Koren, Jean Ometto, and Mathew Williams
Earth Syst. Dynam., 12, 1191–1237, https://doi.org/10.5194/esd-12-1191-2021, https://doi.org/10.5194/esd-12-1191-2021, 2021
Short summary
Short summary
Our study provides a novel assessment of model parameter, structure and climate change scenario uncertainty contribution to future predictions of the Brazilian terrestrial carbon stocks to 2100. We calibrated (2001–2017) five models of the terrestrial C cycle of varied structure. The calibrated models were then projected to 2100 under multiple climate change scenarios. Parameter uncertainty dominates overall uncertainty, being ~ 40 times that of either model structure or climate change scenario.
Wu Ma, Lu Zhai, Alexandria Pivovaroff, Jacquelyn Shuman, Polly Buotte, Junyan Ding, Bradley Christoffersen, Ryan Knox, Max Moritz, Rosie A. Fisher, Charles D. Koven, Lara Kueppers, and Chonggang Xu
Biogeosciences, 18, 4005–4020, https://doi.org/10.5194/bg-18-4005-2021, https://doi.org/10.5194/bg-18-4005-2021, 2021
Short summary
Short summary
We use a hydrodynamic demographic vegetation model to estimate live fuel moisture dynamics of chaparral shrubs, a dominant vegetation type in fire-prone southern California. Our results suggest that multivariate climate change could cause a significant net reduction in live fuel moisture and thus exacerbate future wildfire danger in chaparral shrub systems.
Anna B. Harper, Karina E. Williams, Patrick C. McGuire, Maria Carolina Duran Rojas, Debbie Hemming, Anne Verhoef, Chris Huntingford, Lucy Rowland, Toby Marthews, Cleiton Breder Eller, Camilla Mathison, Rodolfo L. B. Nobrega, Nicola Gedney, Pier Luigi Vidale, Fred Otu-Larbi, Divya Pandey, Sebastien Garrigues, Azin Wright, Darren Slevin, Martin G. De Kauwe, Eleanor Blyth, Jonas Ardö, Andrew Black, Damien Bonal, Nina Buchmann, Benoit Burban, Kathrin Fuchs, Agnès de Grandcourt, Ivan Mammarella, Lutz Merbold, Leonardo Montagnani, Yann Nouvellon, Natalia Restrepo-Coupe, and Georg Wohlfahrt
Geosci. Model Dev., 14, 3269–3294, https://doi.org/10.5194/gmd-14-3269-2021, https://doi.org/10.5194/gmd-14-3269-2021, 2021
Short summary
Short summary
We evaluated 10 representations of soil moisture stress in the JULES land surface model against site observations of GPP and latent heat flux. Increasing the soil depth and plant access to deep soil moisture improved many aspects of the simulations, and we recommend these settings in future work using JULES. In addition, using soil matric potential presents the opportunity to include parameters specific to plant functional type to further improve modeled fluxes.
Garry D. Hayman, Edward Comyn-Platt, Chris Huntingford, Anna B. Harper, Tom Powell, Peter M. Cox, William Collins, Christopher Webber, Jason Lowe, Stephen Sitch, Joanna I. House, Jonathan C. Doelman, Detlef P. van Vuuren, Sarah E. Chadburn, Eleanor Burke, and Nicola Gedney
Earth Syst. Dynam., 12, 513–544, https://doi.org/10.5194/esd-12-513-2021, https://doi.org/10.5194/esd-12-513-2021, 2021
Short summary
Short summary
We model greenhouse gas emission scenarios consistent with limiting global warming to either 1.5 or 2 °C above pre-industrial levels. We quantify the effectiveness of methane emission control and land-based mitigation options regionally. Our results highlight the importance of reducing methane emissions for realistic emission pathways that meet the global warming targets. For land-based mitigation, growing bioenergy crops on existing agricultural land is preferable to replacing forests.
Caroline A. Famiglietti, T. Luke Smallman, Paul A. Levine, Sophie Flack-Prain, Gregory R. Quetin, Victoria Meyer, Nicholas C. Parazoo, Stephanie G. Stettz, Yan Yang, Damien Bonal, A. Anthony Bloom, Mathew Williams, and Alexandra G. Konings
Biogeosciences, 18, 2727–2754, https://doi.org/10.5194/bg-18-2727-2021, https://doi.org/10.5194/bg-18-2727-2021, 2021
Short summary
Short summary
Model uncertainty dominates the spread in terrestrial carbon cycle predictions. Efforts to reduce it typically involve adding processes, thereby increasing model complexity. However, if and how model performance scales with complexity is unclear. Using a suite of 16 structurally distinct carbon cycle models, we find that increased complexity only improves skill if parameters are adequately informed. Otherwise, it can degrade skill, and an intermediate-complexity model is optimal.
Andrew J. Wiltshire, Eleanor J. Burke, Sarah E. Chadburn, Chris D. Jones, Peter M. Cox, Taraka Davies-Barnard, Pierre Friedlingstein, Anna B. Harper, Spencer Liddicoat, Stephen Sitch, and Sönke Zaehle
Geosci. Model Dev., 14, 2161–2186, https://doi.org/10.5194/gmd-14-2161-2021, https://doi.org/10.5194/gmd-14-2161-2021, 2021
Short summary
Short summary
Limited nitrogen availbility can restrict the growth of plants and their ability to assimilate carbon. It is important to include the impact of this process on the global land carbon cycle. This paper presents a model of the coupled land carbon and nitrogen cycle, which is included within the UK Earth System model to improve projections of climate change and impacts on ecosystems.
Richard Wehr and Scott R. Saleska
Biogeosciences, 18, 13–24, https://doi.org/10.5194/bg-18-13-2021, https://doi.org/10.5194/bg-18-13-2021, 2021
Short summary
Short summary
Water and carbon exchange between plants and the atmosphere is governed by stomata: adjustable pores in the surfaces of leaves. The combined gas conductance of all the stomata in a canopy has long been estimated using an equation that is shown here to be systematically incorrect because it relies on measurements that are generally inadequate. An alternative approach is shown to be more accurate in all probable scenarios and to imply different responses of stomatal conductance to the environment.
A. Anthony Bloom, Kevin W. Bowman, Junjie Liu, Alexandra G. Konings, John R. Worden, Nicholas C. Parazoo, Victoria Meyer, John T. Reager, Helen M. Worden, Zhe Jiang, Gregory R. Quetin, T. Luke Smallman, Jean-François Exbrayat, Yi Yin, Sassan S. Saatchi, Mathew Williams, and David S. Schimel
Biogeosciences, 17, 6393–6422, https://doi.org/10.5194/bg-17-6393-2020, https://doi.org/10.5194/bg-17-6393-2020, 2020
Short summary
Short summary
We use a model of the 2001–2015 tropical land carbon cycle, with satellite measurements of land and atmospheric carbon, to disentangle lagged and concurrent effects (due to past and concurrent meteorological events, respectively) on annual land–atmosphere carbon exchanges. The variability of lagged effects explains most 2001–2015 inter-annual carbon flux variations. We conclude that concurrent and lagged effects need to be accurately resolved to better predict the world's land carbon sink.
Arthur P. K. Argles, Jonathan R. Moore, Chris Huntingford, Andrew J. Wiltshire, Anna B. Harper, Chris D. Jones, and Peter M. Cox
Geosci. Model Dev., 13, 4067–4089, https://doi.org/10.5194/gmd-13-4067-2020, https://doi.org/10.5194/gmd-13-4067-2020, 2020
Short summary
Short summary
The Robust Ecosystem Demography (RED) model simulates cohorts of vegetation through mass classes. RED establishes a framework for representing demographic changes through competition, growth, and mortality across the size distribution of a forest. The steady state of the model can be solved analytically, enabling initialization. When driven by mean growth rates from a land-surface model, RED is able to fit the observed global vegetation map, giving a map of implicit mortality rates.
Thomas A. M. Pugh, Tim Rademacher, Sarah L. Shafer, Jörg Steinkamp, Jonathan Barichivich, Brian Beckage, Vanessa Haverd, Anna Harper, Jens Heinke, Kazuya Nishina, Anja Rammig, Hisashi Sato, Almut Arneth, Stijn Hantson, Thomas Hickler, Markus Kautz, Benjamin Quesada, Benjamin Smith, and Kirsten Thonicke
Biogeosciences, 17, 3961–3989, https://doi.org/10.5194/bg-17-3961-2020, https://doi.org/10.5194/bg-17-3961-2020, 2020
Short summary
Short summary
The length of time that carbon remains in forest biomass is one of the largest uncertainties in the global carbon cycle. Estimates from six contemporary models found this time to range from 12.2 to 23.5 years for the global mean for 1985–2014. Future projections do not give consistent results, but 13 model-based hypotheses are identified, along with recommendations for pragmatic steps to test them using existing and novel observations, which would help to reduce large current uncertainty.
Simon Jones, Lucy Rowland, Peter Cox, Deborah Hemming, Andy Wiltshire, Karina Williams, Nicholas C. Parazoo, Junjie Liu, Antonio C. L. da Costa, Patrick Meir, Maurizio Mencuccini, and Anna B. Harper
Biogeosciences, 17, 3589–3612, https://doi.org/10.5194/bg-17-3589-2020, https://doi.org/10.5194/bg-17-3589-2020, 2020
Short summary
Short summary
Non-structural carbohydrates (NSCs) are an important set of molecules that help plants to grow and respire when photosynthesis is restricted by extreme climate events. In this paper we present a simple model of NSC storage and assess the effect that it has on simulations of vegetation at the ecosystem scale. Our model has the potential to significantly change predictions of plant behaviour in global vegetation models, which would have large implications for predictions of the future climate.
Charles D. Koven, Ryan G. Knox, Rosie A. Fisher, Jeffrey Q. Chambers, Bradley O. Christoffersen, Stuart J. Davies, Matteo Detto, Michael C. Dietze, Boris Faybishenko, Jennifer Holm, Maoyi Huang, Marlies Kovenock, Lara M. Kueppers, Gregory Lemieux, Elias Massoud, Nathan G. McDowell, Helene C. Muller-Landau, Jessica F. Needham, Richard J. Norby, Thomas Powell, Alistair Rogers, Shawn P. Serbin, Jacquelyn K. Shuman, Abigail L. S. Swann, Charuleka Varadharajan, Anthony P. Walker, S. Joseph Wright, and Chonggang Xu
Biogeosciences, 17, 3017–3044, https://doi.org/10.5194/bg-17-3017-2020, https://doi.org/10.5194/bg-17-3017-2020, 2020
Short summary
Short summary
Tropical forests play a crucial role in governing climate feedbacks, and are incredibly diverse ecosystems, yet most Earth system models do not take into account the diversity of plant traits in these forests and how this diversity may govern feedbacks. We present an approach to represent diverse competing plant types within Earth system models, test this approach at a tropical forest site, and explore how the representation of disturbance and competition governs traits of the forest community.
Kurt C. Solander, Brent D. Newman, Alessandro Carioca de Araujo, Holly R. Barnard, Z. Carter Berry, Damien Bonal, Mario Bretfeld, Benoit Burban, Luiz Antonio Candido, Rolando Célleri, Jeffery Q. Chambers, Bradley O. Christoffersen, Matteo Detto, Wouter A. Dorigo, Brent E. Ewers, Savio José Filgueiras Ferreira, Alexander Knohl, L. Ruby Leung, Nate G. McDowell, Gretchen R. Miller, Maria Terezinha Ferreira Monteiro, Georgianne W. Moore, Robinson Negron-Juarez, Scott R. Saleska, Christian Stiegler, Javier Tomasella, and Chonggang Xu
Hydrol. Earth Syst. Sci., 24, 2303–2322, https://doi.org/10.5194/hess-24-2303-2020, https://doi.org/10.5194/hess-24-2303-2020, 2020
Short summary
Short summary
We evaluate the soil moisture response in the humid tropics to El Niño during the three most recent super El Niño events. Our estimates are compared to in situ soil moisture estimates that span five continents. We find the strongest and most consistent soil moisture decreases in the Amazon and maritime southeastern Asia, while the most consistent increases occur over eastern Africa. Our results can be used to improve estimates of soil moisture in tropical ecohydrology models at multiple scales.
Wei Li, Philippe Ciais, Elke Stehfest, Detlef van Vuuren, Alexander Popp, Almut Arneth, Fulvio Di Fulvio, Jonathan Doelman, Florian Humpenöder, Anna B. Harper, Taejin Park, David Makowski, Petr Havlik, Michael Obersteiner, Jingmeng Wang, Andreas Krause, and Wenfeng Liu
Earth Syst. Sci. Data, 12, 789–804, https://doi.org/10.5194/essd-12-789-2020, https://doi.org/10.5194/essd-12-789-2020, 2020
Short summary
Short summary
We generated spatially explicit bioenergy crop yields based on field measurements with climate, soil condition and remote-sensing variables as explanatory variables and the machine-learning method. We further compared our yield maps with the maps from three integrated assessment models (IAMs; IMAGE, MAgPIE and GLOBIOM) and found that the median yields in our maps are > 50 % higher than those in the IAM maps.
Emma W. Littleton, Anna B. Harper, Naomi E. Vaughan, Rebecca J. Oliver, Maria Carolina Duran-Rojas, and Timothy M. Lenton
Geosci. Model Dev., 13, 1123–1136, https://doi.org/10.5194/gmd-13-1123-2020, https://doi.org/10.5194/gmd-13-1123-2020, 2020
Short summary
Short summary
This study presents new functionality to represent bioenergy crops and harvests in JULES, a land surface model. Such processes must be explicitly represented before the environmental effects of large-scale bioenergy production can be fully evaluated, using Earth system modelling. This new functionality allows for many types of bioenergy plants and harvesting regimes to be simulated, such as perennial grasses, short rotation coppicing, and forestry rotations.
Andrew J. Wiltshire, Maria Carolina Duran Rojas, John M. Edwards, Nicola Gedney, Anna B. Harper, Andrew J. Hartley, Margaret A. Hendry, Eddy Robertson, and Kerry Smout-Day
Geosci. Model Dev., 13, 483–505, https://doi.org/10.5194/gmd-13-483-2020, https://doi.org/10.5194/gmd-13-483-2020, 2020
Short summary
Short summary
We present the Global Land (GL) configuration of the Joint UK Land Environment Simulator (JULES). JULES-GL7 can be used to simulate the exchange of heat, water and momentum over land and is therefore applicable for helping understand past and future changes, and forms the land component of the HadGEM3-GC3.1 climate model. The configuration is freely available subject to licence restrictions.
Sophie Flack-Prain, Patrick Meir, Yadvinder Malhi, Thomas Luke Smallman, and Mathew Williams
Biogeosciences, 16, 4463–4484, https://doi.org/10.5194/bg-16-4463-2019, https://doi.org/10.5194/bg-16-4463-2019, 2019
Short summary
Short summary
Across the Amazon rainforest, trees take in carbon through photosynthesis. However, photosynthesis across the basin is threatened by predicted shifts in rainfall patterns. To unpick how changes in rainfall affect photosynthesis, we use a model which combines climate data with our knowledge of photosynthesis and other plant processes. We find that stomatal constraints are less important, and instead shifts in leaf surface area and leaf properties drive changes in photosynthesis with rainfall.
Brendan Byrne, Dylan B. A. Jones, Kimberly Strong, Saroja M. Polavarapu, Anna B. Harper, David F. Baker, and Shamil Maksyutov
Atmos. Chem. Phys., 19, 13017–13035, https://doi.org/10.5194/acp-19-13017-2019, https://doi.org/10.5194/acp-19-13017-2019, 2019
Short summary
Short summary
Interannual variations in net ecosystem exchange (NEE) estimated from the Greenhouse Gases Observing Satellite (GOSAT) XCO2 measurements are shown to be correlated (P < 0.05) with temperature and FLUXCOM NEE anomalies. Furthermore, the GOSAT-informed NEE anomalies are found to be better correlated with temperature and FLUXCOM anomalies than NEE estimates from most terrestrial biosphere models, suggesting that GOSAT CO2 measurements provide a useful constraint on NEE interannual variability.
Marcos Longo, Ryan G. Knox, David M. Medvigy, Naomi M. Levine, Michael C. Dietze, Yeonjoo Kim, Abigail L. S. Swann, Ke Zhang, Christine R. Rollinson, Rafael L. Bras, Steven C. Wofsy, and Paul R. Moorcroft
Geosci. Model Dev., 12, 4309–4346, https://doi.org/10.5194/gmd-12-4309-2019, https://doi.org/10.5194/gmd-12-4309-2019, 2019
Short summary
Short summary
Our paper describes the Ecosystem Demography model. This computer program calculates how plants and ground exchange heat, water, and carbon with the air, and how plants grow, reproduce and die in different climates. Most models simplify forests to an average big tree. We consider that tall, deep-rooted trees get more light and water than small plants, and that some plants can with shade and drought. This diversity helps us to better explain how plants live and interact with the atmosphere.
Marcos Longo, Ryan G. Knox, Naomi M. Levine, Abigail L. S. Swann, David M. Medvigy, Michael C. Dietze, Yeonjoo Kim, Ke Zhang, Damien Bonal, Benoit Burban, Plínio B. Camargo, Matthew N. Hayek, Scott R. Saleska, Rodrigo da Silva, Rafael L. Bras, Steven C. Wofsy, and Paul R. Moorcroft
Geosci. Model Dev., 12, 4347–4374, https://doi.org/10.5194/gmd-12-4347-2019, https://doi.org/10.5194/gmd-12-4347-2019, 2019
Short summary
Short summary
The Ecosystem Demography model calculates the fluxes of heat, water, and carbon between plants and ground and the air, and the life cycle of plants in different climates. To test if our calculations were reasonable, we compared our results with field and satellite measurements. Our model predicts well the extent of the Amazon forest, how much light forests absorb, and how much water forests release to the air. However, it must improve the tree growth rates and how fast dead plants decompose.
Karina E. Williams, Anna B. Harper, Chris Huntingford, Lina M. Mercado, Camilla T. Mathison, Pete D. Falloon, Peter M. Cox, and Joon Kim
Geosci. Model Dev., 12, 3207–3240, https://doi.org/10.5194/gmd-12-3207-2019, https://doi.org/10.5194/gmd-12-3207-2019, 2019
Short summary
Short summary
Data from the First ISLSCP Field Experiment, 1987–1989, is used to assess how well the JULES land-surface model simulates water stress in tallgrass prairie vegetation. We find that JULES simulates a decrease in key carbon and water cycle variables during the dry period, as expected, but that it does not capture the shape of the diurnal cycle on these days. These results will be used to inform future model development as part of wider evaluation efforts.
Thomas Luke Smallman and Mathew Williams
Geosci. Model Dev., 12, 2227–2253, https://doi.org/10.5194/gmd-12-2227-2019, https://doi.org/10.5194/gmd-12-2227-2019, 2019
Short summary
Short summary
Photosynthesis and evapotranspiration are processes with global significance for climate, carbon and water cycling. Process-orientated simulation of these processes and their interactions have till now come at high computational cost. Here we present a new coupled model of intermediate complexity operating at orders of magnitude greater speed. Independent evaluation at FLUXNET sites for a single, global parameterization shows good agreement, with a typical R2 value of ~ 0.60.
Efrén López-Blanco, Jean-François Exbrayat, Magnus Lund, Torben R. Christensen, Mikkel P. Tamstorf, Darren Slevin, Gustaf Hugelius, Anthony A. Bloom, and Mathew Williams
Earth Syst. Dynam., 10, 233–255, https://doi.org/10.5194/esd-10-233-2019, https://doi.org/10.5194/esd-10-233-2019, 2019
Short summary
Short summary
The terrestrial CO2 exchange in Arctic ecosystems plays an important role in the global carbon cycle and is particularly sensitive to the ongoing warming experienced in recent years. To improve our understanding of the atmosphere–biosphere interplay, we evaluated the state of the terrestrial pan-Arctic carbon cycling using a promising data assimilation system in the first 15 years of the 21st century. This is crucial when it comes to making predictions about the future state of the carbon cycle.
Vasileios Myrgiotis, Mathew Williams, Robert M. Rees, and Cairistiona F. E. Topp
Biogeosciences, 16, 1641–1655, https://doi.org/10.5194/bg-16-1641-2019, https://doi.org/10.5194/bg-16-1641-2019, 2019
Short summary
Short summary
This study focuses on a northwestern European cropland region and shows that the type of crop growing on a soil has notable effects on the emission of nitrous oxide (N2O – a greenhouse gas) from that soil. It was found that N2O emissions from soils under oilseed cultivation are significantly higher than soils under cereal cultivation. This variation is mostly explained by the fact that oilseeds require more nitrogen (fertiliser) than cereals, especially at early crop growth stages.
Anne Sofie Lansø, Thomas Luke Smallman, Jesper Heile Christensen, Mathew Williams, Kim Pilegaard, Lise-Lotte Sørensen, and Camilla Geels
Biogeosciences, 16, 1505–1524, https://doi.org/10.5194/bg-16-1505-2019, https://doi.org/10.5194/bg-16-1505-2019, 2019
Short summary
Short summary
Although coastal regions only amount to 7 % of the global oceans, their contribution to the global oceanic surface exchange of CO2 is much greater. In this study, we gain detailed insight into how these coastal marine fluxes compare to CO2 exchange from coastal land regions. Annually, the coastal marine exchanges are smaller than the total uptake of CO2 from the land surfaces within the study area but comparable in size to terrestrial fluxes from individual land cover classes of the region.
Emily D. White, Matthew Rigby, Mark F. Lunt, T. Luke Smallman, Edward Comyn-Platt, Alistair J. Manning, Anita L. Ganesan, Simon O'Doherty, Ann R. Stavert, Kieran Stanley, Mathew Williams, Peter Levy, Michel Ramonet, Grant L. Forster, Andrew C. Manning, and Paul I. Palmer
Atmos. Chem. Phys., 19, 4345–4365, https://doi.org/10.5194/acp-19-4345-2019, https://doi.org/10.5194/acp-19-4345-2019, 2019
Short summary
Short summary
Understanding carbon dioxide (CO2) fluxes from the terrestrial biosphere on a national scale is important for evaluating land use strategies to mitigate climate change. We estimate emissions of CO2 from the UK biosphere using atmospheric data in a top-down approach. Our findings show that bottom-up estimates from models of biospheric fluxes overestimate the amount of CO2 uptake in summer. This suggests these models wrongly estimate or omit key processes, e.g. land disturbance due to harvest.
Kuang-Yu Chang, William J. Riley, Patrick M. Crill, Robert F. Grant, Virginia I. Rich, and Scott R. Saleska
The Cryosphere, 13, 647–663, https://doi.org/10.5194/tc-13-647-2019, https://doi.org/10.5194/tc-13-647-2019, 2019
Short summary
Short summary
Permafrost peatlands store large amounts of carbon potentially vulnerable to decomposition under changing climate. We estimated effects of climate forcing biases on carbon cycling at a thawing permafrost peatland in subarctic Sweden. Our results indicate that many climate reanalysis products are cold and wet biased in our study region, leading to erroneous active layer depth and carbon budget estimates. Future studies should recognize the effects of climate forcing uncertainty on carbon cycling.
Chantelle Burton, Richard Betts, Manoel Cardoso, Ted R. Feldpausch, Anna Harper, Chris D. Jones, Douglas I. Kelley, Eddy Robertson, and Andy Wiltshire
Geosci. Model Dev., 12, 179–193, https://doi.org/10.5194/gmd-12-179-2019, https://doi.org/10.5194/gmd-12-179-2019, 2019
Short summary
Short summary
Fire and land-use change are important disturbances within the Earth system, and their inclusion in models is critical to enable the correct simulation of vegetation cover. Here we describe developments to the land surface model JULES to represent explicit land-use change and fire and to assess the effects of each process on present day vegetation compared to observations. Using historical land-use data and the fire model INFERNO, overall model results are improved by the developments.
Anja Rammig, Jens Heinke, Florian Hofhansl, Hans Verbeeck, Timothy R. Baker, Bradley Christoffersen, Philippe Ciais, Hannes De Deurwaerder, Katrin Fleischer, David Galbraith, Matthieu Guimberteau, Andreas Huth, Michelle Johnson, Bart Krujit, Fanny Langerwisch, Patrick Meir, Phillip Papastefanou, Gilvan Sampaio, Kirsten Thonicke, Celso von Randow, Christian Zang, and Edna Rödig
Geosci. Model Dev., 11, 5203–5215, https://doi.org/10.5194/gmd-11-5203-2018, https://doi.org/10.5194/gmd-11-5203-2018, 2018
Short summary
Short summary
We propose a generic approach for a pixel-to-point comparison applicable for evaluation of models and remote-sensing products. We provide statistical measures accounting for the uncertainty in ecosystem variables. We demonstrate our approach by comparing simulated values of aboveground biomass, woody productivity and residence time of woody biomass from four dynamic global vegetation models (DGVMs) with measured inventory data from permanent plots in the Amazon rainforest.
Istem Fer, Ryan Kelly, Paul R. Moorcroft, Andrew D. Richardson, Elizabeth M. Cowdery, and Michael C. Dietze
Biogeosciences, 15, 5801–5830, https://doi.org/10.5194/bg-15-5801-2018, https://doi.org/10.5194/bg-15-5801-2018, 2018
Short summary
Short summary
The computer models we use to understand and forecast the ecosystem changes have multiple components that determine their outcomes. Due to our limited observation capacities, these components bear uncertainties that in return affect our predictions. While there are techniques for reducing these uncertainties, they are not applicable to every model due to computational and statistical barriers. This research presents a method that lowers those barriers and allows us to improve model predictions.
Matthew N. Hayek, Marcos Longo, Jin Wu, Marielle N. Smith, Natalia Restrepo-Coupe, Raphael Tapajós, Rodrigo da Silva, David R. Fitzjarrald, Plinio B. Camargo, Lucy R. Hutyra, Luciana F. Alves, Bruce Daube, J. William Munger, Kenia T. Wiedemann, Scott R. Saleska, and Steven C. Wofsy
Biogeosciences, 15, 4833–4848, https://doi.org/10.5194/bg-15-4833-2018, https://doi.org/10.5194/bg-15-4833-2018, 2018
Short summary
Short summary
We investigated the roles that weather and forest disturbances like drought play in shaping changes in ecosystem photosynthesis and carbon exchange in an Amazon forest. We discovered that weather largely influenced differences between years, but a prior drought, which occurred 3 years before measurements started, likely hampered photosynthesis in the first year. This is the first atmospheric evidence that drought can have legacy impacts on Amazon forest photosynthesis.
Anna B. Harper, Andrew J. Wiltshire, Peter M. Cox, Pierre Friedlingstein, Chris D. Jones, Lina M. Mercado, Stephen Sitch, Karina Williams, and Carolina Duran-Rojas
Geosci. Model Dev., 11, 2857–2873, https://doi.org/10.5194/gmd-11-2857-2018, https://doi.org/10.5194/gmd-11-2857-2018, 2018
Short summary
Short summary
Dynamic global vegetation models are used for studying historical and future changes to vegetation and the terrestrial carbon cycle. JULES is a DGVM that represents the land surface in the UK Earth System Model. We compared simulated gross and net primary productivity of vegetation, vegetation distribution, and aspects of the transient carbon cycle to observational datasets. JULES was able to accurately reproduce many aspects of the terrestrial carbon cycle with the recent improvements.
Eliane G. Alves, Julio Tóta, Andrew Turnipseed, Alex B. Guenther, José Oscar W. Vega Bustillos, Raoni A. Santana, Glauber G. Cirino, Julia V. Tavares, Aline P. Lopes, Bruce W. Nelson, Rodrigo A. de Souza, Dasa Gu, Trissevgeni Stavrakou, David K. Adams, Jin Wu, Scott Saleska, and Antonio O. Manzi
Biogeosciences, 15, 4019–4032, https://doi.org/10.5194/bg-15-4019-2018, https://doi.org/10.5194/bg-15-4019-2018, 2018
Short summary
Short summary
This study shows that leaf quantity and leaf age have an important effect on seasonal changes in isoprene emissions and that these could play an even more important role in regulating ecosystem isoprene fluxes than light and temperature at seasonal timescales in tropical forests. These results bring novelty and new insight for future research because in the past leaf phenology was not considered as an important factor that controls biological processes in the tropics.
Tommaso Jucker, Gregory P. Asner, Michele Dalponte, Philip G. Brodrick, Christopher D. Philipson, Nicholas R. Vaughn, Yit Arn Teh, Craig Brelsford, David F. R. P. Burslem, Nicolas J. Deere, Robert M. Ewers, Jakub Kvasnica, Simon L. Lewis, Yadvinder Malhi, Sol Milne, Reuben Nilus, Marion Pfeifer, Oliver L. Phillips, Lan Qie, Nathan Renneboog, Glen Reynolds, Terhi Riutta, Matthew J. Struebig, Martin Svátek, Edgar C. Turner, and David A. Coomes
Biogeosciences, 15, 3811–3830, https://doi.org/10.5194/bg-15-3811-2018, https://doi.org/10.5194/bg-15-3811-2018, 2018
Short summary
Short summary
Efforts to protect tropical forests hinge on recognizing the ecosystem services they provide, including their ability to store carbon. Airborne laser scanning (ALS) captures information on the 3-D structure of forests, allowing carbon stocks to be mapped. By combining ALS with data from 173 field plots on the island of Borneo, we develop a simple yet general model for estimating forest carbon stocks from the air. Our model underpins ongoing efforts to restore Borneo's unique tropical forests.
Mary E. Whelan, Sinikka T. Lennartz, Teresa E. Gimeno, Richard Wehr, Georg Wohlfahrt, Yuting Wang, Linda M. J. Kooijmans, Timothy W. Hilton, Sauveur Belviso, Philippe Peylin, Róisín Commane, Wu Sun, Huilin Chen, Le Kuai, Ivan Mammarella, Kadmiel Maseyk, Max Berkelhammer, King-Fai Li, Dan Yakir, Andrew Zumkehr, Yoko Katayama, Jérôme Ogée, Felix M. Spielmann, Florian Kitz, Bharat Rastogi, Jürgen Kesselmeier, Julia Marshall, Kukka-Maaria Erkkilä, Lisa Wingate, Laura K. Meredith, Wei He, Rüdiger Bunk, Thomas Launois, Timo Vesala, Johan A. Schmidt, Cédric G. Fichot, Ulli Seibt, Scott Saleska, Eric S. Saltzman, Stephen A. Montzka, Joseph A. Berry, and J. Elliott Campbell
Biogeosciences, 15, 3625–3657, https://doi.org/10.5194/bg-15-3625-2018, https://doi.org/10.5194/bg-15-3625-2018, 2018
Short summary
Short summary
Measurements of the trace gas carbonyl sulfide (OCS) are helpful in quantifying photosynthesis at previously unknowable temporal and spatial scales. While CO2 is both consumed and produced within ecosystems, OCS is mostly produced in the oceans or from specific industries, and destroyed in plant leaves in proportion to CO2. This review summarizes the advancements we have made in the understanding of OCS exchange and applications to vital ecosystem water and carbon cycle questions.
Donghai Wu, Philippe Ciais, Nicolas Viovy, Alan K. Knapp, Kevin Wilcox, Michael Bahn, Melinda D. Smith, Sara Vicca, Simone Fatichi, Jakob Zscheischler, Yue He, Xiangyi Li, Akihiko Ito, Almut Arneth, Anna Harper, Anna Ukkola, Athanasios Paschalis, Benjamin Poulter, Changhui Peng, Daniel Ricciuto, David Reinthaler, Guangsheng Chen, Hanqin Tian, Hélène Genet, Jiafu Mao, Johannes Ingrisch, Julia E. S. M. Nabel, Julia Pongratz, Lena R. Boysen, Markus Kautz, Michael Schmitt, Patrick Meir, Qiuan Zhu, Roland Hasibeder, Sebastian Sippel, Shree R. S. Dangal, Stephen Sitch, Xiaoying Shi, Yingping Wang, Yiqi Luo, Yongwen Liu, and Shilong Piao
Biogeosciences, 15, 3421–3437, https://doi.org/10.5194/bg-15-3421-2018, https://doi.org/10.5194/bg-15-3421-2018, 2018
Short summary
Short summary
Our results indicate that most ecosystem models do not capture the observed asymmetric responses under normal precipitation conditions, suggesting an overestimate of the drought effects and/or underestimate of the watering impacts on primary productivity, which may be the result of inadequate representation of key eco-hydrological processes. Collaboration between modelers and site investigators needs to be strengthened to improve the specific processes in ecosystem models in following studies.
Jean-François Exbrayat, A. Anthony Bloom, Pete Falloon, Akihiko Ito, T. Luke Smallman, and Mathew Williams
Earth Syst. Dynam., 9, 153–165, https://doi.org/10.5194/esd-9-153-2018, https://doi.org/10.5194/esd-9-153-2018, 2018
Short summary
Short summary
We use global observations of current terrestrial net primary productivity (NPP) to constrain the uncertainty in large ensemble 21st century projections of NPP under a "business as usual" scenario using a skill-based multi-model averaging technique. Our results show that this procedure helps greatly reduce the uncertainty in global projections of NPP. We also identify regions where uncertainties in models and observations remain too large to confidently conclude a sign of the change of NPP.
Mahdi Nakhavali, Pierre Friedlingstein, Ronny Lauerwald, Jing Tang, Sarah Chadburn, Marta Camino-Serrano, Bertrand Guenet, Anna Harper, David Walmsley, Matthias Peichl, and Bert Gielen
Geosci. Model Dev., 11, 593–609, https://doi.org/10.5194/gmd-11-593-2018, https://doi.org/10.5194/gmd-11-593-2018, 2018
Short summary
Short summary
In order to provide a better understanding of the Earth's carbon cycle, we need a model that represents the whole continuum from atmosphere to land and into the ocean. In this study we include in JULES a representation of dissolved organic carbon (DOC) processes. Our results show that the model is able to reproduce the DOC concentration and controlling processes, including leaching to the riverine system, which is fundamental for integrating the terrestrial and aquatic ecosystem.
Wei Li, Philippe Ciais, Shushi Peng, Chao Yue, Yilong Wang, Martin Thurner, Sassan S. Saatchi, Almut Arneth, Valerio Avitabile, Nuno Carvalhais, Anna B. Harper, Etsushi Kato, Charles Koven, Yi Y. Liu, Julia E.M.S. Nabel, Yude Pan, Julia Pongratz, Benjamin Poulter, Thomas A. M. Pugh, Maurizio Santoro, Stephen Sitch, Benjamin D. Stocker, Nicolas Viovy, Andy Wiltshire, Rasoul Yousefpour, and Sönke Zaehle
Biogeosciences, 14, 5053–5067, https://doi.org/10.5194/bg-14-5053-2017, https://doi.org/10.5194/bg-14-5053-2017, 2017
Short summary
Short summary
We used several observation-based biomass datasets to constrain the historical land-use change carbon emissions simulated by models. Compared to the range of the original modeled emissions (from 94 to 273 Pg C), the observationally constrained global cumulative emission estimate is 155 ± 50 Pg C (1σ Gaussian error) from 1901 to 2012. Our approach can also be applied to evaluate the LULCC impact of land-based climate mitigation policies.
Rhys Whitley, Jason Beringer, Lindsay B. Hutley, Gabriel Abramowitz, Martin G. De Kauwe, Bradley Evans, Vanessa Haverd, Longhui Li, Caitlin Moore, Youngryel Ryu, Simon Scheiter, Stanislaus J. Schymanski, Benjamin Smith, Ying-Ping Wang, Mathew Williams, and Qiang Yu
Biogeosciences, 14, 4711–4732, https://doi.org/10.5194/bg-14-4711-2017, https://doi.org/10.5194/bg-14-4711-2017, 2017
Short summary
Short summary
This paper attempts to review some of the current challenges faced by the modelling community in simulating the behaviour of savanna ecosystems. We provide a particular focus on three dynamic processes (phenology, root-water access, and fire) that are characteristic of savannas, which we believe are not adequately represented in current-generation terrestrial biosphere models. We highlight reasons for these misrepresentations, possible solutions and a future direction for research in this area.
Efrén López-Blanco, Magnus Lund, Mathew Williams, Mikkel P. Tamstorf, Andreas Westergaard-Nielsen, Jean-François Exbrayat, Birger U. Hansen, and Torben R. Christensen
Biogeosciences, 14, 4467–4483, https://doi.org/10.5194/bg-14-4467-2017, https://doi.org/10.5194/bg-14-4467-2017, 2017
Short summary
Short summary
An improvement in our process-based understanding of CO2 exchanges in the Arctic and their climate sensitivity is critical. With continued warming temperatures and longer growing seasons, tundra systems will likely increase rates of C cycling, although shifts in sink strength could take place, challenging the forecast of upcoming C states. In this context, we investigated the functional responses of C exchange to environmental characteristics across 8 consecutive years in West Greenland.
Fabio F. Pereira, Fabio Farinosi, Mauricio E. Arias, Eunjee Lee, John Briscoe, and Paul R. Moorcroft
Hydrol. Earth Syst. Sci., 21, 4629–4648, https://doi.org/10.5194/hess-21-4629-2017, https://doi.org/10.5194/hess-21-4629-2017, 2017
Short summary
Short summary
ED2 is a terrestrial biosphere model (TBM) suited for investigating combined impacts of changes in climate, atmospheric CO2, and land cover on the water cycle. In this study, we describe the integration of ED2 with a hydrological routing scheme. The resulting ED2+R model calculates the lateral propagation of surface and subsurface runoff resulting from the TBM and determines spatiotemporal patterns of river flows. We successfully evaluated the ED2+R model in the Tapajós, Brazilian Amazon.
Chris Huntingford, Hui Yang, Anna Harper, Peter M. Cox, Nicola Gedney, Eleanor J. Burke, Jason A. Lowe, Garry Hayman, William J. Collins, Stephen M. Smith, and Edward Comyn-Platt
Earth Syst. Dynam., 8, 617–626, https://doi.org/10.5194/esd-8-617-2017, https://doi.org/10.5194/esd-8-617-2017, 2017
Short summary
Short summary
Recent UNFCCC climate meetings have placed much emphasis on constraining global warming to remain below 2 °C. The 2015 Paris meeting went further and gave an aspiration to fulfil a 1.5 °C threshold. We provide a flexible set of algebraic global temperature profiles that stabilise to either target. This will potentially allow the climate research community to estimate local climatic implications for these temperature profiles, along with emissions trajectories to fulfil them.
Darren Slevin, Simon F. B. Tett, Jean-François Exbrayat, A. Anthony Bloom, and Mathew Williams
Geosci. Model Dev., 10, 2651–2670, https://doi.org/10.5194/gmd-10-2651-2017, https://doi.org/10.5194/gmd-10-2651-2017, 2017
Karina Williams, Jemma Gornall, Anna Harper, Andy Wiltshire, Debbie Hemming, Tristan Quaife, Tim Arkebauer, and David Scoby
Geosci. Model Dev., 10, 1291–1320, https://doi.org/10.5194/gmd-10-1291-2017, https://doi.org/10.5194/gmd-10-1291-2017, 2017
Short summary
Short summary
This study looks in detail at how well the crop model within the Joint UK Land Environment Simulator (JULES), a community land-surface model, is able to simulate irrigated maize in Nebraska. We use the results to point to future priorities for model development and describe how our methodology can be adapted to set up model runs for other sites and crop varieties.
Matthieu Guimberteau, Philippe Ciais, Agnès Ducharne, Juan Pablo Boisier, Ana Paula Dutra Aguiar, Hester Biemans, Hannes De Deurwaerder, David Galbraith, Bart Kruijt, Fanny Langerwisch, German Poveda, Anja Rammig, Daniel Andres Rodriguez, Graciela Tejada, Kirsten Thonicke, Celso Von Randow, Rita C. S. Von Randow, Ke Zhang, and Hans Verbeeck
Hydrol. Earth Syst. Sci., 21, 1455–1475, https://doi.org/10.5194/hess-21-1455-2017, https://doi.org/10.5194/hess-21-1455-2017, 2017
Richard Wehr, Róisín Commane, J. William Munger, J. Barry McManus, David D. Nelson, Mark S. Zahniser, Scott R. Saleska, and Steven C. Wofsy
Biogeosciences, 14, 389–401, https://doi.org/10.5194/bg-14-389-2017, https://doi.org/10.5194/bg-14-389-2017, 2017
Short summary
Short summary
Leaf stomata influence both photosynthesis and transpiration, coupling the carbon and water cycles, but there is no direct method for estimating stomatal behavior on the ecosystem scale. We use the ecosystem–atmosphere exchange of water, heat, and carbonyl sulfide to estimate canopy-integrated stomatal conductance by two independent methods. We then use that conductance to show that the seasonal dynamics of transpiration and evaporation are different than represented in current biosphere models.
Richard Wehr and Scott R. Saleska
Biogeosciences, 14, 17–29, https://doi.org/10.5194/bg-14-17-2017, https://doi.org/10.5194/bg-14-17-2017, 2017
Short summary
Short summary
In 1969, Derek York published a highly general solution to the common problem of how to fit a straight line to points measured with error in both x and y. Unfortunately York's solution is almost unknown outside the geophysical literature, and new studies wrestle with the problem each year. We introduce York's solution and demonstrate it using an example from biogeochemistry: the isotopic mixing line. By Monte Carlo simulation, we show that York’s solution is superior to all popular fit methods.
Bradley O. Christoffersen, Manuel Gloor, Sophie Fauset, Nikolaos M. Fyllas, David R. Galbraith, Timothy R. Baker, Bart Kruijt, Lucy Rowland, Rosie A. Fisher, Oliver J. Binks, Sanna Sevanto, Chonggang Xu, Steven Jansen, Brendan Choat, Maurizio Mencuccini, Nate G. McDowell, and Patrick Meir
Geosci. Model Dev., 9, 4227–4255, https://doi.org/10.5194/gmd-9-4227-2016, https://doi.org/10.5194/gmd-9-4227-2016, 2016
Short summary
Short summary
We developed a plant hydraulics model for tropical forests based on established plant physiological theory, and parameterized it by conducting a pantropical hydraulic trait survey. We show that a substantial amount of trait diversity can be represented in the model by a reduced set of trait dimensions. The fully parameterized model is able capture tree-level variation in water status and improves simulations of total ecosystem transpiration, showing how to incorporate hydraulic traits in models.
Kaniska Mallick, Ivonne Trebs, Eva Boegh, Laura Giustarini, Martin Schlerf, Darren T. Drewry, Lucien Hoffmann, Celso von Randow, Bart Kruijt, Alessandro Araùjo, Scott Saleska, James R. Ehleringer, Tomas F. Domingues, Jean Pierre H. B. Ometto, Antonio D. Nobre, Osvaldo Luiz Leal de Moraes, Matthew Hayek, J. William Munger, and Steven C. Wofsy
Hydrol. Earth Syst. Sci., 20, 4237–4264, https://doi.org/10.5194/hess-20-4237-2016, https://doi.org/10.5194/hess-20-4237-2016, 2016
Short summary
Short summary
While quantifying vegetation water use over multiple plant function types in the Amazon Basin, we found substantial biophysical control during drought as well as a water-stress period and dominant climatic control during a water surplus period. This work has direct implication in understanding the resilience of the Amazon forest in the spectre of frequent drought menace as well as the role of drought-induced plant biophysical functioning in modulating the water-carbon coupling in this ecosystem.
Stéphane Mangeon, Apostolos Voulgarakis, Richard Gilham, Anna Harper, Stephen Sitch, and Gerd Folberth
Geosci. Model Dev., 9, 2685–2700, https://doi.org/10.5194/gmd-9-2685-2016, https://doi.org/10.5194/gmd-9-2685-2016, 2016
Short summary
Short summary
To understand the role of fires in the Earth system, global fire models are required. In this paper we describe the INteractive Fire and Emission algoRithm for Natural envirOnments (INFERNO). It follows a reduced complexity approach using mainly temperature, humidity and precipitation. INFERNO was found to perform well on a global scale and to maintain regional patterns over the 1997–2011 period of study, despite regional biases particularly linked to fuel consumption.
Anna B. Harper, Peter M. Cox, Pierre Friedlingstein, Andy J. Wiltshire, Chris D. Jones, Stephen Sitch, Lina M. Mercado, Margriet Groenendijk, Eddy Robertson, Jens Kattge, Gerhard Bönisch, Owen K. Atkin, Michael Bahn, Johannes Cornelissen, Ülo Niinemets, Vladimir Onipchenko, Josep Peñuelas, Lourens Poorter, Peter B. Reich, Nadjeda A. Soudzilovskaia, and Peter van Bodegom
Geosci. Model Dev., 9, 2415–2440, https://doi.org/10.5194/gmd-9-2415-2016, https://doi.org/10.5194/gmd-9-2415-2016, 2016
Short summary
Short summary
Dynamic global vegetation models (DGVMs) are used to predict the response of vegetation to climate change. We improved the representation of carbon uptake by ecosystems in a DGVM by including a wider range of trade-offs between nutrient allocation to photosynthetic capacity and leaf structure, based on observed plant traits from a worldwide data base. The improved model has higher rates of photosynthesis and net C uptake by plants, and more closely matches observations at site and global scales.
Rhys Whitley, Jason Beringer, Lindsay B. Hutley, Gab Abramowitz, Martin G. De Kauwe, Remko Duursma, Bradley Evans, Vanessa Haverd, Longhui Li, Youngryel Ryu, Benjamin Smith, Ying-Ping Wang, Mathew Williams, and Qiang Yu
Biogeosciences, 13, 3245–3265, https://doi.org/10.5194/bg-13-3245-2016, https://doi.org/10.5194/bg-13-3245-2016, 2016
Short summary
Short summary
In this study we assess how well terrestrial biosphere models perform at predicting water and carbon cycling for savanna ecosystems. We apply our models to five savanna sites in Northern Australia and highlight key causes for model failure. Our assessment of model performance uses a novel benchmarking system that scores a model’s predictive ability based on how well it is utilizing its driving information. On average, we found the models as a group display only moderate levels of performance.
Fabien H. Wagner, Bruno Hérault, Damien Bonal, Clément Stahl, Liana O. Anderson, Timothy R. Baker, Gabriel Sebastian Becker, Hans Beeckman, Danilo Boanerges Souza, Paulo Cesar Botosso, David M. J. S. Bowman, Achim Bräuning, Benjamin Brede, Foster Irving Brown, Jesus Julio Camarero, Plínio Barbosa Camargo, Fernanda C. G. Cardoso, Fabrício Alvim Carvalho, Wendeson Castro, Rubens Koloski Chagas, Jérome Chave, Emmanuel N. Chidumayo, Deborah A. Clark, Flavia Regina Capellotto Costa, Camille Couralet, Paulo Henrique da Silva Mauricio, Helmut Dalitz, Vinicius Resende de Castro, Jaçanan Eloisa de Freitas Milani, Edilson Consuelo de Oliveira, Luciano de Souza Arruda, Jean-Louis Devineau, David M. Drew, Oliver Dünisch, Giselda Durigan, Elisha Elifuraha, Marcio Fedele, Ligia Ferreira Fedele, Afonso Figueiredo Filho, César Augusto Guimarães Finger, Augusto César Franco, João Lima Freitas Júnior, Franklin Galvão, Aster Gebrekirstos, Robert Gliniars, Paulo Maurício Lima de Alencastro Graça, Anthony D. Griffiths, James Grogan, Kaiyu Guan, Jürgen Homeier, Maria Raquel Kanieski, Lip Khoon Kho, Jennifer Koenig, Sintia Valerio Kohler, Julia Krepkowski, José Pires Lemos-Filho, Diana Lieberman, Milton Eugene Lieberman, Claudio Sergio Lisi, Tomaz Longhi Santos, José Luis López Ayala, Eduardo Eijji Maeda, Yadvinder Malhi, Vivian R. B. Maria, Marcia C. M. Marques, Renato Marques, Hector Maza Chamba, Lawrence Mbwambo, Karina Liana Lisboa Melgaço, Hooz Angela Mendivelso, Brett P. Murphy, Joseph J. O'Brien, Steven F. Oberbauer, Naoki Okada, Raphaël Pélissier, Lynda D. Prior, Fidel Alejandro Roig, Michael Ross, Davi Rodrigo Rossatto, Vivien Rossi, Lucy Rowland, Ervan Rutishauser, Hellen Santana, Mark Schulze, Diogo Selhorst, Williamar Rodrigues Silva, Marcos Silveira, Susanne Spannl, Michael D. Swaine, José Julio Toledo, Marcos Miranda Toledo, Marisol Toledo, Takeshi Toma, Mario Tomazello Filho, Juan Ignacio Valdez Hernández, Jan Verbesselt, Simone Aparecida Vieira, Grégoire Vincent, Carolina Volkmer de Castilho, Franziska Volland, Martin Worbes, Magda Lea Bolzan Zanon, and Luiz E. O. C. Aragão
Biogeosciences, 13, 2537–2562, https://doi.org/10.5194/bg-13-2537-2016, https://doi.org/10.5194/bg-13-2537-2016, 2016
K. E. Clark, A. J. West, R. G. Hilton, G. P. Asner, C. A. Quesada, M. R. Silman, S. S. Saatchi, W. Farfan-Rios, R. E. Martin, A. B. Horwath, K. Halladay, M. New, and Y. Malhi
Earth Surf. Dynam., 4, 47–70, https://doi.org/10.5194/esurf-4-47-2016, https://doi.org/10.5194/esurf-4-47-2016, 2016
Short summary
Short summary
The key findings of this paper are that landslides in the eastern Andes of Peru in the Kosñipata Valley rapidly turn over the landscape in ~1320 years, with a rate of 0.076% yr-1. Additionally, landslides were concentrated at lower elevations, due to an intense storm in 2010 accounting for ~1/4 of the total landslide area over the 25-year remote sensing study. Valley-wide carbon stocks were determined, and we estimate that 26 tC km-2 yr-1 of soil and biomass are stripped by landslides.
G. Murray-Tortarolo, P. Friedlingstein, S. Sitch, V. J. Jaramillo, F. Murguía-Flores, A. Anav, Y. Liu, A. Arneth, A. Arvanitis, A. Harper, A. Jain, E. Kato, C. Koven, B. Poulter, B. D. Stocker, A. Wiltshire, S. Zaehle, and N. Zeng
Biogeosciences, 13, 223–238, https://doi.org/10.5194/bg-13-223-2016, https://doi.org/10.5194/bg-13-223-2016, 2016
Short summary
Short summary
We modelled the carbon (C) cycle in Mexico for three different time periods: past (20th century), present (2000-2005) and future (2006-2100). We used different available products to estimate C stocks and fluxes in the country. Contrary to other current estimates, our results showed that Mexico was a C sink and this is likely to continue in the next century (unless the most extreme climate-change scenarios are reached).
Y. Kim, P. R. Moorcroft, I. Aleinov, M. J. Puma, and N. Y. Kiang
Geosci. Model Dev., 8, 3837–3865, https://doi.org/10.5194/gmd-8-3837-2015, https://doi.org/10.5194/gmd-8-3837-2015, 2015
Short summary
Short summary
The Ent Terrestrial Biosphere Model is a mixed-canopy dynamic global vegetation model developed specifically for coupling with land surface hydrology and general circulation models. This study describes the leaf phenology submodel implemented in the Ent TBM. We evaluate the performance in reproducing observed leaf seasonal growth as well as water and carbon fluxes for four plant functional types at five Fluxnet sites.
A. M. Womack, P. E. Artaxo, F. Y. Ishida, R. C. Mueller, S. R. Saleska, K. T. Wiedemann, B. J. M. Bohannan, and J. L. Green
Biogeosciences, 12, 6337–6349, https://doi.org/10.5194/bg-12-6337-2015, https://doi.org/10.5194/bg-12-6337-2015, 2015
Short summary
Short summary
Fungi in the atmosphere can affect precipitation by nucleating the formation of clouds and ice. This process is important over the Amazon rainforest where precipitation is limited by the types and amount of airborne particles. We found that the total and metabolically active fungi communities were dominated by different taxonomic groups, and the active community unexpectedly contained many lichen fungi, which are effective at nucleating ice.
A. T. Nottingham, B. L. Turner, J. Whitaker, N. J. Ostle, N. P. McNamara, R. D. Bardgett, N. Salinas, and P. Meir
Biogeosciences, 12, 6071–6083, https://doi.org/10.5194/bg-12-6071-2015, https://doi.org/10.5194/bg-12-6071-2015, 2015
Short summary
Short summary
We measured indices of soil microbial nutrient status in lowland, sub-montane and montane tropical forests along a natural gradient spanning 3400 m in elevation in the Peruvian Andes. We show that soil microorganisms shift investment in nutrient acquisition from P to N between lowland and montane tropical forests, suggesting that different nutrients regulate soil microbial metabolism and the soil carbon balance in these ecosystems.
C. Safta, D. M. Ricciuto, K. Sargsyan, B. Debusschere, H. N. Najm, M. Williams, and P. E. Thornton
Geosci. Model Dev., 8, 1899–1918, https://doi.org/10.5194/gmd-8-1899-2015, https://doi.org/10.5194/gmd-8-1899-2015, 2015
Short summary
Short summary
In this paper we propose a probabilistic framework for an uncertainty quantification study of a carbon cycle model and focus on the comparison between steady-state and transient
simulation setups. We study model parameters via global sensitivity analysis and employ a Bayesian approach to calibrate these parameters using NEE observations at the Harvard Forest site. The calibration results are then used to assess the predictive skill of the model via posterior predictive checks.
A. A. Bloom and M. Williams
Biogeosciences, 12, 1299–1315, https://doi.org/10.5194/bg-12-1299-2015, https://doi.org/10.5194/bg-12-1299-2015, 2015
D. Slevin, S. F. B. Tett, and M. Williams
Geosci. Model Dev., 8, 295–316, https://doi.org/10.5194/gmd-8-295-2015, https://doi.org/10.5194/gmd-8-295-2015, 2015
R. G. Knox, M. Longo, A. L. S. Swann, K. Zhang, N. M. Levine, P. R. Moorcroft, and R. L. Bras
Hydrol. Earth Syst. Sci., 19, 241–273, https://doi.org/10.5194/hess-19-241-2015, https://doi.org/10.5194/hess-19-241-2015, 2015
K. E. Clark, M. A. Torres, A. J. West, R. G. Hilton, M. New, A. B. Horwath, J. B. Fisher, J. M. Rapp, A. Robles Caceres, and Y. Malhi
Hydrol. Earth Syst. Sci., 18, 5377–5397, https://doi.org/10.5194/hess-18-5377-2014, https://doi.org/10.5194/hess-18-5377-2014, 2014
Short summary
Short summary
This paper presents measurements of the balance of water inputs and outputs over 1 year for a river basin in the Andes of Peru. Our results show that the annual water budget is balanced within a few percent uncertainty; that is to say, the amount of water entering the basin was the same as the amount leaving, providing important information for understanding the water cycle. We also show that seasonal storage of water is important in sustaining the flow of water during the dry season.
E. Joetzjer, C. Delire, H. Douville, P. Ciais, B. Decharme, R. Fisher, B. Christoffersen, J. C. Calvet, A. C. L. da Costa, L. V. Ferreira, and P. Meir
Geosci. Model Dev., 7, 2933–2950, https://doi.org/10.5194/gmd-7-2933-2014, https://doi.org/10.5194/gmd-7-2933-2014, 2014
M. Réjou-Méchain, H. C. Muller-Landau, M. Detto, S. C. Thomas, T. Le Toan, S. S. Saatchi, J. S. Barreto-Silva, N. A. Bourg, S. Bunyavejchewin, N. Butt, W. Y. Brockelman, M. Cao, D. Cárdenas, J.-M. Chiang, G. B. Chuyong, K. Clay, R. Condit, H. S. Dattaraja, S. J. Davies, A. Duque, S. Esufali, C. Ewango, R. H. S. Fernando, C. D. Fletcher, I. A. U. N. Gunatilleke, Z. Hao, K. E. Harms, T. B. Hart, B. Hérault, R. W. Howe, S. P. Hubbell, D. J. Johnson, D. Kenfack, A. J. Larson, L. Lin, Y. Lin, J. A. Lutz, J.-R. Makana, Y. Malhi, T. R. Marthews, R. W. McEwan, S. M. McMahon, W. J. McShea, R. Muscarella, A. Nathalang, N. S. M. Noor, C. J. Nytch, A. A. Oliveira, R. P. Phillips, N. Pongpattananurak, R. Punchi-Manage, R. Salim, J. Schurman, R. Sukumar, H. S. Suresh, U. Suwanvecho, D. W. Thomas, J. Thompson, M. Uríarte, R. Valencia, A. Vicentini, A. T. Wolf, S. Yap, Z. Yuan, C. E. Zartman, J. K. Zimmerman, and J. Chave
Biogeosciences, 11, 6827–6840, https://doi.org/10.5194/bg-11-6827-2014, https://doi.org/10.5194/bg-11-6827-2014, 2014
Short summary
Short summary
Forest carbon mapping may greatly reduce uncertainties in the global carbon budget. Accuracy of such maps depends however on the quality of field measurements. Using 30 large forest plots, we found large local spatial variability in biomass. When field calibration plots are smaller than the remote sensing pixels, this high local spatial variability results in an underestimation of the variance in biomass.
G. B. Bonan, M. Williams, R. A. Fisher, and K. W. Oleson
Geosci. Model Dev., 7, 2193–2222, https://doi.org/10.5194/gmd-7-2193-2014, https://doi.org/10.5194/gmd-7-2193-2014, 2014
A. I. Gevaert, A. J. Teuling, R. Uijlenhoet, S. B. DeLong, T. E. Huxman, L. A. Pangle, D. D. Breshears, J. Chorover, J. D. Pelletier, S. R. Saleska, X. Zeng, and P. A. Troch
Hydrol. Earth Syst. Sci., 18, 3681–3692, https://doi.org/10.5194/hess-18-3681-2014, https://doi.org/10.5194/hess-18-3681-2014, 2014
R. Q. Thomas and M. Williams
Geosci. Model Dev., 7, 2015–2037, https://doi.org/10.5194/gmd-7-2015-2014, https://doi.org/10.5194/gmd-7-2015-2014, 2014
G. Xenakis and M. Williams
Geosci. Model Dev., 7, 1519–1533, https://doi.org/10.5194/gmd-7-1519-2014, https://doi.org/10.5194/gmd-7-1519-2014, 2014
N. M. Fyllas, E. Gloor, L. M. Mercado, S. Sitch, C. A. Quesada, T. F. Domingues, D. R. Galbraith, A. Torre-Lezama, E. Vilanova, H. Ramírez-Angulo, N. Higuchi, D. A. Neill, M. Silveira, L. Ferreira, G. A. Aymard C., Y. Malhi, O. L. Phillips, and J. Lloyd
Geosci. Model Dev., 7, 1251–1269, https://doi.org/10.5194/gmd-7-1251-2014, https://doi.org/10.5194/gmd-7-1251-2014, 2014
C. Le Quéré, G. P. Peters, R. J. Andres, R. M. Andrew, T. A. Boden, P. Ciais, P. Friedlingstein, R. A. Houghton, G. Marland, R. Moriarty, S. Sitch, P. Tans, A. Arneth, A. Arvanitis, D. C. E. Bakker, L. Bopp, J. G. Canadell, L. P. Chini, S. C. Doney, A. Harper, I. Harris, J. I. House, A. K. Jain, S. D. Jones, E. Kato, R. F. Keeling, K. Klein Goldewijk, A. Körtzinger, C. Koven, N. Lefèvre, F. Maignan, A. Omar, T. Ono, G.-H. Park, B. Pfeil, B. Poulter, M. R. Raupach, P. Regnier, C. Rödenbeck, S. Saito, J. Schwinger, J. Segschneider, B. D. Stocker, T. Takahashi, B. Tilbrook, S. van Heuven, N. Viovy, R. Wanninkhof, A. Wiltshire, and S. Zaehle
Earth Syst. Sci. Data, 6, 235–263, https://doi.org/10.5194/essd-6-235-2014, https://doi.org/10.5194/essd-6-235-2014, 2014
T. R. Marthews, C. A. Quesada, D. R. Galbraith, Y. Malhi, C. E. Mullins, M. G. Hodnett, and I. Dharssi
Geosci. Model Dev., 7, 711–723, https://doi.org/10.5194/gmd-7-711-2014, https://doi.org/10.5194/gmd-7-711-2014, 2014
Y. A. Teh, T. Diem, S. Jones, L. P. Huaraca Quispe, E. Baggs, N. Morley, M. Richards, P. Smith, and P. Meir
Biogeosciences, 11, 2325–2339, https://doi.org/10.5194/bg-11-2325-2014, https://doi.org/10.5194/bg-11-2325-2014, 2014
G. P. Asner, C. B. Anderson, R. E. Martin, D. E. Knapp, R. Tupayachi, F. Sinca, and Y. Malhi
Biogeosciences, 11, 843–856, https://doi.org/10.5194/bg-11-843-2014, https://doi.org/10.5194/bg-11-843-2014, 2014
T. L. Smallman, M. Williams, and J. B. Moncrieff
Biogeosciences, 11, 735–747, https://doi.org/10.5194/bg-11-735-2014, https://doi.org/10.5194/bg-11-735-2014, 2014
R. Valentini, A. Arneth, A. Bombelli, S. Castaldi, R. Cazzolla Gatti, F. Chevallier, P. Ciais, E. Grieco, J. Hartmann, M. Henry, R. A. Houghton, M. Jung, W. L. Kutsch, Y. Malhi, E. Mayorga, L. Merbold, G. Murray-Tortarolo, D. Papale, P. Peylin, B. Poulter, P. A. Raymond, M. Santini, S. Sitch, G. Vaglio Laurin, G. R. van der Werf, C. A. Williams, and R. J. Scholes
Biogeosciences, 11, 381–407, https://doi.org/10.5194/bg-11-381-2014, https://doi.org/10.5194/bg-11-381-2014, 2014
R. G. Knox, M. Longo, A. L. S. Swann, K. Zhang, N. M. Levine, P. R. Moorcroft, and R. L. Bras
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-10-15295-2013, https://doi.org/10.5194/hessd-10-15295-2013, 2013
Preprint withdrawn
A. D. A. Castanho, M. T. Coe, M. H. Costa, Y. Malhi, D. Galbraith, and C. A. Quesada
Biogeosciences, 10, 2255–2272, https://doi.org/10.5194/bg-10-2255-2013, https://doi.org/10.5194/bg-10-2255-2013, 2013
Related subject area
Biogeosciences
Lambda-PFLOTRAN 1.0: a workflow for incorporating organic matter chemistry informed by ultra high resolution mass spectrometry into biogeochemical modeling
An improved model for air–sea exchange of elemental mercury in MITgcm-ECCOv4-Hg: the role of surfactants and waves
BOATSv2: new ecological and economic features improve simulations of high seas catch and effort
A dynamical process-based model for quantifying global agricultural ammonia emissions – AMmonia–CLIMate v1.0 (AMCLIM v1.0) – Part 1: Land module for simulating emissions from synthetic fertilizer use
Simulating Ips typographus L. outbreak dynamics and their influence on carbon balance estimates with ORCHIDEE r8627
Biological nitrogen fixation of natural and agricultural vegetation simulated with LPJmL 5.7.9
Learning from conceptual models – a study of the emergence of cooperation towards resource protection in a social–ecological system
The biogeochemical model Biome-BGCMuSo v6.2 provides plausible and accurate simulations of the carbon cycle in central European beech forests
DeepPhenoMem V1.0: deep learning modelling of canopy greenness dynamics accounting for multi-variate meteorological memory effects on vegetation phenology
Impacts of land-use change on biospheric carbon: an oriented benchmark using the ORCHIDEE land surface model
Implementing the iCORAL (version 1.0) coral reef CaCO3 production module in the iLOVECLIM climate model
Assimilation of carbonyl sulfide (COS) fluxes within the adjoint-based data assimilation system – Nanjing University Carbon Assimilation System (NUCAS v1.0)
Quantifying the role of ozone-caused damage to vegetation in the Earth system: a new parameterization scheme for photosynthetic and stomatal responses
Sources of Uncertainty in the Global Fire Model SPITFIRE: Development of LPJmL-SPITFIRE1.9 and Directions for Future Improvements
Radiocarbon analysis reveals underestimation of soil organic carbon persistence in new-generation soil models
Exploring the potential of history matching for land surface model calibration
EAT v1.0.0: a 1D test bed for physical–biogeochemical data assimilation in natural waters
Using deep learning to integrate paleoclimate and global biogeochemistry over the Phanerozoic Eon
Modelling boreal forest's mineral soil and peat C dynamics with the Yasso07 model coupled with the Ricker moisture modifier
Dynamic ecosystem assembly and escaping the “fire trap” in the tropics: insights from FATES_15.0.0
In silico calculation of soil pH by SCEPTER v1.0
Simple process-led algorithms for simulating habitats (SPLASH v.2.0): robust calculations of water and energy fluxes
Satellite-based modeling of wetland methane emissions on a global scale (SatWetCH4 1.0)
A global behavioural model of human fire use and management: WHAM! v1.0
Terrestrial Ecosystem Model in R (TEMIR) version 1.0: simulating ecophysiological responses of vegetation to atmospheric chemical and meteorological changes
Systematic underestimation of type-specific ecosystem process variability in the Community Land Model v5 over Europe
biospheremetrics v1.0.2: an R package to calculate two complementary terrestrial biosphere integrity indicators – human colonization of the biosphere (BioCol) and risk of ecosystem destabilization (EcoRisk)
Modeling boreal forest soil dynamics with the microbially explicit soil model MIMICS+ (v1.0)
Optimal enzyme allocation leads to the constrained enzyme hypothesis: the Soil Enzyme Steady Allocation Model (SESAM; v3.1)
Implementing a dynamic representation of fire and harvest including subgrid-scale heterogeneity in the tile-based land surface model CLASSIC v1.45
Inferring the tree regeneration niche from inventory data using a dynamic forest model
Optimising CH4 simulations from the LPJ-GUESS model v4.1 using an adaptive Markov chain Monte Carlo algorithm
The XSO framework (v0.1) and Phydra library (v0.1) for a flexible, reproducible, and integrated plankton community modeling environment in Python
AgriCarbon-EO v1.0.1: large-scale and high-resolution simulation of carbon fluxes by assimilation of Sentinel-2 and Landsat-8 reflectances using a Bayesian approach
SAMM version 1.0: a numerical model for microbial- mediated soil aggregate formation
A model of the within-population variability of budburst in forest trees
Computationally efficient parameter estimation for high-dimensional ocean biogeochemical models
The community-centered freshwater biogeochemistry model unified RIVE v1.0: a unified version for water column
Observation-based sowing dates and cultivars significantly affect yield and irrigation for some crops in the Community Land Model (CLM5)
The statistical emulators of GGCMI phase 2: responses of year-to-year variation of crop yield to CO2, temperature, water, and nitrogen perturbations
A novel Eulerian model based on central moments to simulate age and reactivity continua interacting with mixing processes
AdaScape 1.0: a coupled modelling tool to investigate the links between tectonics, climate, and biodiversity
An along-track Biogeochemical Argo modelling framework: a case study of model improvements for the Nordic seas
Peatland-VU-NUCOM (PVN 1.0): using dynamic plant functional types to model peatland vegetation, CH4, and CO2 emissions
Quantification of hydraulic trait control on plant hydrodynamics and risk of hydraulic failure within a demographic structured vegetation model in a tropical forest (FATES–HYDRO V1.0)
SedTrace 1.0: a Julia-based framework for generating and running reactive-transport models of marine sediment diagenesis specializing in trace elements and isotopes
A high-resolution marine mercury model MITgcm-ECCO2-Hg with online biogeochemistry
Improving nitrogen cycling in a land surface model (CLM5) to quantify soil N2O, NO, and NH3 emissions from enhanced rock weathering with croplands
FESOM2.1-REcoM3-MEDUSA2: an ocean-sea ice-biogeochemistry model coupled to a sediment model
Ocean biogeochemistry in the coupled ocean–sea ice–biogeochemistry model FESOM2.1–REcoM3
Katherine A. Muller, Peishi Jiang, Glenn Hammond, Tasneem Ahmadullah, Hyun-Seob Song, Ravi Kukkadapu, Nicholas Ward, Madison Bowe, Rosalie K. Chu, Qian Zhao, Vanessa A. Garayburu-Caruso, Alan Roebuck, and Xingyuan Chen
Geosci. Model Dev., 17, 8955–8968, https://doi.org/10.5194/gmd-17-8955-2024, https://doi.org/10.5194/gmd-17-8955-2024, 2024
Short summary
Short summary
The new Lambda-PFLOTRAN workflow incorporates organic matter chemistry into reaction networks to simulate aerobic respiration and biogeochemistry. Lambda-PFLOTRAN is a Python-based workflow in a Jupyter notebook interface that digests raw organic matter chemistry data via Fourier transform ion cyclotron resonance mass spectrometry, develops a representative reaction network, and completes a biogeochemical simulation with the open-source, parallel-reactive-flow, and transport code PFLOTRAN.
Ling Li, Peipei Wu, Peng Zhang, Shaojian Huang, and Yanxu Zhang
Geosci. Model Dev., 17, 8683–8695, https://doi.org/10.5194/gmd-17-8683-2024, https://doi.org/10.5194/gmd-17-8683-2024, 2024
Short summary
Short summary
In this study, we incorporate sea surfactants and wave-breaking processes into MITgcm-ECCOv4-Hg. The updated model shows increased fluxes in high-wind-speed and high-wave regions and vice versa, enhancing spatial heterogeneity. It shows that elemental mercury (Hg0) transfer velocity is more sensitive to wind speed. These findings may elucidate the discrepancies in previous estimations and offer insights into global Hg cycling.
Jerome Guiet, Daniele Bianchi, Kim J. N. Scherrer, Ryan F. Heneghan, and Eric D. Galbraith
Geosci. Model Dev., 17, 8421–8454, https://doi.org/10.5194/gmd-17-8421-2024, https://doi.org/10.5194/gmd-17-8421-2024, 2024
Short summary
Short summary
The BiOeconomic mArine Trophic Size-spectrum (BOATSv2) model dynamically simulates global commercial fish populations and their coupling with fishing activity, as emerging from environmental and economic drivers. New features, including separate pelagic and demersal populations, iron limitation, and spatial variation of fishing costs and management, improve the accuracy of high seas fisheries. The updated model code is available to simulate both historical and future scenarios.
Jize Jiang, David S. Stevenson, and Mark A. Sutton
Geosci. Model Dev., 17, 8181–8222, https://doi.org/10.5194/gmd-17-8181-2024, https://doi.org/10.5194/gmd-17-8181-2024, 2024
Short summary
Short summary
A special model called AMmonia–CLIMate (AMCLIM) has been developed to understand and calculate NH3 emissions from fertilizer use and also taking into account how the environment influences these NH3 emissions. It is estimated that about 17 % of applied N in fertilizers was lost due to NH3 emissions. Hot and dry conditions and regions with high-pH soils can expect higher NH3 emissions.
Guillaume Marie, Jina Jeong, Hervé Jactel, Gunnar Petter, Maxime Cailleret, Matthew J. McGrath, Vladislav Bastrikov, Josefine Ghattas, Bertrand Guenet, Anne Sofie Lansø, Kim Naudts, Aude Valade, Chao Yue, and Sebastiaan Luyssaert
Geosci. Model Dev., 17, 8023–8047, https://doi.org/10.5194/gmd-17-8023-2024, https://doi.org/10.5194/gmd-17-8023-2024, 2024
Short summary
Short summary
This research looks at how climate change influences forests, and particularly how altered wind and insect activities could make forests emit instead of absorb carbon. We have updated a land surface model called ORCHIDEE to better examine the effect of bark beetles on forest health. Our findings suggest that sudden events, such as insect outbreaks, can dramatically affect carbon storage, offering crucial insights into tackling climate change.
Stephen Björn Wirth, Johanna Braun, Jens Heinke, Sebastian Ostberg, Susanne Rolinski, Sibyll Schaphoff, Fabian Stenzel, Werner von Bloh, Friedhelm Taube, and Christoph Müller
Geosci. Model Dev., 17, 7889–7914, https://doi.org/10.5194/gmd-17-7889-2024, https://doi.org/10.5194/gmd-17-7889-2024, 2024
Short summary
Short summary
We present a new approach to modelling biological nitrogen fixation (BNF) in the Lund–Potsdam–Jena managed Land dynamic global vegetation model. While in the original approach BNF depended on actual evapotranspiration, the new approach considers soil water content and temperature, vertical root distribution, the nitrogen (N) deficit and carbon (C) costs. The new approach improved simulated BNF compared to the scientific literature and the model ability to project future C and N cycle dynamics.
Saeed Harati-Asl, Liliana Perez, and Roberto Molowny-Horas
Geosci. Model Dev., 17, 7423–7443, https://doi.org/10.5194/gmd-17-7423-2024, https://doi.org/10.5194/gmd-17-7423-2024, 2024
Short summary
Short summary
Social–ecological systems are the subject of many sustainability problems. Because of the complexity of these systems, we must be careful when intervening in them; otherwise we may cause irreversible damage. Using computer models, we can gain insight about these complex systems without harming them. In this paper we describe how we connected an ecological model of forest insect infestation with a social model of cooperation and simulated an intervention measure to save a forest from infestation.
Katarína Merganičová, Ján Merganič, Laura Dobor, Roland Hollós, Zoltán Barcza, Dóra Hidy, Zuzana Sitková, Pavel Pavlenda, Hrvoje Marjanovic, Daniel Kurjak, Michal Bošel'a, Doroteja Bitunjac, Maša Zorana Ostrogović Sever, Jiří Novák, Peter Fleischer, and Tomáš Hlásny
Geosci. Model Dev., 17, 7317–7346, https://doi.org/10.5194/gmd-17-7317-2024, https://doi.org/10.5194/gmd-17-7317-2024, 2024
Short summary
Short summary
We developed a multi-objective calibration approach leading to robust parameter values aiming to strike a balance between their local precision and broad applicability. Using the Biome-BGCMuSo model, we tested the calibrated parameter sets for simulating European beech forest dynamics across large environmental gradients. Leveraging data from 87 plots and five European countries, the results demonstrated reasonable local accuracy and plausible large-scale productivity responses.
Guohua Liu, Mirco Migliavacca, Christian Reimers, Basil Kraft, Markus Reichstein, Andrew D. Richardson, Lisa Wingate, Nicolas Delpierre, Hui Yang, and Alexander J. Winkler
Geosci. Model Dev., 17, 6683–6701, https://doi.org/10.5194/gmd-17-6683-2024, https://doi.org/10.5194/gmd-17-6683-2024, 2024
Short summary
Short summary
Our study employs long short-term memory (LSTM) networks to model canopy greenness and phenology, integrating meteorological memory effects. The LSTM model outperforms traditional methods, enhancing accuracy in predicting greenness dynamics and phenological transitions across plant functional types. Highlighting the importance of multi-variate meteorological memory effects, our research pioneers unlock the secrets of vegetation phenology responses to climate change with deep learning techniques.
Thi Lan Anh Dinh, Daniel Goll, Philippe Ciais, and Ronny Lauerwald
Geosci. Model Dev., 17, 6725–6744, https://doi.org/10.5194/gmd-17-6725-2024, https://doi.org/10.5194/gmd-17-6725-2024, 2024
Short summary
Short summary
The study assesses the performance of the dynamic global vegetation model (DGVM) ORCHIDEE in capturing the impact of land-use change on carbon stocks across Europe. Comparisons with observations reveal that the model accurately represents carbon fluxes and stocks. Despite the underestimations in certain land-use conversions, the model describes general trends in soil carbon response to land-use change, aligning with the site observations.
Nathaelle Bouttes, Lester Kwiatkowski, Manon Berger, Victor Brovkin, and Guy Munhoven
Geosci. Model Dev., 17, 6513–6528, https://doi.org/10.5194/gmd-17-6513-2024, https://doi.org/10.5194/gmd-17-6513-2024, 2024
Short summary
Short summary
Coral reefs are crucial for biodiversity, but they also play a role in the carbon cycle on long time scales of a few thousand years. To better simulate the future and past evolution of coral reefs and their effect on the global carbon cycle, hence on atmospheric CO2 concentration, it is necessary to include coral reefs within a climate model. Here we describe the inclusion of coral reef carbonate production in a carbon–climate model and its validation in comparison to existing modern data.
Huajie Zhu, Mousong Wu, Fei Jiang, Michael Vossbeck, Thomas Kaminski, Xiuli Xing, Jun Wang, Weimin Ju, and Jing M. Chen
Geosci. Model Dev., 17, 6337–6363, https://doi.org/10.5194/gmd-17-6337-2024, https://doi.org/10.5194/gmd-17-6337-2024, 2024
Short summary
Short summary
In this work, we developed the Nanjing University Carbon Assimilation System (NUCAS v1.0). Data assimilation experiments were conducted to demonstrate the robustness and investigate the feasibility and applicability of NUCAS. The assimilation of ecosystem carbonyl sulfide (COS) fluxes improved the model performance in gross primary productivity, evapotranspiration, and sensible heat, showing that COS provides constraints on parameters relevant to carbon-, water-, and energy-related processes.
Fang Li, Zhimin Zhou, Samuel Levis, Stephen Sitch, Felicity Hayes, Zhaozhong Feng, Peter B. Reich, Zhiyi Zhao, and Yanqing Zhou
Geosci. Model Dev., 17, 6173–6193, https://doi.org/10.5194/gmd-17-6173-2024, https://doi.org/10.5194/gmd-17-6173-2024, 2024
Short summary
Short summary
A new scheme is developed to model the surface ozone damage to vegetation in regional and global process-based models. Based on 4210 data points from ozone experiments, it accurately reproduces statistically significant linear or nonlinear photosynthetic and stomatal responses to ozone in observations for all vegetation types. It also enables models to implicitly capture the variability in plant ozone tolerance and the shift among species within a vegetation type.
Luke Oberhagemann, Maik Billing, Werner von Bloh, Markus Drüke, Matthew Forrest, Simon P. K. Bowring, Jessica Hetzer, Jaime Ribalaygua Batalla, and Kirsten Thonicke
EGUsphere, https://doi.org/10.5194/egusphere-2024-1914, https://doi.org/10.5194/egusphere-2024-1914, 2024
Short summary
Short summary
Under climate change, the conditions for wildfires to form are becoming more frequent in many parts of the world. To help predict how wildfires will change in future, global fire models are being developed. We analyze and further develop one such model, SPITFIRE. Our work identifies and corrects sources of substantial bias in the model that are important to the global fire modelling field. With this analysis and these developments, we help to provide a crucial platform for future developments.
Alexander S. Brunmayr, Frank Hagedorn, Margaux Moreno Duborgel, Luisa I. Minich, and Heather D. Graven
Geosci. Model Dev., 17, 5961–5985, https://doi.org/10.5194/gmd-17-5961-2024, https://doi.org/10.5194/gmd-17-5961-2024, 2024
Short summary
Short summary
A new generation of soil models promises to more accurately predict the carbon cycle in soils under climate change. However, measurements of 14C (the radioactive carbon isotope) in soils reveal that the new soil models face similar problems to the traditional models: they underestimate the residence time of carbon in soils and may therefore overestimate the net uptake of CO2 by the land ecosystem. Proposed solutions include restructuring the models and calibrating model parameters with 14C data.
Nina Raoult, Simon Beylat, James M. Salter, Frédéric Hourdin, Vladislav Bastrikov, Catherine Ottlé, and Philippe Peylin
Geosci. Model Dev., 17, 5779–5801, https://doi.org/10.5194/gmd-17-5779-2024, https://doi.org/10.5194/gmd-17-5779-2024, 2024
Short summary
Short summary
We use computer models to predict how the land surface will respond to climate change. However, these complex models do not always simulate what we observe in real life, limiting their effectiveness. To improve their accuracy, we use sophisticated statistical and computational techniques. We test a technique called history matching against more common approaches. This method adapts well to these models, helping us better understand how they work and therefore how to make them more realistic.
Jorn Bruggeman, Karsten Bolding, Lars Nerger, Anna Teruzzi, Simone Spada, Jozef Skákala, and Stefano Ciavatta
Geosci. Model Dev., 17, 5619–5639, https://doi.org/10.5194/gmd-17-5619-2024, https://doi.org/10.5194/gmd-17-5619-2024, 2024
Short summary
Short summary
To understand and predict the ocean’s capacity for carbon sequestration, its ability to supply food, and its response to climate change, we need the best possible estimate of its physical and biogeochemical properties. This is obtained through data assimilation which blends numerical models and observations. We present the Ensemble and Assimilation Tool (EAT), a flexible and efficient test bed that allows any scientist to explore and further develop the state of the art in data assimilation.
Dongyu Zheng, Andrew S. Merdith, Yves Goddéris, Yannick Donnadieu, Khushboo Gurung, and Benjamin J. W. Mills
Geosci. Model Dev., 17, 5413–5429, https://doi.org/10.5194/gmd-17-5413-2024, https://doi.org/10.5194/gmd-17-5413-2024, 2024
Short summary
Short summary
This study uses a deep learning method to upscale the time resolution of paleoclimate simulations to 1 million years. This improved resolution allows a climate-biogeochemical model to more accurately predict climate shifts. The method may be critical in developing new fully continuous methods that are able to be applied over a moving continental surface in deep time with high resolution at reasonable computational expense.
Boris Ťupek, Aleksi Lehtonen, Alla Yurova, Rose Abramoff, Bertrand Guenet, Elisa Bruni, Samuli Launiainen, Mikko Peltoniemi, Shoji Hashimoto, Xianglin Tian, Juha Heikkinen, Kari Minkkinen, and Raisa Mäkipää
Geosci. Model Dev., 17, 5349–5367, https://doi.org/10.5194/gmd-17-5349-2024, https://doi.org/10.5194/gmd-17-5349-2024, 2024
Short summary
Short summary
Updating the Yasso07 soil C model's dependency on decomposition with a hump-shaped Ricker moisture function improved modelled soil organic C (SOC) stocks in a catena of mineral and organic soils in boreal forest. The Ricker function, set to peak at a rate of 1 and calibrated against SOC and CO2 data using a Bayesian approach, showed a maximum in well-drained soils. Using SOC and CO2 data together with the moisture only from the topsoil humus was crucial for accurate model estimates.
Jacquelyn K. Shuman, Rosie A. Fisher, Charles Koven, Ryan Knox, Lara Kueppers, and Chonggang Xu
Geosci. Model Dev., 17, 4643–4671, https://doi.org/10.5194/gmd-17-4643-2024, https://doi.org/10.5194/gmd-17-4643-2024, 2024
Short summary
Short summary
We adapt a fire behavior and effects module for use in a size-structured vegetation demographic model to test how climate, fire regime, and fire-tolerance plant traits interact to determine the distribution of tropical forests and grasslands. Our model captures the connection between fire disturbance and plant fire-tolerance strategies in determining plant distribution and provides a useful tool for understanding the vulnerability of these areas under changing conditions across the tropics.
Yoshiki Kanzaki, Isabella Chiaravalloti, Shuang Zhang, Noah J. Planavsky, and Christopher T. Reinhard
Geosci. Model Dev., 17, 4515–4532, https://doi.org/10.5194/gmd-17-4515-2024, https://doi.org/10.5194/gmd-17-4515-2024, 2024
Short summary
Short summary
Soil pH is one of the most commonly measured agronomical and biogeochemical indices, mostly reflecting exchangeable acidity. Explicit simulation of both porewater and bulk soil pH is thus crucial to the accurate evaluation of alkalinity required to counteract soil acidification and the resulting capture of anthropogenic carbon dioxide through the enhanced weathering technique. This has been enabled by the updated reactive–transport SCEPTER code and newly developed framework to simulate soil pH.
David Sandoval, Iain Colin Prentice, and Rodolfo L. B. Nóbrega
Geosci. Model Dev., 17, 4229–4309, https://doi.org/10.5194/gmd-17-4229-2024, https://doi.org/10.5194/gmd-17-4229-2024, 2024
Short summary
Short summary
Numerous estimates of water and energy balances depend on empirical equations requiring site-specific calibration, posing risks of "the right answers for the wrong reasons". We introduce novel first-principles formulations to calculate key quantities without requiring local calibration, matching predictions from complex land surface models.
Juliette Bernard, Marielle Saunois, Elodie Salmon, Philippe Ciais, Shushi Peng, Antoine Berchet, Penélope Serrano-Ortiz, Palingamoorthy Gnanamoorthy, and Joachim Jansen
EGUsphere, https://doi.org/10.5194/egusphere-2024-1331, https://doi.org/10.5194/egusphere-2024-1331, 2024
Short summary
Short summary
Despite their importance, uncertainties remain in estimating methane emissions from wetlands. Here, a simplified model that operates at a global scale is developed. Taking advantage of advances in remote sensing data and in situ observations, the model effectively reproduces the spatial and temporal patterns of emissions, albeit with limitations in the tropics due to data scarcity. This model, while simple, can provide valuable insights for sensitivity analyses.
Oliver Perkins, Matthew Kasoar, Apostolos Voulgarakis, Cathy Smith, Jay Mistry, and James D. A. Millington
Geosci. Model Dev., 17, 3993–4016, https://doi.org/10.5194/gmd-17-3993-2024, https://doi.org/10.5194/gmd-17-3993-2024, 2024
Short summary
Short summary
Wildfire is often presented in the media as a danger to human life. Yet globally, millions of people’s livelihoods depend on using fire as a tool. So, patterns of fire emerge from interactions between humans, land use, and climate. This complexity means scientists cannot yet reliably say how fire will be impacted by climate change. So, we developed a new model that represents globally how people use and manage fire. The model reveals the extent and diversity of how humans live with and use fire.
Amos P. K. Tai, David H. Y. Yung, and Timothy Lam
Geosci. Model Dev., 17, 3733–3764, https://doi.org/10.5194/gmd-17-3733-2024, https://doi.org/10.5194/gmd-17-3733-2024, 2024
Short summary
Short summary
We have developed the Terrestrial Ecosystem Model in R (TEMIR), which simulates plant carbon and pollutant uptake and predicts their response to varying atmospheric conditions. This model is designed to couple with an atmospheric chemistry model so that questions related to plant–atmosphere interactions, such as the effects of climate change, rising CO2, and ozone pollution on forest carbon uptake, can be addressed. The model has been well validated with both ground and satellite observations.
Christian Poppe Terán, Bibi S. Naz, Harry Vereecken, Roland Baatz, Rosie Fisher, and Harrie-Jan Hendricks Franssen
EGUsphere, https://doi.org/10.5194/egusphere-2024-978, https://doi.org/10.5194/egusphere-2024-978, 2024
Short summary
Short summary
Carbon and water exchanges between the atmosphere and the land surface contribute to water resource availability and climate change mitigation. Land Surface Models, like the Community Land Model version 5 (CLM5), simulate these. This study finds that CLM5 and other data sets underestimate the magnitudes and variability of carbon and water exchanges for the most abundant plant functional types compared to observations. It provides essential insights for further research on these processes.
Fabian Stenzel, Johanna Braun, Jannes Breier, Karlheinz Erb, Dieter Gerten, Jens Heinke, Sarah Matej, Sebastian Ostberg, Sibyll Schaphoff, and Wolfgang Lucht
Geosci. Model Dev., 17, 3235–3258, https://doi.org/10.5194/gmd-17-3235-2024, https://doi.org/10.5194/gmd-17-3235-2024, 2024
Short summary
Short summary
We provide an R package to compute two biosphere integrity metrics that can be applied to simulations of vegetation growth from the dynamic global vegetation model LPJmL. The pressure metric BioCol indicates that we humans modify and extract > 20 % of the potential preindustrial natural biomass production. The ecosystems state metric EcoRisk shows a high risk of ecosystem destabilization in many regions as a result of climate change and land, water, and fertilizer use.
Elin Ristorp Aas, Heleen A. de Wit, and Terje K. Berntsen
Geosci. Model Dev., 17, 2929–2959, https://doi.org/10.5194/gmd-17-2929-2024, https://doi.org/10.5194/gmd-17-2929-2024, 2024
Short summary
Short summary
By including microbial processes in soil models, we learn how the soil system interacts with its environment and responds to climate change. We present a soil process model, MIMICS+, which is able to reproduce carbon stocks found in boreal forest soils better than a conventional land model. With the model we also find that when adding nitrogen, the relationship between soil microbes changes notably. Coupling the model to a vegetation model will allow for further study of these mechanisms.
Thomas Wutzler, Christian Reimers, Bernhard Ahrens, and Marion Schrumpf
Geosci. Model Dev., 17, 2705–2725, https://doi.org/10.5194/gmd-17-2705-2024, https://doi.org/10.5194/gmd-17-2705-2024, 2024
Short summary
Short summary
Soil microbes provide a strong link for elemental fluxes in the earth system. The SESAM model applies an optimality assumption to model those linkages and their adaptation. We found that a previous heuristic description was a special case of a newly developed more rigorous description. The finding of new behaviour at low microbial biomass led us to formulate the constrained enzyme hypothesis. We now can better describe how microbially mediated linkages of elemental fluxes adapt across decades.
Salvatore R. Curasi, Joe R. Melton, Elyn R. Humphreys, Txomin Hermosilla, and Michael A. Wulder
Geosci. Model Dev., 17, 2683–2704, https://doi.org/10.5194/gmd-17-2683-2024, https://doi.org/10.5194/gmd-17-2683-2024, 2024
Short summary
Short summary
Canadian forests are responding to fire, harvest, and climate change. Models need to quantify these processes and their carbon and energy cycling impacts. We develop a scheme that, based on satellite records, represents fire, harvest, and the sparsely vegetated areas that these processes generate. We evaluate model performance and demonstrate the impacts of disturbance on carbon and energy cycling. This work has implications for land surface modeling and assessing Canada’s terrestrial C cycle.
Yannek Käber, Florian Hartig, and Harald Bugmann
Geosci. Model Dev., 17, 2727–2753, https://doi.org/10.5194/gmd-17-2727-2024, https://doi.org/10.5194/gmd-17-2727-2024, 2024
Short summary
Short summary
Many forest models include detailed mechanisms of forest growth and mortality, but regeneration is often simplified. Testing and improving forest regeneration models is challenging. We address this issue by exploring how forest inventories from unmanaged European forests can be used to improve such models. We find that competition for light among trees is captured by the model, unknown model components can be informed by forest inventory data, and climatic effects are challenging to capture.
Jalisha T. Kallingal, Johan Lindström, Paul A. Miller, Janne Rinne, Maarit Raivonen, and Marko Scholze
Geosci. Model Dev., 17, 2299–2324, https://doi.org/10.5194/gmd-17-2299-2024, https://doi.org/10.5194/gmd-17-2299-2024, 2024
Short summary
Short summary
By unlocking the mysteries of CH4 emissions from wetlands, our work improved the accuracy of the LPJ-GUESS vegetation model using Bayesian statistics. Via assimilation of long-term real data from a wetland, we significantly enhanced CH4 emission predictions. This advancement helps us better understand wetland contributions to atmospheric CH4, which are crucial for addressing climate change. Our method offers a promising tool for refining global climate models and guiding conservation efforts
Benjamin Post, Esteban Acevedo-Trejos, Andrew D. Barton, and Agostino Merico
Geosci. Model Dev., 17, 1175–1195, https://doi.org/10.5194/gmd-17-1175-2024, https://doi.org/10.5194/gmd-17-1175-2024, 2024
Short summary
Short summary
Creating computational models of how phytoplankton grows in the ocean is a technical challenge. We developed a new tool set (Xarray-simlab-ODE) for building such models using the programming language Python. We demonstrate the tool set in a library of plankton models (Phydra). Our goal was to allow scientists to develop models quickly, while also allowing the model structures to be changed easily. This allows us to test many different structures of our models to find the most appropriate one.
Taeken Wijmer, Ahmad Al Bitar, Ludovic Arnaud, Remy Fieuzal, and Eric Ceschia
Geosci. Model Dev., 17, 997–1021, https://doi.org/10.5194/gmd-17-997-2024, https://doi.org/10.5194/gmd-17-997-2024, 2024
Short summary
Short summary
Quantification of carbon fluxes of crops is an essential building block for the construction of a monitoring, reporting, and verification approach. We developed an end-to-end platform (AgriCarbon-EO) that assimilates, through a Bayesian approach, high-resolution (10 m) optical remote sensing data into radiative transfer and crop modelling at regional scale (100 x 100 km). Large-scale estimates of carbon flux are validated against in situ flux towers and yield maps and analysed at regional scale.
Moritz Laub, Sergey Blagodatsky, Marijn Van de Broek, Samuel Schlichenmaier, Benjapon Kunlanit, Johan Six, Patma Vityakon, and Georg Cadisch
Geosci. Model Dev., 17, 931–956, https://doi.org/10.5194/gmd-17-931-2024, https://doi.org/10.5194/gmd-17-931-2024, 2024
Short summary
Short summary
To manage soil organic matter (SOM) sustainably, we need a better understanding of the role that soil microbes play in aggregate protection. Here, we propose the SAMM model, which connects soil aggregate formation to microbial growth. We tested it against data from a tropical long-term experiment and show that SAMM effectively represents the microbial growth, SOM, and aggregate dynamics and that it can be used to explore the importance of aggregate formation in SOM stabilization.
Jianhong Lin, Daniel Berveiller, Christophe François, Heikki Hänninen, Alexandre Morfin, Gaëlle Vincent, Rui Zhang, Cyrille Rathgeber, and Nicolas Delpierre
Geosci. Model Dev., 17, 865–879, https://doi.org/10.5194/gmd-17-865-2024, https://doi.org/10.5194/gmd-17-865-2024, 2024
Short summary
Short summary
Currently, the high variability of budburst between individual trees is overlooked. The consequences of this neglect when projecting the dynamics and functioning of tree communities are unknown. Here we develop the first process-oriented model to describe the difference in budburst dates between individual trees in plant populations. Beyond budburst, the model framework provides a basis for studying the dynamics of phenological traits under climate change, from the individual to the community.
Skyler Kern, Mary E. McGuinn, Katherine M. Smith, Nadia Pinardi, Kyle E. Niemeyer, Nicole S. Lovenduski, and Peter E. Hamlington
Geosci. Model Dev., 17, 621–649, https://doi.org/10.5194/gmd-17-621-2024, https://doi.org/10.5194/gmd-17-621-2024, 2024
Short summary
Short summary
Computational models are used to simulate the behavior of marine ecosystems. The models often have unknown parameters that need to be calibrated to accurately represent observational data. Here, we propose a novel approach to simultaneously determine a large set of parameters for a one-dimensional model of a marine ecosystem in the surface ocean at two contrasting sites. By utilizing global and local optimization techniques, we estimate many parameters in a computationally efficient manner.
Shuaitao Wang, Vincent Thieu, Gilles Billen, Josette Garnier, Marie Silvestre, Audrey Marescaux, Xingcheng Yan, and Nicolas Flipo
Geosci. Model Dev., 17, 449–476, https://doi.org/10.5194/gmd-17-449-2024, https://doi.org/10.5194/gmd-17-449-2024, 2024
Short summary
Short summary
This paper presents unified RIVE v1.0, a unified version of the freshwater biogeochemistry model RIVE. It harmonizes different RIVE implementations, providing the referenced formalisms for microorganism activities to describe full biogeochemical cycles in the water column (e.g., carbon, nutrients, oxygen). Implemented as open-source projects in Python 3 (pyRIVE 1.0) and ANSI C (C-RIVE 0.32), unified RIVE v1.0 promotes and enhances collaboration among research teams and public services.
Sam S. Rabin, William J. Sacks, Danica L. Lombardozzi, Lili Xia, and Alan Robock
Geosci. Model Dev., 16, 7253–7273, https://doi.org/10.5194/gmd-16-7253-2023, https://doi.org/10.5194/gmd-16-7253-2023, 2023
Short summary
Short summary
Climate models can help us simulate how the agricultural system will be affected by and respond to environmental change, but to be trustworthy they must realistically reproduce historical patterns. When farmers plant their crops and what varieties they choose will be important aspects of future adaptation. Here, we improve the crop component of a global model to better simulate observed growing seasons and examine the impacts on simulated crop yields and irrigation demand.
Weihang Liu, Tao Ye, Christoph Müller, Jonas Jägermeyr, James A. Franke, Haynes Stephens, and Shuo Chen
Geosci. Model Dev., 16, 7203–7221, https://doi.org/10.5194/gmd-16-7203-2023, https://doi.org/10.5194/gmd-16-7203-2023, 2023
Short summary
Short summary
We develop a machine-learning-based crop model emulator with the inputs and outputs of multiple global gridded crop model ensemble simulations to capture the year-to-year variation of crop yield under future climate change. The emulator can reproduce the year-to-year variation of simulated yield given by the crop models under CO2, temperature, water, and nitrogen perturbations. Developing this emulator can provide a tool to project future climate change impact in a simple way.
Jurjen Rooze, Heewon Jung, and Hagen Radtke
Geosci. Model Dev., 16, 7107–7121, https://doi.org/10.5194/gmd-16-7107-2023, https://doi.org/10.5194/gmd-16-7107-2023, 2023
Short summary
Short summary
Chemical particles in nature have properties such as age or reactivity. Distributions can describe the properties of chemical concentrations. In nature, they are affected by mixing processes, such as chemical diffusion, burrowing animals, and bottom trawling. We derive equations for simulating the effect of mixing on central moments that describe the distributions. We then demonstrate applications in which these equations are used to model continua in disturbed natural environments.
Esteban Acevedo-Trejos, Jean Braun, Katherine Kravitz, N. Alexia Raharinirina, and Benoît Bovy
Geosci. Model Dev., 16, 6921–6941, https://doi.org/10.5194/gmd-16-6921-2023, https://doi.org/10.5194/gmd-16-6921-2023, 2023
Short summary
Short summary
The interplay of tectonics and climate influences the evolution of life and the patterns of biodiversity we observe on earth's surface. Here we present an adaptive speciation component coupled with a landscape evolution model that captures the essential earth-surface, ecological, and evolutionary processes that lead to the diversification of taxa. We can illustrate with our tool how life and landforms co-evolve to produce distinct biodiversity patterns on geological timescales.
Veli Çağlar Yumruktepe, Erik Askov Mousing, Jerry Tjiputra, and Annette Samuelsen
Geosci. Model Dev., 16, 6875–6897, https://doi.org/10.5194/gmd-16-6875-2023, https://doi.org/10.5194/gmd-16-6875-2023, 2023
Short summary
Short summary
We present an along BGC-Argo track 1D modelling framework. The model physics is constrained by the BGC-Argo temperature and salinity profiles to reduce the uncertainties related to mixed layer dynamics, allowing the evaluation of the biogeochemical formulation and parameterization. We objectively analyse the model with BGC-Argo and satellite data and improve the model biogeochemical dynamics. We present the framework, example cases and routines for model improvement and implementations.
Tanya J. R. Lippmann, Ype van der Velde, Monique M. P. D. Heijmans, Han Dolman, Dimmie M. D. Hendriks, and Ko van Huissteden
Geosci. Model Dev., 16, 6773–6804, https://doi.org/10.5194/gmd-16-6773-2023, https://doi.org/10.5194/gmd-16-6773-2023, 2023
Short summary
Short summary
Vegetation is a critical component of carbon storage in peatlands but an often-overlooked concept in many peatland models. We developed a new model capable of simulating the response of vegetation to changing environments and management regimes. We evaluated the model against observed chamber data collected at two peatland sites. We found that daily air temperature, water level, harvest frequency and height, and vegetation composition drive methane and carbon dioxide emissions.
Chonggang Xu, Bradley Christoffersen, Zachary Robbins, Ryan Knox, Rosie A. Fisher, Rutuja Chitra-Tarak, Martijn Slot, Kurt Solander, Lara Kueppers, Charles Koven, and Nate McDowell
Geosci. Model Dev., 16, 6267–6283, https://doi.org/10.5194/gmd-16-6267-2023, https://doi.org/10.5194/gmd-16-6267-2023, 2023
Short summary
Short summary
We introduce a plant hydrodynamic model for the U.S. Department of Energy (DOE)-sponsored model, the Functionally Assembled Terrestrial Ecosystem Simulator (FATES). To better understand this new model system and its functionality in tropical forest ecosystems, we conducted a global parameter sensitivity analysis at Barro Colorado Island, Panama. We identified the key parameters that affect the simulated plant hydrodynamics to guide both modeling and field campaign studies.
Jianghui Du
Geosci. Model Dev., 16, 5865–5894, https://doi.org/10.5194/gmd-16-5865-2023, https://doi.org/10.5194/gmd-16-5865-2023, 2023
Short summary
Short summary
Trace elements and isotopes (TEIs) are important tools to study the changes in the ocean environment both today and in the past. However, the behaviors of TEIs in marine sediments are poorly known, limiting our ability to use them in oceanography. Here we present a modeling framework that can be used to generate and run models of the sedimentary cycling of TEIs assisted with advanced numerical tools in the Julia language, lowering the coding barrier for the general user to study marine TEIs.
Siyu Zhu, Peipei Wu, Siyi Zhang, Oliver Jahn, Shu Li, and Yanxu Zhang
Geosci. Model Dev., 16, 5915–5929, https://doi.org/10.5194/gmd-16-5915-2023, https://doi.org/10.5194/gmd-16-5915-2023, 2023
Short summary
Short summary
In this study, we estimate the global biogeochemical cycling of Hg in a state-of-the-art physical-ecosystem ocean model (high-resolution-MITgcm/Hg), providing a more accurate portrayal of surface Hg concentrations in estuarine and coastal areas, strong western boundary flow and upwelling areas, and concentration diffusion as vortex shapes. The high-resolution model can help us better predict the transport and fate of Hg in the ocean and its impact on the global Hg cycle.
Maria Val Martin, Elena Blanc-Betes, Ka Ming Fung, Euripides P. Kantzas, Ilsa B. Kantola, Isabella Chiaravalloti, Lyla L. Taylor, Louisa K. Emmons, William R. Wieder, Noah J. Planavsky, Michael D. Masters, Evan H. DeLucia, Amos P. K. Tai, and David J. Beerling
Geosci. Model Dev., 16, 5783–5801, https://doi.org/10.5194/gmd-16-5783-2023, https://doi.org/10.5194/gmd-16-5783-2023, 2023
Short summary
Short summary
Enhanced rock weathering (ERW) is a CO2 removal strategy that involves applying crushed rocks (e.g., basalt) to agricultural soils. However, unintended processes within the N cycle due to soil pH changes may affect the climate benefits of C sequestration. ERW could drive changes in soil emissions of non-CO2 GHGs (N2O) and trace gases (NO and NH3) that may affect air quality. We present a new improved N cycling scheme for the land model (CLM5) to evaluate ERW effects on soil gas N emissions.
Ying Ye, Guy Munhoven, Peter Köhler, Martin Butzin, Judith Hauck, Özgür Gürses, and Christoph Völker
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-181, https://doi.org/10.5194/gmd-2023-181, 2023
Revised manuscript accepted for GMD
Short summary
Short summary
Many biogeochemistry models assume all material reaching the seafloor is remineralized and returned to solution, which is sufficient for studies on short-term climate change. Under long-term climate change the storage of carbon in sediments slows down carbon cycling and influences feedbacks in the atmosphere-ocean-sediment system. Here we coupled a sediment model to an ocean biogeochemistry model and found a shift of carbon storage from the atmosphere to the ocean-sediment system.
Özgür Gürses, Laurent Oziel, Onur Karakuş, Dmitry Sidorenko, Christoph Völker, Ying Ye, Moritz Zeising, Martin Butzin, and Judith Hauck
Geosci. Model Dev., 16, 4883–4936, https://doi.org/10.5194/gmd-16-4883-2023, https://doi.org/10.5194/gmd-16-4883-2023, 2023
Short summary
Short summary
This paper assesses the biogeochemical model REcoM3 coupled to the ocean–sea ice model FESOM2.1. The model can be used to simulate the carbon uptake or release of the ocean on timescales of several hundred years. A detailed analysis of the nutrients, ocean productivity, and ecosystem is followed by the carbon cycle. The main conclusion is that the model performs well when simulating the observed mean biogeochemical state and variability and is comparable to other ocean–biogeochemical models.
Cited articles
Baker, I. T., Prihodko, L., Denning, A. S., Goulden, M., Miller, S., and da Rocha, H. R.: Seasonal drought stress in the Amazon: Reconciling models and observations, J. Geophys. Res.-Biogeo., 113, G00B01, https://doi.org/10.1029/2007JG000644, 2008.
Best, M. J., Pryor, M., Clark, D. B., Rooney, G. G., Essery, R .L. H., Ménard, C. B., Edwards, J. M., Hendry, M. A., Porson, A., Gedney, N., Mercado, L. M., Sitch, S., Blyth, E., Boucher, O., Cox, P. M., Grimmond, C. S. B., and Harding, R. J.: The Joint UK Land Environment Simulator (JULES), model description – Part 1: Energy and water fluxes, Geosci. Model Dev., 4, 677–699, https://doi.org/10.5194/gmd-4-677-2011, 2011.
Bonan, G. B., Levis, S., Sitch, S., Vertenstein, M., and Oleson, K. W.: A dynamic global vegetation model for use with climate models: concepts and description of simulated vegetation dynamics, Global Change Biol., 9, 1543–1566, 2003.
Bonan, G. B., Oleson, K. W., Fisher, R. A., Lasslop, G., and Reichstein, M.: Reconciling leaf physiological traits and canopy flux data: Use of the TRY and FLUXNET databases in the Community Land Model version 4, J. Geophys. Res., 117, G02026, https://doi.org/10.1029/2011JG001913, 2012.
Bonan, G. B., Williams, M., Fisher, R. A., and Oleson, K. W.: Modeling stomatal conductance in the earth system: linking leaf water-use efficiency and water transport along the soil-plant-atmosphere continuum, Geosci. Model Dev., 7, 2193–2222, https://doi.org/10.5194/gmd-7-2193-2014, 2014.
Brando, P. M., Nepstad, D. C., Davidson, E. A., Trumbore, S. E., Ray, D., and Camargo, P.: Drought effects on litterfall, wood production and belowground carbon cycling in an Amazon forest: results of a throughfall reduction experiment, Philos. T. R. Soc. B, 363, 1839–1848, 2008.
Christensen, J. H., Hewitson, B., Busuioc, A., Chen, C., Gao, X., Held, I., Jones, R., Kolli, R. K., Kwon, W. T., Laprise, R., Rueda, V. M., Mearns, L., Menéndez, C. G., Räisänen, J., Rinke, A., Sarr, A., Whetton, P., Arritt, R., Benestad, R., Bromwich, D., Caya, D., Comiso, J., de El\'ia, R., Dethloff, K., Emori, S., Feddema, S., Gerdes., R, González-Rouco, J. F., Gutowski, W., Hanssen-Bauer, I., Jones, C., Katz, R., Kitoh, A., Knutti, R., Leung, R., Lowe. J., Lynch, A. H., Matulla, C., McInnes, K., Mescherskaya, A. V., Mullan, A. B., New, M., Nokhandan, M. H., Pal, J. S., Plummer, D. Rummukainen, M., Schär, C., Stone, D. A., Suppiah, R., Tadross, M., Tebaldi, C., Tennant, W., Widmann, M., and Wilby, R.: Regional Climate Projections, in: Climate Change 2007: the physical science basis. Contribution of working group I to the Fourth Assessment Report of the Intergovernmenatal Panel on Climate Change, edited by: Solomon, S., Quin, D., Manning, M., Chen, Z., Marquies, M., Averyt, K., Tignor, M., and Miller, H., 1, Cambridge University Press, Cambridge, UK, New York, NY, 2007.
Clark, D. B., Mercado, L. M., Sitch, S., Jones, C. D., Gedney, N., Best, M. J., Pryor, M., Rooney, G. G., Essery, R. L. H., Blyth, E., Boucher, O., Harding, R. J., Huntingford, C., and Cox, P. M.: The Joint UK Land Environment Simulator (JULES), model description – Part 2: Carbon fluxes and vegetation dynamics, Geosci. Model Dev., 4, 701–722, https://doi.org/10.5194/gmd-4-701-2011, 2011.
Collatz, G. J., Ball, J. T., Grivet, C., and Berry, J. A.: Physiological and Environmental-Regulation of Stomatal Conductance, Photosynthesis and Transpiration – a Model That Includes a Laminar Boundary-Layer, Agr. Forest Meteorol., 54, 107–136, 1991.
Collins, M., Knutti, K., Arblaster, J., Dufresne, J., Fichefet, T., Friedlingstein, P., Gao, X., Gutowski Jr, W. J., Johns, T., Krinner, G., Shongwe, M., Tebaldi, C., Weaver, A. J., Wehner, M., Allen, M. R., Andrews, T., Beyerle, U., Cecilia, M. B., Bony, S., Booth, B. B. B., Brooks, H. E., Brovkin, V., Browne, O., Brutel-Vuilmet, C., Cane, M., Chadwick, R., Cook, E., Cook, K. H., Eby, M., Fasullo, J., Fischer, E. M., Forest, C. E., Forster, P., Good, Goosse, H., Gregory, J. M., Hegerl, G. C., Hezel, P. J., Hodges, K. I., Holland, M. M., Huber, M., Huybrechts, P., Joshi, M., Kharin, V., Kushnir, Y., Lawrence, D. M., Lee, R. W., Liddicoat, S., Lucas, C., Lucht, W., Marotzke, M., Massonnet, F., Matthews, H. D., Meinshausen, M., Morice, C., Otto, A., Patricola, C. M., Berthier, C. P., Prabhat, P., Rahmstorf, S., Riley, W. J., Rogelj, J., Saenko, O., Seager, R., Sedlek, J., Shaffrey, L. C., Shindell, D., Sillmann, J., Slater, A., Stevens, B., Stott, P. A., Webb, R., Zappa, G., and Zickfeld, K.: Long-term Climate Change: Projections, Comitments and Irreversibility, in: Climate Change 2013: The Physical Science Basis Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge University Press, Cambridge, United Kingdon and New York, NY USA, 2013.
Corlett, R. T.: Impacts of warming on tropical lowland rainforests, Trends Ecol. Evol., 26, 606–613, 2011.
Cox, P. M., Huntingford, C., and Harding, R. J.: A canopy conductance and photosynthesis model for use in a GCM land surface scheme, J. Hydrol., 212, 79–94, 1998.
Cox, P. M., Harris, P. P., Huntingford, C., Betts, R. A., Collins, M., Jones, C. D., Jupp, T. E., Marengo, J. A., and Nobre, C. A.: Increasing risk of Amazonian drought due to decreasing aerosol pollution, Nature, 453, 212–215, https://doi.org/10.1038/nature06960, 2008.
da Costa, A. C. L., Galbraith, D., Almeida, S., Portela, B. T. T., da Costa, M., Silva, J. D., Braga, A. P., de Goncalves, P. H. L., de Oliveira, A. A. R., Fisher, R., Phillips, O. L., Metcalfe, D. B., Levy, P., and Meir, P.: Effect of 7 yr of experimental drought on vegetation dynamics and biomass storage of an eastern Amazonian rainforest, New Phytol., 187, 579–591, https://doi.org/10.1111/j.1469-8137.2010.03309, 2010.
da Costa, A. C. L., Metcalfe, D. B., Doughty, C. E., de Oliveira, A. A. R., Neto, G. F. C., da Costa, M. C., Silva, J. D., Aragao, L. E. O. C., Almeida, S., Galbraith, D. R., Rowland, L. M., Meir, P., and Malhi, Y.: Ecosystem respiration and net primary productivity after 8–10 years of experimental through-fall reduction in an eastern Amazon forest, Plant Ecol. Divers., 7, 7–24, 2014.
Doughty, C. E.: An In Situ Leaf and Branch Warming Experiment in the Amazon, Biotropica, 43, 658–665, 2011.
Doughty, C. E. and Goulden, M. L.: Are tropical forests near a high temperature threshold?, J. Geophys. Res., 113, G00B07, https://doi.org/10.1029/2007JG000632, 2008.
Farquhar, G. D. and Sharkey, T. D.: Stomatal Conductance and Photosynthesis, Ann. Rev. Plant Phys., 33, 317–345, 1982.
Farquhar, G. D., Caemmerer, S. V., and Berry, J. A.: A Biochemical-Model of Photosynthetic Co2 Assimilation in Leaves of C-3 Species, Planta, 149, 78–90, 1980.
Fisher, R. A., Williams, M., Do Vale, R. L., Da Costa, A. L., and Meir, P.: Evidence from Amazonian forests is consistent with isohydric control of leaf water potential, Plant Cell Environ., 29, 151–165, 2006.
Fisher, R. A., Williams, M., Da Costa, A. L., Malhi, Y., Da Costa, R. F., Almeida, S., and Meir, P.: The response of an Eastern Amazonian rain forest to drought stress: results and modelling analyses from a throughfall exclusion experiment, Global Change Biol., 13, 2361–2378, 2007.
Friedlingstein, P., Cox, P., Betts, R., Bopp, L., Von Bloh, W., Brovkin, V., Cadule, P., Doney, S., Eby, M., Fung, I., Bala, G., John, J., Jones, C., Joos, F., Kato, T., Kawamiya, M., Knorr, W., Lindsay, K., Matthews, H. D., Raddatz, T., Rayner, P., Reick, C., Roeckner, E., Schnitzler, K. G., Schnur, R., Strassmann, K., Weaver, A. J., Yoshikawa, C., and Zeng, N.: Climate-carbon cycle feedback analysis: Results from the C(4)MIP model intercomparison, J. Climate, 19, 3337–3353, 2006.
Gatti, L. V., Gloor, M., Miller, J. B., Doughty, C. E., Malhi, Y., Domingues, L. G., Basso, L. S., Martinewski, A., Correia, C. S. C., Borges, V. F., Freitas, S., Braz, R., Anderson, L. O., Rocha, H., Grace, J., Phillips, O. L., and Lloyd, J.: Drought sensitivity of Amazonian carbon balance revealed by atmospheric measurements, Nature, 506, p. 76, https://doi.org/10.1038/Nature12957, 2014.
Galbraith, D., Levy, P. E., Sitch, S., Huntingford, C., Cox, P., Williams, M., and Meir, P.: Multiple mechanisms of Amazonian forest biomass losses in three dynamic global vegetation models under climate change, New Phytol., 187, 647–665, 2010.
Good, P., Jones, C., Lowe, J., Betts, R., and Gedney, N.: Comparing Tropical Forest Projections from Two Generations of Hadley Centre Earth System Models, HadGEM2-ES and HadCM3LC, J. Climate, 26, 495–511, 2013.
Goudriaan, J.: Crop micrometeorology: A simulation study, Center for Agricultural Publishing and Documentation, Wageningen, The Netherlands, 1977.
Goulden, M. L., Miller, S. D., da Rocha, H. R., Menton, M. C., de Freitas, H. C., Figueira, A. M. E. S., and de Sousa, C. A. D.: Diel and seasonal patterns of tropical forest CO2 exchange, Ecol. Appl., 14, S42–S54, 2004.
Harper, A., Baker, I. T., Denning, A. S., Randall, D. A., Dazlich, D., and Branson, M.: Impact of Evapotranspiration on Dry Season Climate in the Amazon Forest, J. Climate, 27, 574–591, 2014.
Heroult, A., Lin, Y. S., Bourne, A., Medlyn, B. E., and Ellsworth, D. S.: Optimal stomatal conductance in relation to photosynthesis in climatically contrasting Eucalyptus species under drought, Plant Cell Environ., 36, 262–274, 2013.
Jupp, T. E., Cox, P. M., Rammig, A., Thonicke, K., Lucht, W., and Cramer, W.: Development of probability density functions for future South American rainfall, New Phytol., 187, 682–693, 2010.
Kim, Y., Knox, R. G., Longo, M., Medvigy, D., Hutyra, L. R., Pyle, E. H., Wofsy, S. C., Bras, R. L., and Moorcroft, P. R.: Seasonal carbon dynamics and water fluxes in an Amazon rainforest, Global Change Biol., 18, 1322–1334, 2012.
Kirschbaum, M. U. F. and Farquhar, G. D.: Temperature-Dependence of Whole-Leaf Photosynthesis in Eucalyptus-Pauciflora Sieb Ex Spreng, Austr. J. Plant Physiol., 11, 519–538, 1984.
Levis, S., Bonan, G., Vertenstein, M., and Oleson, K.: The Community Land Model Dynamic Global Vegetation Model (CLM-DGVM): technical description and user's guide, Boulder, CO, USA, National Center for Atmospheric Research, 2004.
Lloyd, J. and Farquhar, G. D.: Effects of rising temperatures and [CO2] on the physiology of tropical forest trees, Philos. Trans. R. Soc. Lond. B Sci., 363, 1811–1817, 2008.
Lloyd, J., Patiño, S., Paiva, R. Q., Nardoto, G. B., Quesada, C. A., Santos, A. J. B., Baker, T. R., Brand, W. A., Hilke, I., Gielmann, H., Raessler, M., Luizão, F. J., Martinelli, L. A., and Mercado, L. M.: Optimisation of photosynthetic carbon gain and within-canopy gradients of associated foliar traits for Amazon forest trees, Biogeosciences, 7, 1833–1859, https://doi.org/10.5194/bg-7-1833-2010, 2010.
Luo, Y., Gerten, D., Le Maire, G., Parton, W. J., Weng, E., Zhou, X., Keough, C., Beier, C., Ciais, P., Cramer, W., Dukes, J. S., Emmett, B., Hanson, P. J., Knapp, A., Linder, S., Nepstad, D. A. N., and Rustad, L.: Modeled interactive effects of precipitation, temperature, and [CO2] on ecosystem carbon and water dynamics in different climatic zones, Global Change Biol., 14, 1986–1999, 2008.
Malhi, Y., Aragao, L. E., Galbraith, D., Huntingford, C., Fisher, R., Zelazowski, P., Sitch, S., McSweeney, C., and Meir, P.: Exploring the likelihood and mechanism of a climate-change-induced dieback of the Amazon rainforest, Proc. Natl. Acad. Sci. USA, 106, 20610–20615, 2009.
Marengo, J. A., Chou, S. C., Kay, G., Alves, L. M., Pesquero, J. F., Soares, W. R., Santos, D. C., Lyra, A. A., Sueiro, G., Betts, R., Chagas, D. J., Gomes, J. L., Bustamante, J. F., and Tavares, P.: Development of regional future climate change scenarios in South America using the Eta CPTEC/HadCM3 climate change projections: climatology and regional analyses for the Amazon, So Francisco and the Parana River basins, Clim. Dynam., 38, 1829–1848, 2012.
Marengo, J. A., Tomasella, J., Alves, L. M., Soares, W. R., and Rodriguez, D. A.: The drought of 2010 in the context of historical droughts in the Amazon region, Geophys. Res. Lett., 38, L12703, https://doi.org/10.1029/2011GL047436, 2011.
McMurtrie, R. E., Leuning, R., Thompson, W. A., and Wheeler, A. M.: A Model of Canopy Photosynthesis and Water-Use Incorporating a Mechanistic Formulation of Leaf Co2 Exchange, Forest Ecol. Manage., 52, 261–278, 1992.
Medlyn, B. E., Duursma, R. A., Eamus, D., Ellsworth, D. S., Prentice, I. C., Barton, C. V. M., Crous, K. Y., de Angelis, P., Freeman, M., and Wingate, L.: Reconciling the optimal and empirical approaches to modelling stomatal conductance, Global Change Biol., 17, 2134–2144, 2011.
Medlyn, B. E., Duursma, R. A., De Kauwe, M. G., and Prentice, I. C.: The optimal stomatal response to atmospheric CO2 concentration: Alternative solutions, alternative interpretations, Agr. Forest Meteorol., 182, 200–203, 2013.
Medvigy, D., Wofsy, S. C., Munger, J. W., Hollinger, D. Y., and Moorcroft, P. R.: Mechanistic scaling of ecosystem function and dynamics in space and time: Ecosystem Demography model version 2, J. Geophys. Res., 114, G01002, https://doi.org/10.1029/2008JG000812, 2009a.
Meir, P. and Woodward, F. I.: Amazonian rain forests and drought: response and vulnerability, New Phytol., 187, 553–557, 2010.
Meir, P., Metcalfe, D. B., Costa, A. C., and Fisher, R. A.: The fate of assimilated carbon during drought: impacts on respiration in Amazon rainforests, Philos. Trans. Roy. Soc. Lon. Ser. B, 363, 1849–1855, 2008.
Meir, P., Mencuccini, M., and Dewer, R. C.: Tree mortality during drought: narrowing the gaps in understanding and prediction, New Phytol., https://doi.org/10.1111/nph.13382, online first, 2015.
Mercado, L., Lloyd, J., Carswell, F., Malhi, Y., Meir, P., and Nobre, A. D.: Modelling Amazonian forest eddy covariance data: a comparison of big leaf versus sun/shade models for the C-14 tower at Manaus I. Canopy photosynthesis, Acta Amazonica, 36, 69–82, 2006.
Mercado, L. M., Lloyd, J., Dolman, A. J., Sitch, S., and Patiño, S.: Modelling basin-wide variations in Amazon forest productivity – Part 1: Model calibration, evaluation and upscaling functions for canopy photosynthesis, Biogeosciences, 6, 1247–1272, https://doi.org/10.5194/bg-6-1247-2009, 2009.
Moorcroft, P. R., Hurtt, G. C., and Pacala, S. W.: A method for scaling vegetation dynamics: The ecosystem demography model (ED), Ecol. Monogr., 71, 557–585, 2001.
Nepstad, D. C., Moutinho, P., Dias, M. B., Davidson, E., Cardinot, G., Markewitz, D., Figueiredo, R., Vianna, N., Chambers, J., Ray, D., Guerreiros, J. B., Lefebvre, P., Sternberg, L., Moreira, M., Barros, L., Ishida, F. Y., Tohlver, I., Belk, E., Kalif, K., and Schwalbe, K.: The effects of partial throughfall exclusion on canopy processes, aboveground production, and biogeochemistry of an Amazon forest, J. Geophys. Res.-Atmos., 107, 8085, https://doi.org/10.1029/2001JD000360, 2002.
Oleson, K. W., Dai, Y., Bonan, G. B., Bosilovich, M., Dirmeyer, P., Hoffman, F., Levis, S., Niu, G. Y., Thornton, P. E., Vertenstein, M., Yang, Z. L., and Zeng, X.: Technical description of the Community Land Model (CLM), NCAR Technical Note, 2004.
Oleson, K. W., Niu, G. Y., Yang, Z. L., Lawrence, D. M., Thornton, P. E., Lawrence, P. J., Stockli, R., Dickinson, R. E., Bonan, G. B., Levis, S., Dai, A., and Qian, T.: Improvements to the Community Land Model and their impact on the hydrological cycle, J. Geophys. Res.-Biogeo., 113, G01021, https://doi.org/10.1029/2007JG000563, 2008.
Powell, T. L., Galbraith, D. R., Christoffersen, B. O., Harper, A., Imbuzeiro, H. M., Rowland, L., Almeida, S., Brando, P. M., da Costa, A. C., Costa, M. H., Levine, N. M., Malhi, Y., Saleska, S. R., Sotta, E., Williams, M., Meir, P., and Moorcroft, P. R.: Confronting model predictions of carbon fluxes with measurements of Amazon forests subjected to experimental drought, New Phytol., 200, 350–365, https://doi.org/10.1111/nph.12390, 2013.
Reed, S. C., Wood, T. E., and Cavaleri, M. A.: Tropical forests in a warming world, New Phytol., 193, 27–29, 2012.
Reichstein, M., Bahn, M., Ciais, P., Frank, D., Mahecha, M. D., Seneviratne, S. I., Zscheischler, J., Beer, C., Buchmann, N., Frank, D. C., Papale, D., Rammig, A., Smith, P., Thonicke, K., van der Velde, M., Vicca, S., Walz, A., Wattenbach, M.: Climate extremes and the carbon cycle, Nature, 500, 287–295, https://doi.org/10.1038/Nature12350, 2013.
Sellers, P. J.: Canopy Reflectance, Photosynthesis and Transpiration, Int. J. Remote. Sens., 6, 1335–1372, 1985.
Sellers, P. J., Berry, J. A., Collatz, G. J., Field, C. B., and Hall, F. G.: Canopy Reflectance, Photosynthesis, and Transpiration .3. A Reanalysis Using Improved Leaf Models and a New Canopy Integration Scheme, Remote Sens. Environ., 42, 187–216, 1992.
Sellers, P. J., Randall, D. A., Collatz, G. J., Berry, J. A., Field, C. B., Dazlich, D. A., Zhang, C., Collelo, G. D., and Bounoua, L.: A revised land surface parameterization (SiB2) for atmospheric GCMs .1. Model formulation, J. Climate, 9, 676–705, 1996.
Sitch, S., Huntingford, C., Gedney, N., Levy, P. E., Lomas, M., Piao, S. L., Betts, R., Ciais, P., Cox, P., Friedlingstein, P., Jones, C. D., Prentice, I. C., and Woodward, F. I.: Evaluation of the terrestrial carbon cycle, future plant geography and climate-carbon cycle feedbacks using five Dynamic Global Vegetation Models (DGVMs), Global Change Biol., 14, 2015–2039, 2008.
Tribuzy, E. S.: Variações da temperatura foliar do dossel e o seu efeito na taxa assimilatória de CO2 na Amazônia Central, PhD, Universidade de São Paulo, São Paulo, 2005.
Williams, M.: A three-dimensional model of forest development and competition, Ecol. Model., 89, 73–98, 1996.
Williams, M., Schwarz, P. A., Law, B. E., Irvine, J., and Kurpius, M. R.: An improved analysis of forest carbon dynamics using data assimilation, Global Change Biol., 11, 89–105, 2005.
Wood, T. E., Cavaleri, M. A., and Reed, S. C.: Tropical forest carbon balance in a warmer world: a critical review spanning microbial- to ecosystem-scale processes, Biol. Rev. Camb. Philos. Soc., 87, 912–927, 2012.
Zhou, S. X., Duursma, R. A., Medlyn, B. E., Kelly, J. W. G., and Prentice, I. C.: How should we model plant responses to drought? An analysis of stomatal and non-stomatal responses to water stress, Agr. Forest Meteorol., 182, 204–214, 2013.
Zhou, X. H., Weng, E. S., and Luo, Y. Q.: Modeling patterns of nonlinearity in ecosystem responses to temperature, CO2, and precipitation changes, Ecol. Appl., 18, 453–466, 2008.
Short summary
This study evaluates the capability of five vegetation models to simulate the response of forest productivity to changes in temperature and drought, using data collected from an Amazonian forest. This study concludes that model consistencies in the responses of net canopy carbon production to temperature and precipitation change were the result of inconsistently modelled leaf-scale process responses and substantial variation in modelled leaf area responses.
This study evaluates the capability of five vegetation models to simulate the response of forest...