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Abstract. Accurately predicting the response of Amazonia

to climate change is important for predicting climate change

across the globe. Changes in multiple climatic factors simul-

taneously result in complex non-linear ecosystem responses,

which are difficult to predict using vegetation models. Us-

ing leaf- and canopy-scale observations, this study evaluated

the capability of five vegetation models (Community Land

Model version 3.5 coupled to the Dynamic Global Vegetation

model – CLM3.5–DGVM; Ecosystem Demography model

version 2 – ED2; the Joint UK Land Environment Simulator

version 2.1 – JULES; Simple Biosphere model version 3 –

SiB3; and the soil–plant–atmosphere model – SPA) to sim-

ulate the responses of leaf- and canopy-scale productivity to

changes in temperature and drought in an Amazonian forest.

The models did not agree as to whether gross primary pro-

ductivity (GPP) was more sensitive to changes in tempera-

ture or precipitation, but all the models were consistent with

the prediction that GPP would be higher if tropical forests

were 5 ◦C cooler than current ambient temperatures. There

was greater model–data consistency in the response of net

ecosystem exchange (NEE) to changes in temperature than

in the response to temperature by net photosynthesis (An),

stomatal conductance (gs) and leaf area index (LAI). Mod-

elled canopy-scale fluxes are calculated by scaling leaf-scale

fluxes using LAI. At the leaf-scale, the models did not agree

on the temperature or magnitude of the optimum points of

An, Vcmax or gs, and model variation in these parameters was

compensated for by variations in the absolute magnitude of

simulated LAI and how it altered with temperature.

Across the models, there was, however, consistency in two

leaf-scale responses: (1) change in An with temperature was

more closely linked to stomatal behaviour than biochemi-

cal processes; and (2) intrinsic water use efficiency (IWUE)

increased with temperature, especially when combined with

drought. These results suggest that even up to fairly extreme

temperature increases from ambient levels (+6 ◦C), simu-

lated photosynthesis becomes increasingly sensitive to gs and

remains less sensitive to biochemical changes. To improve

the reliability of simulations of the response of Amazonian

rainforest to climate change, the mechanistic underpinnings

of vegetation models need to be validated at both leaf- and

canopy-scales to improve accuracy and consistency in the

quantification of processes within and across an ecosystem.

Published by Copernicus Publications on behalf of the European Geosciences Union.
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1 Introduction

Continuing increases in atmospheric CO2 are likely to cause

increases in temperature and changes in precipitation across

Amazonia (Good et al., 2013; Jupp et al., 2010; Malhi et

al., 2009; Marengo et al., 2012). However, significant un-

certainty remains regarding the response of tropical forests

to warming (Corlett, 2011; Reed et al., 2012; Wood et al.,

2012), altered precipitation (Meir et al., 2008; Meir and

Woodward, 2010) and short-term abrupt changes in both pre-

cipitation and temperature (Cox et al., 2008; Marengo et

al., 2011; Reichstein et al., 2013). Such uncertainties are

propagated into models, resulting in substantial variability in

modelled responses to changes in temperature and drought

(Friedlingstein et al., 2006; Galbraith et al., 2010; Powell et

al., 2013; Sitch et al., 2008). These responses need to be rig-

orously assessed to enable further improvement in our ability

to predict the impacts of climate change on rain forest func-

tioning.

The ecosystem responses of models to multi-factor

changes in climate can be difficult to interpret because of

complex non-linear responses (Zhou et al., 2008), which can

vary substantially between vegetation models with different

model structures. Previous modelling analyses have shown

a greater sensitivity of carbon storage in Amazonian forests

to increased temperature than reduced precipitation (Gal-

braith et al., 2010). However, model responses to simulta-

neous changes in precipitation and temperature complex are

difficult to evaluate due to the compound effect of drought

and temperature responses (Luo et al., 2008). There are par-

ticular challenges when considering short-to-medium-term

responses (Luo et al., 2008) linked to climatic extremes, such

as severe drought (Cox et al., 2008; Marengo et al., 2011).

Concurrent changes in temperature and precipitation can

cause a complex chain of positive and negative feedbacks on

different timescales (Fig. 1). Increased temperature and re-

duced precipitation can directly affect stomatal conductance

(gs) through increasing vapour pressure deficit (VPD), or in-

directly affect gs on longer timescales through reducing soil

water content (SWC; Fig. 1). Stomatal conductance, gs, lim-

its photosynthesis (An), and therefore gross primary produc-

tivity (GPP). However, An can also be limited by changes in

leaf biochemistry (Vcmax and Jmax; Fig. 1). How An is lim-

ited by temperature increase is important as changes in leaf

biochemistry at very high temperatures can result from per-

manent alteration and possible damage to proteins, whereas

changes in gs are less permanent, but alter water use, and

potentially water use efficiency. Currently, there is no con-

sensus on how An will respond to temperature: some stud-

ies find a direct impact through leaf biochemistry (Doughty,

2011; Doughty and Goulden, 2008), and others an indirect

effect initiated by changes in gs, because the limitation of in-

creasing VPD on gs occurs at lower temperatures than those

that cause protein damage (Lloyd and Farquhar, 2008). The

lack of data for tropical trees means these responses remain

Figure 1. Schematic diagram showing how droughts, via the com-

bined effects of increased air temperature (T ) and reduced precipita-

tion (PPT), affect the carbon cycle of a tropical forest, including the

effects on vapour pressure deficit (VPD), evapo-transpiration (Et),

stomatal conductance (gs), soil water content (SWC), net photosyn-

thesis (An), leaf area index (LAI), the maximum rates of RuBP car-

boxylation and electron transport (Vcmax and Jmax, respectively),

autotrophic respiration (Ra) heterotrophic respiration (Rh), gross

primary productivity (GPP), and net ecosystem exchange (NEE);+

signs indicate a positive feedback effect between variables (i.e. an

increase in one variable can only cause an increase in another if all

else is equal),− signs indicate a negative feedback effect, and+/−

indicate the possibility of both a positive and negative effect. Solid

arrows represent responses which occur over short timescales of

minutes to hours, whereas dashes arrows represent responses which

can occur over longer timescales from days to months.

poorly constrained, though drought and warming can be ex-

amined using limited field data from drought and warming

experiments (da Costa et al., 2014, 2010; Nepstad et al.,

2002) and from extreme events within the natural range of

the climate (Marengo et al., 2011).

The response of vegetation models to temperature change

or drought occurs through the aggregated changes in finer-

scale processes, for example at the leaf level. Correctly sim-

ulating the mechanisms at the leaf scale is therefore im-

portant to maintain confidence in canopy-scale predictions.

Leaf-scale responses in models are scaled using leaf area

index (LAI) to simulate the processes at the canopy-scale;

therefore, inaccuracies in both leaf-scale fluxes and how they

are scaled can produce substantial errors in ecosystem-scale

fluxes (Bonan et al., 2012). Currently, no model–data com-

parisons exist that allow for the evaluation of combined tem-

perature and precipitation/drought sensitivity of ecosystem

fluxes in relation to LAI and leaf-scale processes in tropical

forests. However, if we are to identify accurately how to im-

prove simulated responses of Amazonian forests to future cli-

mate change, it is vital that model output is evaluated against

data from the leaf to the canopy scale.
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At the Tapajós National Forest (TNF) in north-east Brazil,

Doughty and Goulden (2008) collected data on the response

of net ecosystem exchange (NEE) to change in atmospheric

temperature and the response of An and gs to short-term ar-

tificial leaf warming. Doughty and Goulden (2008) found

reductions in forest productivity at air temperatures above

28 ◦C, which corresponds to significant reductions in An and

gs at leaf temperatures above 30–33 ◦C. They suggested that

tropical forests may therefore already be close to a tempera-

ture threshold, beyond which productivity will decline.

Here we use the data published by Doughty and

Goulden (2008) to evaluate the short-term temperature re-

sponses within models at both the leaf and canopy-scale and

investigate how the model formulations might impact pre-

dicted responses to multiple climatic factors. Our model sim-

ulations represent short-term non-equilibrium responses to

changes in temperature to make them comparable to the per-

turbation data collected by Doughty and Goulden (2008).

Evaluation of non-equilibrium changes in models is valu-

able for assessing how models will perform when simulating

responses to extreme shifts in temperature and precipitation

which are predicted to increase across Amazonia (Cox et al.,

2008; Marengo et al., 2011). If the models run their equi-

librium response to a simulated climate shift, the changes in

some of the key variables in the study (An, gs) are more likely

to be dominated by the effect of long-term soil drying rather

than direct temperature responses (e.g. the dashed lines in

Fig. 1). This study is part of a wider model inter-comparison

project which aims to explore how well vegetation mod-

els simulate drought in the eastern Amazon (Powell et al.,

2013). In this study we evaluate (1) how the forest productiv-

ity of five vegetation models (Community Land Model ver-

sion 3.5 coupled to the Dynamic Global Vegetation model –

CLM3.5–DGVM (hereafter CLM3.5); Ecosystem Demogra-

phy model version 2 – ED2; the Joint UK Land Environment

Simulator version 2.1 – JULES; Simple Biosphere model

version 3 – SiB3; and the soil–plant–atmosphere model –

SPA) responds to changes in temperature, (2) what leaf-

scale processes drive canopy-scale changes in productivity

and (3) how both leaf- and canopy-scale temperature sen-

sitivities are influenced by concurrent changes in precipita-

tion at the Tapajós forest site in eastern Brazil. In all models

we simulate first an ambient and then a 50 % reduction in

the incoming precipitation during the wet season from 2000

to 2006 analogous to the drought treatment imposed at the

Tapajós forest site, linked to a −5, 0, +2, +4, and +6 ◦C

change to the ambient air temperature (Tair). These simula-

tions cover a range of likely and possible increases in temper-

ature for the Amazon region in the coming century (Chris-

tensen et al., 2007; Collins et al., 2013; Malhi et al., 2009)

and can be evaluated against existing data from Doughty and

Goulden (2008). This study is the first to evaluate, using data,

the inter-model variability in the leaf and canopy responses

to changes in temperature and precipitation at a tropical for-

est site.

2 Materials and methods

2.1 Model description

The five models used in this study are the CLM3.5, the ED2,

JULES, SiB3, and the SPA. A brief description of each of

the models is given here and in Table 1 (also see Powell et

al., 2013). The simplest canopy structure is in SiB3. SiB3

has a fixed LAI and uses a big-leaf model which simulates

the response of the top canopy and integrates this response

throughout the canopy according to a light and leaf nitro-

gen (N) extinction coefficient (Baker et al., 2008; Sellers

et al., 1992, 1996). CLM3.5 is also a big-leaf model; how-

ever, it separates the canopy into a sunlit leaf fraction (leaves

which receive both direct and diffuse light) and a shaded

leaf fraction (leaves which receive only diffuse light), which

change dynamically with sun angle and canopy light pene-

tration (Oleson et al., 2004, 2008). The version of JULES

used in this study simulates 10 canopy layers with equal leaf

area increments. Leaf nitrogen decays exponentially through

the canopy and radiation interception is simulated following

the two-stream approximation of Sellers (1985). SPA also

has a layered canopy model, and here used three canopy

layers, with separate sunlit and shaded fractions (Williams,

1996; Williams et al., 2005). ED2 mathematically approxi-

mates the properties of an individual-based forest gap model,

separately modelling the stems of three successional stages

(pioneer, mid-successional and late successional) of, in this

study, tropical trees and grasses on a continuum of leaf light

levels from fully shaded to fully sunlit (Kim et al., 2012;

Medvigy et al., 2009b; Moorcroft et al., 2001). SiB3 and

SPA simulate only one plant functional type (PFT), set to

tropical evergreen broadleaf; JULES and CLM3.5 simulate

five PFT’s, but this site simulated a fractional cover > 95 %

evergreen broadleaf trees. As the focus of this study is the

responses within tropical forests, results were not considered

if a model simulated a shift in the PFT away from the domi-

nance of tropical forest.

All of the models use enzyme-kinetic An equations,

derived from Farquhar et al. (1980), Farquhar and

Sharkey (1982), Kirschbaum and Farquhar (1984) and Col-

latz et al. (1991). In all models, temperature can affect

An directly through temperature response functions on the

maximum rate of carboxylation of RuBP (Vcmax), the CO2

compensation point, and the Michaelis–Menten constants

(Kc and Ko) and in SPA the maximum rate of electron

transport (Jmax). Temperature can also indirectly change An

through changing the VPD at the leaf surface, which alters

gs. CLM3.5, ED2 and SiB3 use the Ball–Berry stomatal con-

ductance model (Collatz et al., 1991). JULES calculates gs

by relating the ratio of internal to external CO2 to the humid-

ity deficit (Cox et al., 1998). SPA is unique in that it models

stomatal conductance by simulating an aqueous continuum

between the soil and leaf water: gs and photosynthesis are

maximised using an isohydric assumption that at each time

www.geosci-model-dev.net/8/1097/2015/ Geosci. Model Dev., 8, 1097–1110, 2015
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Table 1. Summary of the characteristics of each of the five vegetation models (CLM3.5, ED2, JULES, SiB3, and SPA).

CLM3.5 ED2 JULES SiB3 SPA

No. of plant function

types

5 4 10 1 1

Canopy structure Big leaf Gap model Layered canopy Big leaf Layered canopy

Leaf area index Dynamic Dynamic Dynamic Fixed Dynamic

Division of sunlit and

shaded leaf

Y (discrete division) N N N Y (discrete division)

Simulation of water stress

on An and gs.

Water stress factor Water stress factor Water stress factor Water stress factor Linked soil–leaf water po-

tential/resistance model to

gs model.

Origin of photosynthesis

model

Farquhar et al. (1980),

Farquhar and Sharkey

(1982),

Collatz et al. (1991)

Farquhar et al. (1980),

Farquhar and Sharkey

(1982),

Collatz et al. (1991)

Farquhar et al. (1980),

Farquhar and Sharkey

(1982),

Collatz et al. (1991)

Farquhar et al. (1980),

Farquhar and Sharkey

(1982),

Collatz et al. (1991)

Farquhar et al. (1980),

Kirschbaum and Farquhar

(1984),

McMurtrie et al. (1992)

Key model references Bonan et al. (2003),

Levis et al. (2004),

Oleson et al. (2008)

Medvigy et al. (2009),

Kim et al. (2012)

Best et al. (2011),

Clark et al. (2011)

Sellers et al. (1992),

Sellers et al. (1996),

Baker et al. (2008)

Williams (1996),

Williams et al. (2005),

Fisher et al. (2006)

step leaf water potential does not drop below a critical level

(−2.5 MPa; see Williams et al., 1996; Fisher et al., 2007).

CLM3.5, ED2, SiB3 and JULES alter gs using a water stress

factor (β; a value ranging 0–1 where 1 indicates no soil water

stress and 0 indicates complete soil water limitation). A de-

tailed description of the effect of soil water stress on gs and

An in these models is given by Powell et al. (2013).

2.2 Site

The throughfall exclusion in the TNF (2.897◦ S, 54.952◦W)

is located on an Oxisol soil, and has a mean annual precip-

itation of approximately 2 m per year; the site is described

in detail by Nepstad et al. (2002). This plot was selected for

this experiment because the temperature response of canopy-

level NEE was collected at a nearby site (km83; Doughty

and Goulden, 2008). The canopy NEE measurements were

from an eddy covariance tower from July 2000 to July 2001,

when light levels were above 1000 µmol m−2 s−1 (Doughty

and Goulden, 2008). Leaf-level responses of stomata con-

ductance and photosynthesis to increases in leaf temperature

in fully sunlit canopy leaves were from three species in 2004

(see Doughty and Goulden, 2008 and Goulden et al., 2004).

2.3 Meteorological data and soil properties

The model simulations were driven using hourly meteoro-

logical data (precipitation, Tair, specific humidity, short and

long-wave radiation and air pressure) measured above the

canopy at the site from 1 January 2002 to 31 December 2004.

The short-wave radiation was split into 68 % direct and 32 %

diffuse, and then this was split into 43 % visible and 57 %

near-infrared for direct, and 52 % visible and 48 % near-

infrared for diffuse (Goudriaan, 1977).

The soil properties were standardised across all models

to create a similar soil physical environment, thereby testing

only for differences in vegetation functioning (see Powell et

al., 2013). Only biological properties such as rooting depth,

root biomass, as well as the total number of soil layers were

left as model specific soil properties.

2.4 Experimental design

All of the models went through a standard spin-up procedure

prior to simulations (see Powell et al., 2013). Following the

spin-up period, a series of five model simulations, with vary-

ing Tair, were performed for an 8-year period (which was in-

tended to simulate 1999–2006; see Powell et al., 2013) for

ambient precipitation (control simulations) and for simula-

tions with a 50 % reduction in wet season rainfall (drought

simulations). The 2002–2004 meteorological data were recy-

cled over the 8-year simulation period. To explore the effects

of changes in Tair on the models, we performed five model

simulations which consisted of simulations with the hourly

2000–2006 ambient Tair adjusted by −5, 0 ◦C (ambient Tair),

+2, +4 and +6 ◦C; 1999 was the baseline year for which

no changes from ambient temperature and precipitation were

implemented. Our analysis was focused on increases in tem-

perature; however, we included a simulation with tempera-

tures 5 ◦C lower than ambient temperatures, on the basis that

some models may have processes optimised for temperate

regions where average Tair is lower. VPD was adjusted ac-

cording to the changes in air temperature.

2.5 Model output and evaluation

All the data in this study was processed to match the

collection methods and processing done by Doughty and

Goulden (2008; hereafter referred to as DG), as closely

as possible. Therefore, to compare the models’ predic-

tions NEE with the flux data, we extracted canopy-level

fluxes when photosynthetic photon flux density (PPFD) was

> 1000 µmol m−2 s−1, the conditions used by DG. PPFD was

not available for the whole period; therefore, we used the

measured short-wave radiation to estimate PPFD. A conver-

sion factor of 2 is used to convert from short-wave radia-

tion (W m−2) to PPFD (µmol m−2 s−1) based on an empir-

Geosci. Model Dev., 8, 1097–1110, 2015 www.geosci-model-dev.net/8/1097/2015/
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Table 2. Model values for GPP (Mg C ha−1 yr−1) for the last

year (2006) of the ambient air temperature control plot simulation

(Tair+ 0 ◦C), the control plot simulation −5 ◦C (Tair− 5 ◦C), the

control plot simulation+6 ◦C (Tair+6 ◦C) and the ambient air tem-

perature drought plot simulation (Tair+ 0 ◦C). The equivalent tem-

perature is the elevation in the control plot simulation temperature

needed to replicate the same magnitude reduction in GPP as the

drought simulation, for the year 2006 and at ambient temperatures.

The equivalent temperature is derived from a linear relationship be-

tween GPP values in 2006 and the air temperatures in the 5 temper-

ature simulations per model.

CLM3.5 ED2 JULES SiB3 SPA

Control GPP Tair−5 ◦C 40.74 31.74 36.73 35.27 38.23

Control GPP Tair+ 0 ◦C 36.68 28.31 31.16 31.95 29.55

Control GPP Tair+ 6 ◦C 28.03 20.70 20.08 27.50 15.89

Drought GPP Tair+ 0 ◦C 26.47 10.79 18.13 20.86 19.55

Equivalent Tair 8.83 17.50 8.61 15.70 4.92

ical relationship calculated from the flux tower at the study

site (Doughty, unpublished data). The results on hourly time

steps from each model for the period of 2000–2006 for the

five temperature simulations (with offset of −5, +0, +2, +4

and +6 ◦C) were pooled. Model output was then placed into

1 ◦C bins of Tair for the canopy-scale analysis (GPP, NEE,

ecosystem respiration (Reco)) or of leaf temperature (Tleaf)

for leaf-scale analysis, as done in the DG study. Accounting

for non-gaussian distributions in model output, the median

and the 15.9th and 84.1th quantiles of the binned model out-

put are plotted to represent the mean and 1 standard deviation

of the temperature response curve of any model variable. The

data from the drought and control simulations are considered

separately.

To explore the relative sensitivity of models to changes

in temperature and drought, a linear relationship between

the temperature increase per control simulation (−5, 0, 2, 4,

6 ◦C) and final year (2006) GPP was used to calculate the

change in GPP per 1 ◦C increase Tair for each model (Ta-

ble 2). This value was used to calculate the increase in tem-

perature necessary to produce the same loss of GPP as the

ambient Tair drought simulation, where there is a 50 % re-

duction in wet season rainfall (Table 2).

DG published data for the temperature response of An

and gs of sunlit leaves during the dry season when PPFD is

> 1000 µmol m−2 s−1. CLM3.5 and SPA are the only mod-

els which have separate output for sunlit and shaded leaves.

Consequently, data from the sunlit leaves of these models

from periods of high PPFD (> 1000 µmol m−2 s−1) during

the dry season (July–December) were used for comparison.

The effect of increasing Tair reducing modelled soil water

content (via increased VPD and consequent leaf transpira-

tion) had to be removed from the model outputs to make

it comparable to the DG data, where individual leaves were

artificially warmed. Therefore, we only selected model out-

puts from the temperature simulations if the soil water con-

tent in the rooting zone was in the top quartile of the val-

ues from the ambient control simulation, this corresponded

to β values of > 0.9 in CLM3.5. For consistency with the

sunlit leaf analysis, the analysis of canopy average leaf data

from all models was done using dry season data with PPFD

> 1000 µmol m−2 s−1.

The relative sensitivity of the five models to changes in

temperature and precipitation is assessed by comparing the

interactive and non-interactive effects of the 50 % reduction

in wet season precipitation (drought simulation) with the−5,

0, and+6 ◦C change in Tair on ecosystem fluxes at the end of

the 8-year simulation (2006).

3 Results

3.1 Canopy-scale responses

The models have similar responses of NEE and GPP to in-

creasing Tair. DG observed a reduction in carbon uptake as

NEE went from −17.4± 0.3 to −7.9± 1.1 µmol m−2 s−1,

corresponding to an increase in Tair from 28 to 32 ◦C

(Fig. 2a). The modelled NEE begins to increase at a lower

Tair (22–25 ◦C) in the models and the 28–32 ◦C increase

in NEE is generally substantially less than observed by

DG (2.5–3.9 µmol m−2 s−1), except in SPA which expe-

riences a similar increase in NEE as DG from 28 to

32 ◦C (8.8 µmol m−2 s−1), across the same range of val-

ues (−15.8 to −7.0 µmol m−2 s−1; Fig. 2a). The increase

in modelled NEE at high temperatures is caused by a de-

cline in GPP across all models (Fig. 2b). As Tair increases

from 16 to 38 ◦C, the average decline in GPP from all mod-

els is 20.9± 3.2 µmol m−2 s−1. In contrast the mean model

decline in Reco over the same modelled Tair range was

4.2± 1.8 µmol m−2 s−1 (Fig. 2c). The decline in modelled

ecosystem respiration is low because in all models a de-

cline in autotrophic respiration with increasing temperature

(linked in the models with reduced GPP) is opposed by an

increase in heterotrophic respiration (data not shown).

Declines in GPP corresponded to declines in LAI. Be-

tween 25 and 38 ◦C, the decline in GPP in CLM3.5

(89± 38 %), and SPA (82± 26 %) was greater than in other

models (Fig. 2b) and matched by greater declines in LAI over

the same temperature range (4.2± 1.0 m2 m−2, CLM3.5 and

4.4± 0.9 m2 m−2 in SPA, relative to only 0.6± 0.3 m2 m−2

in ED2 and 0.4± 0.1 m2 m−2 in JULES; Fig. 2d). The inter-

model variability in LAI is large; at 25 ◦C the median LAI

value in ED2 (3.6± 0.3 m2 m−2) is 3 times smaller than the

median values in CLM3.5 (10.7± 1.0 m2 m−2). Observed

mean LAI at the TNF under non-drought conditions ranged

from 5.5 to 6.3 m2 m−2 in 2000–2005 (Brando et al., 2008)

and therefore the modelled values span a range∼ 70 % above

and below the measured LAI (Fig. 2d).

Combined drought and warming had compound effects on

GPP, Reco and LAI. In CLM3.5, GPP remained the same

www.geosci-model-dev.net/8/1097/2015/ Geosci. Model Dev., 8, 1097–1110, 2015



1102 L. Rowland et al.: Modelling climate change responses in tropical forests

−3
0

−2
5

−2
0

−1
5

−1
0

−5
0

5
N

E
E

 (µ
 m

o
l C

 m
−2

 s
−1

)

●
● ● ●

●

●

●

●

a.

0
10

20
30

40
G

P
P

 (µ
 m

o
l C

 m
−2

 s
−1

)

CLM3.5
JULES
SPA

ED2
SiB3

b.

20 25 30 35

0
5

10
15

20

Tair (°C)

R
ec

o
 (µ

 m
o

l C
 m

−2
 s

−1
)

c.

20 25 30 35

0
2

4
6

8
10

12

Tair (Â°C)
L

A
I (

m
2  m

−2
)

d.

Tair (°C) Tair (°C)

Figure 2. Comparison of the air temperature (Tair;
◦C) response of (a) daytime net ecosystem exchange (NEE; µmol m−2 s−1 ; note that

negative values of NEE indicate carbon sequestration), (b) gross primary productivity (GPP; µmol m−2 s−1), (c) ecosystem respiration (Reco;

µmol m−2 s−1), (d) leaf area index (LAI; m2 m−2). The lines show the median model responses from the five control temperature runs per

model pooled and divided into 1 ◦C temperature bins. The grey shaded area shows the combined 15.9th and 84.1th quantiles for all models.

The black points and error bars in panel (a) show the daytime eddy-flux inferred NEE (cf. Fig. 4 in Doughty and Goulden, 2008).
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in the Tair −5 ◦C simulation at the end of the drought and

control simulation; however, in the Tair +6 ◦C simulation,

the forest which existed at the end of the control simula-

tion was replaced with grassland in the drought simulation

(GPP values for grassland are not shown; Fig. 3a). In JULES,

SiB3 and SPA, the GPP was the same in the control and the

drought simulation at Tair −5 ◦C; however, GPP is 61, 58 and

44 % lower respectively at the end of the drought relative to

the control simulation (Fig. 3a). The combined effect of tem-

perature and drought on GPP and Reco is lowest in ED2, be-

cause it was the only model to have a strong drought effect

on GPP, Reco and LAI in the Tair −5 ◦C simulation (Fig. 3).

In CLM3.5 and SPA, GPP and LAI have the same fractional

reductions with drought, at higher temperatures (Fig. 3a and

c), indicating a tight coupling between the LAI and canopy

productivity; this contrasts the lack of or low GPP–LAI feed-

back in SiB3 and JULES.

Amongst the models there is a continuum of tempera-

ture versus drought sensitivity. We express the temperature

versus drought sensitivity as the equivalent temperature in-

crease necessary to produce the same GPP reduction as be-

tween the last year of the control to the drought simulation at
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ambient Tair (Table 2). A low equivalent temperature would

represent a greater GPP sensitivity to temperature increase

and/or a lower GPP sensitivity to drought; a higher equiva-

lent temperature represents a lower GPP sensitivity to tem-

perature increase and/or a higher GPP sensitivity to drought.

The equivalent temperature increase necessary to reproduce

the same GPP reduction as from the last year of control and

droughts simulation at ambient temperature was lowest in

SPA (4.92 ◦C), moderate in JULES and CLM3.5 (8.61 and

8.83 ◦C, respectively), and highest in SiB3 and ED2 (15.70

and 17.50 ◦C, respectively; Table 2). However, across all the

models a 5 ◦C reduction in ambient Tair resulted in an in-

crease in forest productivity as GPP rose between 3.3 and

8.7 Mg C ha−1 yr−1 in all models (Table 2).

3.2 Leaf-scale responses

Leaf-scale An and gs oppose LAI responses; the model with

the largest change in LAI in response to temperature increase

(CLM3.5) has the lowest An values and the models with the

smallest change in LAI (ED2, JULES and SiB3) have the

greatest An values and the strongest responses of An to tem-

perature change (Fig. 4). Model uncertainty increases with

temperature for An and Vcmax (Figs. 4a and 5). For Vcmax

this is caused by substantial variation in the optima (10 ◦C;

Fig. 5) and the rate of decline in Vcmax following the optima;

in CLM3.5 Vcmax declines 50 % at 9 ◦C over the optimum,

contrasting with the same decline 17 ◦C over the optimum in

SPA (Fig. 5).

The optimum An in SPA, SiB3, JULES, CLM3.5 and ED2

occurs at Tleaf values of 25, 26, 27, 30 and 30 ◦C, respec-

tively (Fig. 4a), and significantly before the optimum point

on Vcmax (Fig. 5). In all models the An optimum and the ini-

tial decline in canopy average An is linked to declines in gs

(Fig. 4a–b). Consequently, for each model there are apparent,

but variable, relationships between gs and An (Fig. 6), but no

obvious relationships between An and Vcmax (Fig. 7).

There was high variability in the magnitude and tempera-

ture response of gs across the models. The maximum canopy

average gs values in SiB3 (486 mmol m−2 s−1 at 25 ◦C)

and ED2 (384 mmol m−2 s−1 at 23 ◦C) are substantially

higher than CLM3.5 (49 mmol m−2 s−1 at 20 ◦C), JULES

(70 mmol m−2 s−1 at 25 ◦C) and SPA (200 mmol m−2 s−1 at

24 ◦C; Fig. 4b). In CLM3.5 a strong constriction in Et is

caused by the strong influence of β on gs (Fig. 4c–d). β is

reduced by 85± 31 % in CLM3.5 as Tleaf increase from 30

to 40 ◦C. The decline in β over the same Tleaf range was

only 14± 1 % in ED2, 38± 5 % in JULES and 7.9± 1 % in

SiB3 (Fig. 4d).

The slope of An against gs indicates intrinsic water use ef-

ficiency (IWUE): the rate of increase of assimilation per unit

increase in gs. If An is plotted against gs separately for each

model temperature simulations (−5, 0, +2, +4, +6 ◦C) and

a linear fit is forced through the gs and An data, it is appar-

ent that all models simulate increasing IWUE (an increase in

slope) from the −5 ◦C up to the +6 ◦C simulations (Fig. 6

and Table 3). The increase in slope of An and gs from the

−5 to+6 ◦C temperature simulation is greater in the drought

than control simulations in all models (Fig. 6 and Table 3),

suggesting that both increasing temperature and reduced wa-

ter availability increase IWUE.

When the effect of soil water stress is removed and sun-

lit leaf-level values are compared to the DG data for the

models which could output separate sunlit leaf values of

gs and An (only SPA and CLM3.5; Fig. 8), the peak An

of sunlit leaves in SPA at 25 ◦C (8.72± 0.24 µmol m−2 s−1)

is similar to the peak in the DG leaf-scale data at 30.5 ◦C

(8.44± 0.17 µmol m−2 s−1; Fig. 8a). In CLM3.5 the peak An

at 29 ◦C is considerably higher (13.48± 0.20 µmol m−2 s−1),

although it occurs at a similar temperature to the ob-

served peak. Both CLM3.5 and SPA show a decline of An

with temperature similar to the data. Modelled gs, how-

ever, shows a poor match to the observations (Fig. 8b).

Peak gs values occur at substantially lower Tleaf values in

CLM3.5 (27 ◦C) and SPA (25 ◦C) than observed (33.5 ◦C;

Fig. 5b). The peak sunlit gs in SPA are also signifi-

cantly higher (434± 88 mmol m−2 s−1) than the observa-

tions (123± 4 mmol m−2 s−1) and show a very sharp decline

not observed in the data (Fig. 8b).

4 Discussion

4.1 Canopy- and leaf-scale feedbacks

The response of NEE and GPP to short-term changes in

temperature demonstrated substantially greater consistency

across models than for LAI (Fig. 2). Amongst the models

which had dynamic LAI, the change in LAI from the original

value ranged from 4.5 m2 m−2 in SPA to 1.0 m2 m−2 in ED2.

Interestingly, the change of LAI with Tair in ED2 and JULES

was so low that it was more comparable to SiB3, a model

with fixed LAI. This is in contrast with CLM3.5 and SPA,

within which LAI declined substantially as Tair rose above

a threshold (Fig. 2d). The inter-model range in LAI (maxi-

mum range 7.5 m2 m−2) was greater than the decline in LAI

with Tair in any model. If leaf-scale fluxes are scaled using

an inaccurate LAI, the simulation of both accurate leaf- and

canopy-scale fluxes is not possible (Bonan et al., 2012; Lloyd

et al., 2010; Mercado et al., 2006, 2009). Given the large vari-

ability in LAI responses across the models, it would be ex-

pected that there should be a greater variability in GPP and

NEE than was observed. Therefore, the models must com-

pensate for variability in canopy structural parameters, such

as LAI, through adjustment in other leaf-scale parameters

if the observed consistency in ecosystem-scale responses is

to be maintained (Bonan et al., 2012). We found substantial

variation in the magnitude and temperature responses of leaf-

scale parameters: peak Vcmax had a 10 ◦C Tleaf range across

the models (Fig. 5), gs values varied by over an order of mag-
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Table 3. Values show the normalised intrinsic water use efficiency (IWUE) calculated from the linear slope of normalised An plotted against

normalised gs (Fig. 6). The normalised IWUE is calculated separately for each models’ control and drought temperature simulations (ambient

air temperature (Tair) −5, +0, +2, +4, and +6 ◦C). (Note NA in CLM3.5 drought simulations indicates the model changed from a forest to

a grassland).

Control simulations Drought simulations

CLM3.5 ED2 JULES SiB3 SPA CLM3.5 ED2 JULES SiB3 SPA

Tair −5 ◦C 0.84 0.42 0.50 0.09 0.49 0.73 0.29 0.50 0.10 0.27

Tair+0 ◦C 0.93 0.56 0.83 0.49 0.68 0.93 0.40 0.60 0.93 0.24

Tair+2 ◦C 1.01 0.67 1.01 0.58 0.73 1.08 0.53 0.97 1.11 0.41

Tair+4 ◦C 1.05 0.79 1.18 0.65 1.00 NA 0.78 1.37 1.20 0.74

Tair+6 ◦C 1.11 0.95 1.32 0.69 1.50 NA 1.10 1.73 1.22 1.15

0
1

2
3

4
5

6
A

n
 (µ

 m
o

l m
−2

 s
−1

)

a.

0
10

0
20

0
30

0
40

0
50

0
g

s (
m

m
o

l m
−2

 s
−1

)

b.

15 20 25 30 35 40 45

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0
0.

02
5

0.
03

0
0.

03
5

E
t (

m
m

 m
−2

 s
−1

)

c.

Tleaf (°C)

CLM3.5
JULES
SPA

ED2
SiB3

20 25 30 35 40 45

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

β

d.

Tleaf (°C)

Figure 4. Comparison of the dry season mean (sunlit + shaded leaves, weighted by their respective LAIs) leaf-level response to temperature

(Tleaf;
◦C) of (a) net photosynthesis (An, µmol m−2 s−1), (b) stomatal conductance (gs, mmol m−2 s−1), (c) leaf evapo-transpiration (Et,

mm m−2 s−1) and (d) the soil water stress factor (β) for average canopy leaves (Note SPA does not simulate β) . The lines show the median

model responses from the control plot for the five temperature simulations pooled and divided into 1 ◦C temperature bins for each model. The

grey shaded area shows the combined 15.9th and 84.1th quantiles for all models. (Note JULES Et data is missing from these simulations).

nitude (Fig. 4b), the inter-model range of β and Et increased

with Tleaf (Fig. 4c–d), and there was a twofold increase in

the inter-model range of An as Tleaf rose from 25 to 40 ◦C

(Fig. 4a). Such variability across the models suggests that

any similarity in the response of NEE to Tair among mod-

els is caused by different processes and feedbacks at the leaf

scale. Had the models been run to their equilibrium states,

it is likely that there would have been greater divergence of

model responses at both canopy- and leaf-scales. Prolonged

higher temperatures reduce long-term moisture availability

and cause more severe changes in β; in dynamic PFT models

this can result in a substantial shift of PFT away from tropi-

cal forest. Without more data to evaluate which models pro-

duced the correct responses to temperature, it is hard to have

confidence in predictions of climate change impacts in Ama-

zonian. Variability in the control of gs and leaf biochemistry

on An and changes in IWUE efficiency with increasing tem-

perature or drought will have significant consequences on the

demand of water from a forest (Harper et al., 2014). In this

study we find gs had a greater control on the change in An

with increasing temperature because An started to decline at

Tleaf values which were lower than those at which peak Vcmax
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Figure 5. The temperature response of Vcmax for each model shown

relative to the Vcmax at 25 ◦C per model.

occurred (Figs. 4b and 5), and An maintained a positive re-

lationship with gs across all models (Table 3; Fig. 6), but

no clear relationship with Vcmax (Fig. 7). All the models in

this study also predicted an increases in IWUE from the low-

est (ambient Tair−5 ◦C) to the highest (ambient Tair+6 ◦C)

temperature simulation; this increase in IWUE was also al-

ways greater in the drought temperature simulations relative

to the control temperature simulations (Table 3; Fig. 6). In-

creases in IWUE with increasing temperature suggests that

as the ecosystem warms An will become more sensitive to

reductions in gs and gs will maintain a greater control on An

than biochemical controls, even at very extreme increases in

temperature (ambient Tair+6 ◦C).

These results are consistent with the hypothesis that tem-

perature increases will mainly be manifest through the ef-

fect of increased VPD on stomatal conductance (Lloyd and

Farquhar, 2008). They are also consistent with leaf warm-

ing data from the Tapajós forest which show that reductions

in An start to occur at 4–5 ◦C before the optimum point for

Vcmax and Jmax in sunlit leaves (Tribuzy, 2005). However, the

responses from longer-term leaf warming experiments at the

same site showed that changes in leaf biochemistry with in-

creasing leaf temperatures were an important control on An

(Doughty, 2011), suggesting more data are required to test

effectively both the short- and long-term responses of An to

changes in temperature in models.

Comparing the short-term direct effect of temperature on

the An–gs relationships is complicated because of the differ-

ences in the calculation and implementation of the effect of

water stress amongst models (Powell et al., 2013; Zhou et

al., 2013). β is altered by changes in SWC, which can be

caused by changes in temperature (via increased VPD alter-

ing SWC), as well as changes in precipitation; in turn β alters

both gs (Fig. S1) and An. The decrease in β with temperature

increase was highly variable among models (Fig. 4d). Con-

sequently, the direct influence of soil water stress on gs, An

and Et, versus the indirect effect of VPD, was inconsistent

between models. Resolving these inconsistencies is impor-

tant, as water stress functions impact the ratio of modelled

latent to sensible heat fluxes and so when coupled to global

climate models they alter climate and vegetation feedbacks

(Harper et al., 2014). Improving how water stress is simu-

lated in models is therefore essential to improving tempera-

ture and drought responses in tropical forests.

When focusing only on periods of high soil water content

and therefore removing the effects of water stress, An and

gs values from fully sunlit leaves still varied substantially

from the response and magnitude of the DG data (Fig. 8).

Given the DG data were averaged from only three top-canopy

species, some degree of variation between the model and

the data is expected. The variability between the peak data

and peak model gs was, however, > 4 times (Fig. 8b) and

the modelled temperature optima for gs (25–27 ◦C) was sub-

stantial lower than observed by DG (33.5 ◦C). Given that

CLM3.5 and SPA are in the lower range of the total model

variability for the gs and An of an average canopy leaf (ag-

gregated sunlit and shaded leaf; Fig. 4a–b), the variation from

the data is likely to be substantially larger if sunlit leaf data

could be extracted from all models. Considering the impor-

tance of gs in controlling leaf productivity, the suitability of

the empirical models of gs used in these models requires fur-

ther testing (Bonan et al., 2014). The use of optimised rather

than empirical models may provide an opportunity to im-

prove the capability to simulate gs responses to temperature

and water stress in greater detail (Heroult et al., 2013; Med-

lyn et al., 2013, 2011; Zhou et al., 2013).

4.2 Combined drought and temperature sensitivities

Previous modelling studies have shown that there is high

variability in how sensitive models are to temperature and

drought (Friedlingstein et al., 2006; Galbraith et al., 2010;

Luo et al., 2008; Sitch et al., 2008), but that vegetation mod-

els have embedded in them greater sensitivity to rises in tem-

perature than drought (Galbraith et al., 2010) despite the ev-

idence for strong drought sensitivity in natural rainforests

(Gatti et al., 2014). The responses of modelled forest pro-

duction in this study to combined changes in precipitation

and temperature were, however, highly variable. CLM3.5

and SPA had very strong compound effects of temperature

on drought-induced reductions in GPP, Reco and LAI (Fig. 3)

relative to JULES and SiB3. In ED2, the drought effect on

GPP was always stronger than the temperature effect (Fig. 3)

because it has a strong drought–mortality effect at this site

(Powell et al., 2013). This study demonstrates that there is

a continuum in model responses from models that require

a low increase in ambient Tair to cause the same GPP loss
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Figure 6. The relationship between 30 min values of modelled stomatal conductance (gs) and photosynthesis (An) normalised by their

respective maximum values; An and gs values are taken only from the dry season when PPFD > 1000 µmol m−2 s−1 . Values are coloured

separately from deep blue to red (see legend) for each temperature simulations (ambient air temperature −5, +0, +2, +4, and +6 ◦C) and

panels separate the control (panels a–e) and drought simulations (panels f–j), for each model. Values are from sunlit and shaded leaves,

weighted by their respective LAIs. A separate linear line is plotted through the normalised An, gs data for each temperature simulations,

the slope of which represents the normalised intrinsic water use efficiency: the normalised increase in An per unit increase in normalised gs.

Linear lines are also coloured from deep blue to deep red to differentiate the additions to ambient air temperature (see legend).

Figure 7. The relationship between Vcmax (µmol m−2 s−1) and photosynthesis (An mmol m−2 s−1) for the half hourly output from each

model in the dry season of the control runs, with PPFD > 1000 µmol m−2 s−1. Values are from sunlit and shaded leaves, weighted by their

respective LAIs. Results are shown across all leaf temperatures explored in this study (colour change from blue to red indicates increasing

leaf temperature; see legend).
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Figure 8. The sunlit leaf-level response of dry season (a) net pho-
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µmol m−2 s−1) to leaf temperature (Tleaf;
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control plot for the five temperature simulations pooled and divided

into 1 ◦C temperature bins for each model. The shaded areas around

each line show the 15.9th and 84.1th quantiles for each model. Data

from Doughty and Goulden is shown as black points; error bars

show the standard error. (Note only SPA and CLM3.5 output data

on sunlit leaf values of An and gs.)

as a 50 % reduction in wet season rainfall (SPA, 4.9 ◦C), to

models that have a very strong drought response and there-

fore require a substantial increase in ambient Tair to replicate

the same GPP loss as a 50 % reduction in wet season rain-

fall (ED2, 17.5 ◦C; Table 2). As a 6 ◦C rise in temperature

and a 50 % reduction in rainfall are changes which may oc-

cur in Amazonia during the 21st century (Christensen et al.,

2007; Collins et al., 2013), we suggest that there is currently

no consensus among vegetation models as to whether there

will be a stronger drought or temperature response to future

climate change within tropical forests.

Across all the models GPP increased when ambient Tair

was reduced by 5 ◦C; this occurred because the ambient

air temperature −5 ◦C was closer to the modelled gs op-

tima. This result suggests models are currently predicting

that Amazonian forests are operating beyond a temperature

and VPD optimum. Given that the models underestimate the

point at which NEE declines with Tair by 3–6 ◦C and the

point at which gs declines with Tleaf by 7.5–9.5 ◦C (Figs. 2

and 4), it seems likely that the models in this study may be bi-

ased towards temperature calibrations for temperate ecosys-

tems. Consequently, as well as moving towards implement-

ing more mechanistic responses to improve models, more re-

search to test and adjust their temperature responses in tropi-

cal ecosystem is necessary. The range of model responses in

this study is likely to stem from real uncertainty in our under-

standing of the responses by tropical rain forest ecosystems

to changes in precipitation and temperature. Further analysis

of the same questions using models that vary in complexity

(e.g. statistical or optimised models, as well as purely mecha-

nistic) might provide additional insight into mechanistic and

simulation bias (systematic or random), as well advancing

understanding about climate risk that we derive from them

(Meir et al., 2015).

5 Conclusions

This is the first study in which canopy and leaf temperature

responses from multiple vegetation models are analysed and

compared to existing data on leaf and canopy temperature

responses from a tropical forest site. This study finds models

lie along a continuum of those which have a greater sensi-

tivity of GPP to changes in temperature relative to drought

and those which have a greater sensitivity to drought rela-

tive to a change in temperature. Any consistency in model

responses to temperature and drought were however, the re-

sult of inconsistent leaf-scale responses, which were found to

compensate for substantial inter-model variation in the mag-

nitude and response of LAI to drought and temperature.

All the models in this study predict that reductions in An

are dominated by stomatal rather than biochemical responses

and that IWUE increased with rising temperatures. The dom-

inance of the effect of gs rather than Vcmax onAn results in all

the models predicting greater forest productivity when tem-

peratures are 5 ◦C below ambient and closer the temperature

of the gs optimum. This suggests that currently models pre-

dict that tropical forests are operating beyond a temperature

and VPD optimum, but we note that these predictions may

be influenced by parameterisations derived originally from

temperate zone forests.

This study concludes that to simulate effectively the re-

sponse of the Amazon forest to changes in multiple climatic

factors substantial improvements are needed in how leaf-

scale processes and leaf-to-canopy scaling are simulated.

Further observational data are also required to generate con-

sistent leaf- and canopy-scale data for independent model

evaluation.

The Supplement related to this article is available online

at doi:10.5194/gmd-8-1097-2015-supplement.
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