Articles | Volume 8, issue 1
https://doi.org/10.5194/gmd-8-1-2015
https://doi.org/10.5194/gmd-8-1-2015
Development and technical paper
 | 
06 Jan 2015
Development and technical paper |  | 06 Jan 2015

Parameterizing deep convection using the assumed probability density function method

R. L. Storer, B. M. Griffin, J. Höft, J. K. Weber, E. Raut, V. E. Larson, M. Wang, and P. J. Rasch

Related authors

A Global Classification Dataset of Daytime and Nighttime Marine Low-cloud Mesoscale Morphology Based on Deep Learning Methods
Yuanyuan Wu, Jihu Liu, Yannian Zhu, Yu Zhang, Yang Cao, Kang-En Huang, Boyang Zheng, Yichuan Wang, Yanyun Li, Quan Wang, Chen Zhou, Yuan Liang, Jianning Sun, Minghuai Wang, and Daniel Rosenfeld
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-536,https://doi.org/10.5194/essd-2024-536, 2024
Preprint under review for ESSD
Short summary
Understanding the Long-term Trend of Organic Aerosol and the Influences from Anthropogenic Emission and Regional Climate Change in China
Wenxin Zhang, Yaman Liu, Man Yue, Xinyi Dong, and Minghuai Wang
EGUsphere, https://doi.org/10.5194/egusphere-2024-3420,https://doi.org/10.5194/egusphere-2024-3420, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
A protocol for model intercomparison of impacts of marine cloud brightening climate intervention
Philip J. Rasch, Haruki Hirasawa, Mingxuan Wu, Sarah J. Doherty, Robert Wood, Hailong Wang, Andy Jones, James Haywood, and Hansi Singh
Geosci. Model Dev., 17, 7963–7994, https://doi.org/10.5194/gmd-17-7963-2024,https://doi.org/10.5194/gmd-17-7963-2024, 2024
Short summary
Trends and Drivers of Soluble Iron Deposition from East Asian Dust to the Northwest Pacific: A Springtime Analysis (2001–2017)
Hanzheng Zhu, Yaman Liu, Man Yue, Shihui Feng, Pingqing Fu, Kan Huang, Xinyi Dong, and Minghuai Wang
EGUsphere, https://doi.org/10.5194/egusphere-2024-2293,https://doi.org/10.5194/egusphere-2024-2293, 2024
Short summary
Global modeling of aerosol nucleation with a semi-explicit chemical mechanism for highly oxygenated organic molecules (HOMs)
Xinyue Shao, Minghuai Wang, Xinyi Dong, Yaman Liu, Wenxiang Shen, Stephen R. Arnold, Leighton A. Regayre, Meinrat O. Andreae, Mira L. Pöhlker, Duseong S. Jo, Man Yue, and Ken S. Carslaw
Atmos. Chem. Phys., 24, 11365–11389, https://doi.org/10.5194/acp-24-11365-2024,https://doi.org/10.5194/acp-24-11365-2024, 2024
Short summary

Related subject area

Climate and Earth system modeling
Software sustainability of global impact models
Emmanuel Nyenah, Petra Döll, Daniel S. Katz, and Robert Reinecke
Geosci. Model Dev., 17, 8593–8611, https://doi.org/10.5194/gmd-17-8593-2024,https://doi.org/10.5194/gmd-17-8593-2024, 2024
Short summary
fair-calibrate v1.4.1: calibration, constraining, and validation of the FaIR simple climate model for reliable future climate projections
Chris Smith, Donald P. Cummins, Hege-Beate Fredriksen, Zebedee Nicholls, Malte Meinshausen, Myles Allen, Stuart Jenkins, Nicholas Leach, Camilla Mathison, and Antti-Ilari Partanen
Geosci. Model Dev., 17, 8569–8592, https://doi.org/10.5194/gmd-17-8569-2024,https://doi.org/10.5194/gmd-17-8569-2024, 2024
Short summary
ISOM 1.0: a fully mesoscale-resolving idealized Southern Ocean model and the diversity of multiscale eddy interactions
Jingwei Xie, Xi Wang, Hailong Liu, Pengfei Lin, Jiangfeng Yu, Zipeng Yu, Junlin Wei, and Xiang Han
Geosci. Model Dev., 17, 8469–8493, https://doi.org/10.5194/gmd-17-8469-2024,https://doi.org/10.5194/gmd-17-8469-2024, 2024
Short summary
A computationally lightweight model for ensemble forecasting of environmental hazards: General TAMSAT-ALERT v1.2.1
Emily Black, John Ellis, and Ross I. Maidment
Geosci. Model Dev., 17, 8353–8372, https://doi.org/10.5194/gmd-17-8353-2024,https://doi.org/10.5194/gmd-17-8353-2024, 2024
Short summary
Introducing the MESMER-M-TPv0.1.0 module: spatially explicit Earth system model emulation for monthly precipitation and temperature
Sarah Schöngart, Lukas Gudmundsson, Mathias Hauser, Peter Pfleiderer, Quentin Lejeune, Shruti Nath, Sonia Isabelle Seneviratne, and Carl-Friedrich Schleussner
Geosci. Model Dev., 17, 8283–8320, https://doi.org/10.5194/gmd-17-8283-2024,https://doi.org/10.5194/gmd-17-8283-2024, 2024
Short summary

Cited articles

Arakawa, A.: The cumulus parameterization problem: Past, present, and future, J. Climate, 17, 2493–2525, 2004.
Arakawa, A. and Schubert, W. H.: Interaction of a cumulus cloud ensemble with the large-scale environment, part I, J. Atmos. Sci., 31, 674–701, 1974.
Arakawa, A., Jung, J.-H., and Wu, C.-M.: Toward unification of the multiscale modeling of the atmosphere, Atmos. Chem. Phys., 11, 3731–3742, https://doi.org/10.5194/acp-11-3731-2011, 2011.
Bechtold, P., Semane, N., Lopez, P., Chaboureau, J.-P., Beljaars, A., and Bormann, N.: Representing Equilibrium and Nonequilibrium Convection in Large-Scale Models, J. Atmos. Sci., 71, 734–753, 2014.
Download
Short summary
Representing clouds in climate models is a challenging problem. It is particularly difficult to represent deep convective clouds and, historically, deep convective parameterization is separate from the representation of other cloud types. Here we use a single-column cloud model to simulate three deep convective cases, and two shallow cloud cases. The results look reasonable, demonstrating that it may be possible to use one parameterization within a climate model for all cloud types.