Articles | Volume 7, issue 4
https://doi.org/10.5194/gmd-7-1621-2014
https://doi.org/10.5194/gmd-7-1621-2014
Development and technical paper
 | 
13 Aug 2014
Development and technical paper |  | 13 Aug 2014

Implementation of aerosol assimilation in Gridpoint Statistical Interpolation (v. 3.2) and WRF-Chem (v. 3.4.1)

M. Pagowski, Z. Liu, G. A. Grell, M. Hu, H.-C. Lin, and C. S. Schwartz

Related authors

The prototype NOAA Aerosol Reanalysis version 1.0: description of the modeling system and its evaluation
Shih-Wei Wei, Mariusz Pagowski, Arlindo da Silva, Cheng-Hsuan Lu, and Bo Huang
Geosci. Model Dev., 17, 795–813, https://doi.org/10.5194/gmd-17-795-2024,https://doi.org/10.5194/gmd-17-795-2024, 2024
Short summary
The Fires, Asian, and Stratospheric Transport–Las Vegas Ozone Study (FAST-LVOS)
Andrew O. Langford, Christoph J. Senff, Raul J. Alvarez II, Ken C. Aikin, Sunil Baidar, Timothy A. Bonin, W. Alan Brewer, Jerome Brioude, Steven S. Brown, Joel D. Burley, Dani J. Caputi, Stephen A. Conley, Patrick D. Cullis, Zachary C. J. Decker, Stéphanie Evan, Guillaume Kirgis, Meiyun Lin, Mariusz Pagowski, Jeff Peischl, Irina Petropavlovskikh, R. Bradley Pierce, Thomas B. Ryerson, Scott P. Sandberg, Chance W. Sterling, Ann M. Weickmann, and Li Zhang
Atmos. Chem. Phys., 22, 1707–1737, https://doi.org/10.5194/acp-22-1707-2022,https://doi.org/10.5194/acp-22-1707-2022, 2022
Short summary
A case study of aerosol data assimilation with the Community Multi-scale Air Quality Model over the contiguous United States using 3D-Var and optimal interpolation methods
Youhua Tang, Mariusz Pagowski, Tianfeng Chai, Li Pan, Pius Lee, Barry Baker, Rajesh Kumar, Luca Delle Monache, Daniel Tong, and Hyun-Cheol Kim
Geosci. Model Dev., 10, 4743–4758, https://doi.org/10.5194/gmd-10-4743-2017,https://doi.org/10.5194/gmd-10-4743-2017, 2017
Short summary
Data assimilation in atmospheric chemistry models: current status and future prospects for coupled chemistry meteorology models
M. Bocquet, H. Elbern, H. Eskes, M. Hirtl, R. Žabkar, G. R. Carmichael, J. Flemming, A. Inness, M. Pagowski, J. L. Pérez Camaño, P. E. Saide, R. San Jose, M. Sofiev, J. Vira, A. Baklanov, C. Carnevale, G. Grell, and C. Seigneur
Atmos. Chem. Phys., 15, 5325–5358, https://doi.org/10.5194/acp-15-5325-2015,https://doi.org/10.5194/acp-15-5325-2015, 2015
Short summary

Related subject area

Atmospheric sciences
Accurate space-based NOx emission estimates with the flux divergence approach require fine-scale model information on local oxidation chemistry and profile shapes
Felipe Cifuentes, Henk Eskes, Enrico Dammers, Charlotte Bryan, and Folkert Boersma
Geosci. Model Dev., 18, 621–649, https://doi.org/10.5194/gmd-18-621-2025,https://doi.org/10.5194/gmd-18-621-2025, 2025
Short summary
Exploring a high-level programming model for the NWP domain using ECMWF microphysics schemes
Stefano Ubbiali, Christian Kühnlein, Christoph Schär, Linda Schlemmer, Thomas C. Schulthess, Michael Staneker, and Heini Wernli
Geosci. Model Dev., 18, 529–546, https://doi.org/10.5194/gmd-18-529-2025,https://doi.org/10.5194/gmd-18-529-2025, 2025
Short summary
Quantifying uncertainties in satellite NO2 superobservations for data assimilation and model evaluation
Pieter Rijsdijk, Henk Eskes, Arlene Dingemans, K. Folkert Boersma, Takashi Sekiya, Kazuyuki Miyazaki, and Sander Houweling
Geosci. Model Dev., 18, 483–509, https://doi.org/10.5194/gmd-18-483-2025,https://doi.org/10.5194/gmd-18-483-2025, 2025
Short summary
ML-AMPSIT: Machine Learning-based Automated Multi-method Parameter Sensitivity and Importance analysis Tool
Dario Di Santo, Cenlin He, Fei Chen, and Lorenzo Giovannini
Geosci. Model Dev., 18, 433–459, https://doi.org/10.5194/gmd-18-433-2025,https://doi.org/10.5194/gmd-18-433-2025, 2025
Short summary
Coupling the urban canopy model TEB (SURFEXv9.0) with the radiation model SPARTACUS-Urbanv0.6.1 for more realistic urban radiative exchange calculation
Robert Schoetter, Robin James Hogan, Cyril Caliot, and Valéry Masson
Geosci. Model Dev., 18, 405–431, https://doi.org/10.5194/gmd-18-405-2025,https://doi.org/10.5194/gmd-18-405-2025, 2025
Short summary

Cited articles

Barré, J., Peuch, V.-H., Lahoz, W., Attie, J.-L., Josse, B., Piacentini, A., Eremenko, M., Dufour, G., Nedelec, P., von Clarmann, T., and El Amraoui, L.: Combined data assimilation of ozone tropospheric columns and stratospheric profiles in a high-resolution CTM, Q. J. Roy. Meteorol. Soc., 140, 966–981, https://doi.org/10.1002/qj.2176, 2013.
Benedetti, A. and Fisher, M.: Background error statistics for aerosols, Q. J. Roy. Meteorol. Soc., 133, 391–405, 2007.
Benedetti, A., Morcrette, J., Boucher, O., Dethof, A., Engelen, R., Fisher, M., Flentje, H., Huneeus, N., Jones, L., and Kaiser, J.: Aerosol analysis and forecast in the European Centre for Medium-Range Weather Forecasts Integrated Forecast System: 2. Data assimilation, J. Geophys. Res., 114, D13205, https://doi.org/10.1029/2008JD011115, 2009.
Bouttier, F. and Courtier, P.: Data Assimilation Concepts and Methods, ECMWF training notes, available at: http://www.ecmwf.int/en/learning/education-material (last access: 8 August 2014), 1999.
Carmichael, G. R., Daescu, D. N., Sandu, A., and Chai, T.: Computational aspects of chemical data assimilation into atmospheric models, in Science Computational ICCS 2003. Lecture Notes in Computer Science, IV, 269–278, Springer, Berlin, 2003.
Download
Share