Articles | Volume 6, issue 3
Geosci. Model Dev., 6, 687–720, 2013
https://doi.org/10.5194/gmd-6-687-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Special issue: The Norwegian Earth System Model: NorESM; basic development,...
Model evaluation paper 24 May 2013
Model evaluation paper | 24 May 2013
The Norwegian Earth System Model, NorESM1-M – Part 1: Description and basic evaluation of the physical climate
M. Bentsen et al.
Related authors
Øyvind Seland, Mats Bentsen, Dirk Olivié, Thomas Toniazzo, Ada Gjermundsen, Lise Seland Graff, Jens Boldingh Debernard, Alok Kumar Gupta, Yan-Chun He, Alf Kirkevåg, Jörg Schwinger, Jerry Tjiputra, Kjetil Schanke Aas, Ingo Bethke, Yuanchao Fan, Jan Griesfeller, Alf Grini, Chuncheng Guo, Mehmet Ilicak, Inger Helene Hafsahl Karset, Oskar Landgren, Johan Liakka, Kine Onsum Moseid, Aleksi Nummelin, Clemens Spensberger, Hui Tang, Zhongshi Zhang, Christoph Heinze, Trond Iversen, and Michael Schulz
Geosci. Model Dev., 13, 6165–6200, https://doi.org/10.5194/gmd-13-6165-2020, https://doi.org/10.5194/gmd-13-6165-2020, 2020
Short summary
Short summary
The second version of the coupled Norwegian Earth System Model (NorESM2) is presented and evaluated. The temperature and precipitation patterns has improved compared to NorESM1. The model reaches present-day warming levels to within 0.2 °C of observed temperature but with a delayed warming during the late 20th century. Under the four scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5), the warming in the period of 2090–2099 compared to 1850–1879 reaches 1.3, 2.2, 3.1, and 3.9 K.
Hiroyuki Tsujino, L. Shogo Urakawa, Stephen M. Griffies, Gokhan Danabasoglu, Alistair J. Adcroft, Arthur E. Amaral, Thomas Arsouze, Mats Bentsen, Raffaele Bernardello, Claus W. Böning, Alexandra Bozec, Eric P. Chassignet, Sergey Danilov, Raphael Dussin, Eleftheria Exarchou, Pier Giuseppe Fogli, Baylor Fox-Kemper, Chuncheng Guo, Mehmet Ilicak, Doroteaciro Iovino, Who M. Kim, Nikolay Koldunov, Vladimir Lapin, Yiwen Li, Pengfei Lin, Keith Lindsay, Hailong Liu, Matthew C. Long, Yoshiki Komuro, Simon J. Marsland, Simona Masina, Aleksi Nummelin, Jan Klaus Rieck, Yohan Ruprich-Robert, Markus Scheinert, Valentina Sicardi, Dmitry Sidorenko, Tatsuo Suzuki, Hiroaki Tatebe, Qiang Wang, Stephen G. Yeager, and Zipeng Yu
Geosci. Model Dev., 13, 3643–3708, https://doi.org/10.5194/gmd-13-3643-2020, https://doi.org/10.5194/gmd-13-3643-2020, 2020
Short summary
Short summary
The OMIP-2 framework for global ocean–sea-ice model simulations is assessed by comparing multi-model means from 11 CMIP6-class global ocean–sea-ice models calculated separately for the OMIP-1 and OMIP-2 simulations. Many features are very similar between OMIP-1 and OMIP-2 simulations, and yet key improvements in transitioning from OMIP-1 to OMIP-2 are also identified. Thus, the present assessment justifies that future ocean–sea-ice model development and analysis studies use the OMIP-2 framework.
Jerry F. Tjiputra, Jörg Schwinger, Mats Bentsen, Anne L. Morée, Shuang Gao, Ingo Bethke, Christoph Heinze, Nadine Goris, Alok Gupta, Yan-Chun He, Dirk Olivié, Øyvind Seland, and Michael Schulz
Geosci. Model Dev., 13, 2393–2431, https://doi.org/10.5194/gmd-13-2393-2020, https://doi.org/10.5194/gmd-13-2393-2020, 2020
Short summary
Short summary
Ocean biogeochemistry plays an important role in determining the atmospheric carbon dioxide concentration. Earth system models, which are regularly used to study and project future climate change, generally include an ocean biogeochemistry component. Prior to their application, such models are rigorously validated against real-world observations. In this study, we evaluate the ability of the ocean biogeochemistry in the Norwegian Earth System Model version 2 to simulate various datasets.
Lise S. Graff, Trond Iversen, Ingo Bethke, Jens B. Debernard, Øyvind Seland, Mats Bentsen, Alf Kirkevåg, Camille Li, and Dirk J. L. Olivié
Earth Syst. Dynam., 10, 569–598, https://doi.org/10.5194/esd-10-569-2019, https://doi.org/10.5194/esd-10-569-2019, 2019
Short summary
Short summary
Differences between a 1.5 and a 2.0 °C warmer global climate than 1850 conditions are discussed based on a suite of global atmosphere-only, fully coupled, and slab-ocean runs with the Norwegian Earth System Model. Responses, such as the Arctic amplification of global warming, are stronger with the fully coupled and slab-ocean configurations. While ice-free Arctic summers are rare under 1.5 °C warming in the slab-ocean runs, they are estimated to occur 18 % of the time under 2.0 °C warming.
Chuncheng Guo, Kerim H. Nisancioglu, Mats Bentsen, Ingo Bethke, and Zhongshi Zhang
Clim. Past, 15, 1133–1151, https://doi.org/10.5194/cp-15-1133-2019, https://doi.org/10.5194/cp-15-1133-2019, 2019
Short summary
Short summary
We present an equilibrium simulation of the climate of Marine Isotope Stage 3, with an IPCC-class model with a relatively high model resolution and a long integration. The simulated climate resembles a warm interstadial state, as indicated by reconstructions of Greenland temperature, sea ice extent, and AMOC. Sensitivity experiments to changes in atmospheric CO2 levels and ice sheet size show that the model is in a relatively stable climate state without multiple equilibria.
Chuncheng Guo, Mats Bentsen, Ingo Bethke, Mehmet Ilicak, Jerry Tjiputra, Thomas Toniazzo, Jörg Schwinger, and Odd Helge Otterå
Geosci. Model Dev., 12, 343–362, https://doi.org/10.5194/gmd-12-343-2019, https://doi.org/10.5194/gmd-12-343-2019, 2019
Short summary
Short summary
In this paper, we describe and evaluate a new variant of the Norwegian Earth System Model (NorESM). It is a computationally efficient model that is designed for experiments such as paleoclimate, carbon cycle, and large ensemble simulations. The model, with various recent code updates, shows improved climate performance compared to the CMIP5 version of NorESM, while the model resolution remains similar.
Jörg Schwinger, Nadine Goris, Jerry F. Tjiputra, Iris Kriest, Mats Bentsen, Ingo Bethke, Mehmet Ilicak, Karen M. Assmann, and Christoph Heinze
Geosci. Model Dev., 9, 2589–2622, https://doi.org/10.5194/gmd-9-2589-2016, https://doi.org/10.5194/gmd-9-2589-2016, 2016
Short summary
Short summary
We present an evaluation of the ocean carbon cycle stand-alone configuration of the Norwegian Earth System Model. A re-tuning of the ecosystem parameterisation improves surface tracer fields between versions 1 and 1.2 of the model. Focus is placed on the evaluation of newly implemented parameterisations of the biological carbon pump (i.e. the sinking of particular organic carbon). We find that the model previously underestimated the carbon transport into the deep ocean below 2000 m depth.
Maria Sand, Bjørn H. Samset, Gunnar Myhre, Jonas Gliß, Susanne E. Bauer, Huisheng Bian, Mian Chin, Ramiro Checa-Garcia, Paul Ginoux, Zak Kipling, Alf Kirkevåg, Harri Kokkola, Philippe Le Sager, Marianne T. Lund, Hitoshi Matsui, Twan van Noije, Samuel Remy, Michael Schulz, Philip Stier, Camilla W. Stjern, Toshihiko Takemura, Kostas Tsigaridis, Svetlana G. Tsyro, and Duncan Watson-Parris
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-51, https://doi.org/10.5194/acp-2021-51, 2021
Preprint under review for ACP
Short summary
Short summary
Absorption of shortwave radiation by aerosols can modify precipitation and clouds, but are poorly constrained in models. 15 different aerosol models from AeroCom Phase III have reported total aerosol absorption and for the first time 10 these models have reported in a consistent experiment the contributions to absorption from black carbon, dust and organic aerosol. Here, we document the model diversity in aerosol absorption and compare with observations.
Cristian Lussana, Thomas N. Nipen, Ivar A. Seierstad, and Christoffer A. Elo
Nonlin. Processes Geophys., 28, 61–91, https://doi.org/10.5194/npg-28-61-2021, https://doi.org/10.5194/npg-28-61-2021, 2021
Short summary
Short summary
An unprecedented amount of rainfall data is available nowadays, such as ensemble model output, weather radar estimates, and in situ observations from networks of both traditional and opportunistic sensors. Nevertheless, the exact amount of precipitation, to some extent, eludes our knowledge. The objective of our study is precipitation reconstruction through the combination of numerical model outputs with observations from multiple data sources.
Jonas Gliß, Augustin Mortier, Michael Schulz, Elisabeth Andrews, Yves Balkanski, Susanne E. Bauer, Anna M. K. Benedictow, Huisheng Bian, Ramiro Checa-Garcia, Mian Chin, Paul Ginoux, Jan J. Griesfeller, Andreas Heckel, Zak Kipling, Alf Kirkevåg, Harri Kokkola, Paolo Laj, Philippe Le Sager, Marianne Tronstad Lund, Cathrine Lund Myhre, Hitoshi Matsui, Gunnar Myhre, David Neubauer, Twan van Noije, Peter North, Dirk J. L. Olivié, Samuel Rémy, Larisa Sogacheva, Toshihiko Takemura, Kostas Tsigaridis, and Svetlana G. Tsyro
Atmos. Chem. Phys., 21, 87–128, https://doi.org/10.5194/acp-21-87-2021, https://doi.org/10.5194/acp-21-87-2021, 2021
Short summary
Short summary
Simulated aerosol optical properties as well as the aerosol life cycle are investigated for 14 global models participating in the AeroCom initiative. Considerable diversity is found in the simulated aerosol species emissions and lifetimes, also resulting in a large diversity in the simulated aerosol mass, composition, and optical properties. A comparison with observations suggests that, on average, current models underestimate the direct effect of aerosol on the atmosphere radiation budget.
Øyvind Seland, Mats Bentsen, Dirk Olivié, Thomas Toniazzo, Ada Gjermundsen, Lise Seland Graff, Jens Boldingh Debernard, Alok Kumar Gupta, Yan-Chun He, Alf Kirkevåg, Jörg Schwinger, Jerry Tjiputra, Kjetil Schanke Aas, Ingo Bethke, Yuanchao Fan, Jan Griesfeller, Alf Grini, Chuncheng Guo, Mehmet Ilicak, Inger Helene Hafsahl Karset, Oskar Landgren, Johan Liakka, Kine Onsum Moseid, Aleksi Nummelin, Clemens Spensberger, Hui Tang, Zhongshi Zhang, Christoph Heinze, Trond Iversen, and Michael Schulz
Geosci. Model Dev., 13, 6165–6200, https://doi.org/10.5194/gmd-13-6165-2020, https://doi.org/10.5194/gmd-13-6165-2020, 2020
Short summary
Short summary
The second version of the coupled Norwegian Earth System Model (NorESM2) is presented and evaluated. The temperature and precipitation patterns has improved compared to NorESM1. The model reaches present-day warming levels to within 0.2 °C of observed temperature but with a delayed warming during the late 20th century. Under the four scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5), the warming in the period of 2090–2099 compared to 1850–1879 reaches 1.3, 2.2, 3.1, and 3.9 K.
Camilla W. Stjern, Bjørn H. Samset, Olivier Boucher, Trond Iversen, Jean-François Lamarque, Gunnar Myhre, Drew Shindell, and Toshihiko Takemura
Atmos. Chem. Phys., 20, 13467–13480, https://doi.org/10.5194/acp-20-13467-2020, https://doi.org/10.5194/acp-20-13467-2020, 2020
Short summary
Short summary
The span between the warmest and coldest temperatures over a day is a climate parameter that influences both agriculture and human health. Using data from 10 models, we show how individual climate drivers such as greenhouse gases and aerosols produce distinctly different responses in this parameter in high-emission regions. Given the high uncertainty in future aerosol emissions, this improved understanding of the temperature responses may ultimately help these regions prepare for future changes.
Augustin Mortier, Jonas Gliß, Michael Schulz, Wenche Aas, Elisabeth Andrews, Huisheng Bian, Mian Chin, Paul Ginoux, Jenny Hand, Brent Holben, Hua Zhang, Zak Kipling, Alf Kirkevåg, Paolo Laj, Thibault Lurton, Gunnar Myhre, David Neubauer, Dirk Olivié, Knut von Salzen, Ragnhild Bieltvedt Skeie, Toshihiko Takemura, and Simone Tilmes
Atmos. Chem. Phys., 20, 13355–13378, https://doi.org/10.5194/acp-20-13355-2020, https://doi.org/10.5194/acp-20-13355-2020, 2020
Short summary
Short summary
We present a multiparameter analysis of the aerosol trends over the last 2 decades in the different regions of the world. In most of the regions, ground-based observations show a decrease in aerosol content in both the total atmospheric column and at the surface. The use of climate models, assessed against these observations, reveals however an increase in the total aerosol load, which is not seen with the sole use of observation due to partial coverage in space and time.
Xiaoning Xie, Gunnar Myhre, Xiaodong Liu, Xinzhou Li, Zhengguo Shi, Hongli Wang, Alf Kirkevåg, Jean-Francois Lamarque, Drew Shindell, Toshihiko Takemura, and Yangang Liu
Atmos. Chem. Phys., 20, 11823–11839, https://doi.org/10.5194/acp-20-11823-2020, https://doi.org/10.5194/acp-20-11823-2020, 2020
Short summary
Short summary
Black carbon (BC) and greenhouse gases (GHGs) enhance precipitation minus evaporation (P–E) of Asian summer monsoon (ASM). Further analysis reveals distinct mechanisms controlling BC- and GHG-induced ASM P–E increases. The change in ASM P–E by BC is dominated by the dynamic effect of enhanced large-scale monsoon circulation, the GHG-induced change by the thermodynamic effect of increasing atmospheric water vapor. This results from different atmospheric temperature feedbacks due to BC and GHGs.
María A. Burgos, Elisabeth Andrews, Gloria Titos, Angela Benedetti, Huisheng Bian, Virginie Buchard, Gabriele Curci, Zak Kipling, Alf Kirkevåg, Harri Kokkola, Anton Laakso, Julie Letertre-Danczak, Marianne T. Lund, Hitoshi Matsui, Gunnar Myhre, Cynthia Randles, Michael Schulz, Twan van Noije, Kai Zhang, Lucas Alados-Arboledas, Urs Baltensperger, Anne Jefferson, James Sherman, Junying Sun, Ernest Weingartner, and Paul Zieger
Atmos. Chem. Phys., 20, 10231–10258, https://doi.org/10.5194/acp-20-10231-2020, https://doi.org/10.5194/acp-20-10231-2020, 2020
Short summary
Short summary
We investigate how well models represent the enhancement in scattering coefficients due to particle water uptake, and perform an evaluation of several implementation schemes used in ten Earth system models. Our results show the importance of the parameterization of hygroscopicity and model chemistry as drivers of some of the observed diversity amongst model estimates. The definition of dry conditions and the phenomena taking place in this relative humidity range also impact the model evaluation.
Hiroyuki Tsujino, L. Shogo Urakawa, Stephen M. Griffies, Gokhan Danabasoglu, Alistair J. Adcroft, Arthur E. Amaral, Thomas Arsouze, Mats Bentsen, Raffaele Bernardello, Claus W. Böning, Alexandra Bozec, Eric P. Chassignet, Sergey Danilov, Raphael Dussin, Eleftheria Exarchou, Pier Giuseppe Fogli, Baylor Fox-Kemper, Chuncheng Guo, Mehmet Ilicak, Doroteaciro Iovino, Who M. Kim, Nikolay Koldunov, Vladimir Lapin, Yiwen Li, Pengfei Lin, Keith Lindsay, Hailong Liu, Matthew C. Long, Yoshiki Komuro, Simon J. Marsland, Simona Masina, Aleksi Nummelin, Jan Klaus Rieck, Yohan Ruprich-Robert, Markus Scheinert, Valentina Sicardi, Dmitry Sidorenko, Tatsuo Suzuki, Hiroaki Tatebe, Qiang Wang, Stephen G. Yeager, and Zipeng Yu
Geosci. Model Dev., 13, 3643–3708, https://doi.org/10.5194/gmd-13-3643-2020, https://doi.org/10.5194/gmd-13-3643-2020, 2020
Short summary
Short summary
The OMIP-2 framework for global ocean–sea-ice model simulations is assessed by comparing multi-model means from 11 CMIP6-class global ocean–sea-ice models calculated separately for the OMIP-1 and OMIP-2 simulations. Many features are very similar between OMIP-1 and OMIP-2 simulations, and yet key improvements in transitioning from OMIP-1 to OMIP-2 are also identified. Thus, the present assessment justifies that future ocean–sea-ice model development and analysis studies use the OMIP-2 framework.
Christopher J. Smith, Ryan J. Kramer, Gunnar Myhre, Kari Alterskjær, William Collins, Adriana Sima, Olivier Boucher, Jean-Louis Dufresne, Pierre Nabat, Martine Michou, Seiji Yukimoto, Jason Cole, David Paynter, Hideo Shiogama, Fiona M. O'Connor, Eddy Robertson, Andy Wiltshire, Timothy Andrews, Cécile Hannay, Ron Miller, Larissa Nazarenko, Alf Kirkevåg, Dirk Olivié, Stephanie Fiedler, Anna Lewinschal, Chloe Mackallah, Martin Dix, Robert Pincus, and Piers M. Forster
Atmos. Chem. Phys., 20, 9591–9618, https://doi.org/10.5194/acp-20-9591-2020, https://doi.org/10.5194/acp-20-9591-2020, 2020
Short summary
Short summary
The spread in effective radiative forcing for both CO2 and aerosols is narrower in the latest CMIP6 (Coupled Model Intercomparison Project) generation than in CMIP5. For the case of CO2 it is likely that model radiation parameterisations have improved. Tropospheric and stratospheric radiative adjustments to the forcing behave differently for different forcing agents, and there is still significant diversity in how clouds respond to forcings, particularly for total anthropogenic forcing.
Jerry F. Tjiputra, Jörg Schwinger, Mats Bentsen, Anne L. Morée, Shuang Gao, Ingo Bethke, Christoph Heinze, Nadine Goris, Alok Gupta, Yan-Chun He, Dirk Olivié, Øyvind Seland, and Michael Schulz
Geosci. Model Dev., 13, 2393–2431, https://doi.org/10.5194/gmd-13-2393-2020, https://doi.org/10.5194/gmd-13-2393-2020, 2020
Short summary
Short summary
Ocean biogeochemistry plays an important role in determining the atmospheric carbon dioxide concentration. Earth system models, which are regularly used to study and project future climate change, generally include an ocean biogeochemistry component. Prior to their application, such models are rigorously validated against real-world observations. In this study, we evaluate the ability of the ocean biogeochemistry in the Norwegian Earth System Model version 2 to simulate various datasets.
Montserrat Costa-Surós, Odran Sourdeval, Claudia Acquistapace, Holger Baars, Cintia Carbajal Henken, Christa Genz, Jonas Hesemann, Cristofer Jimenez, Marcel König, Jan Kretzschmar, Nils Madenach, Catrin I. Meyer, Roland Schrödner, Patric Seifert, Fabian Senf, Matthias Brueck, Guido Cioni, Jan Frederik Engels, Kerstin Fieg, Ksenia Gorges, Rieke Heinze, Pavan Kumar Siligam, Ulrike Burkhardt, Susanne Crewell, Corinna Hoose, Axel Seifert, Ina Tegen, and Johannes Quaas
Atmos. Chem. Phys., 20, 5657–5678, https://doi.org/10.5194/acp-20-5657-2020, https://doi.org/10.5194/acp-20-5657-2020, 2020
Short summary
Short summary
The impact of anthropogenic aerosols on clouds is a key uncertainty in climate change. This study analyses large-domain simulations with a new high-resolution model to investigate the differences in clouds between 1985 and 2013 comparing multiple observational datasets. The differences in aerosol and in cloud droplet concentrations are clearly detectable. For other quantities, the detection and attribution proved difficult, despite a substantial impact on the Earth's energy budget.
Constanze Wellmann, Andrew I. Barrett, Jill S. Johnson, Michael Kunz, Bernhard Vogel, Ken S. Carslaw, and Corinna Hoose
Atmos. Chem. Phys., 20, 2201–2219, https://doi.org/10.5194/acp-20-2201-2020, https://doi.org/10.5194/acp-20-2201-2020, 2020
Short summary
Short summary
Severe hailstorms may cause damage to buildings and crops. Thus, the forecast of numerical weather prediction (NWP) models should be as reliable as possible.
Using statistical emulation, we identify those model input parameters describing environmental conditions and cloud microphysics which lead to large uncertainties in the prediction of deep convection. We find that the impact of the input parameters on the uncertainty depends on the considered output variable.
Anne L. Morée, Jörg Schwinger, Ulysses S. Ninneman, Aurich Jeltsch-Thömmes, Ingo Bethke, and Christoph Heinze
Clim. Past Discuss., https://doi.org/10.5194/cp-2020-7, https://doi.org/10.5194/cp-2020-7, 2020
Revised manuscript accepted for CP
Short summary
Short summary
This modelling study of the Last Glacial Maximum (LGM, ~ 21 000 yrs ago) ocean explores the ability of the ocean to store carbon through physical and biological processes – in order to understand long-term climate variability. We find that both physical and biological changes are needed to simulate an ocean in agreement with paleo records. A major increase in biologically sequestered marine carbon is quantified but not captured in the model, which suggests that key processes are missing.
Øivind Hodnebrog, Gunnar Myhre, Bjørn H. Samset, Kari Alterskjær, Timothy Andrews, Olivier Boucher, Gregory Faluvegi, Dagmar Fläschner, Piers M. Forster, Matthew Kasoar, Alf Kirkevåg, Jean-Francois Lamarque, Dirk Olivié, Thomas B. Richardson, Dilshad Shawki, Drew Shindell, Keith P. Shine, Philip Stier, Toshihiko Takemura, Apostolos Voulgarakis, and Duncan Watson-Parris
Atmos. Chem. Phys., 19, 12887–12899, https://doi.org/10.5194/acp-19-12887-2019, https://doi.org/10.5194/acp-19-12887-2019, 2019
Short summary
Short summary
Different greenhouse gases (e.g. CO2) and aerosols (e.g. black carbon) impact the Earth’s water cycle differently. Here we investigate how various gases and particles impact atmospheric water vapour and its lifetime, i.e., the average number of days that water vapour stays in the atmosphere after evaporation and before precipitation. We find that this lifetime could increase substantially by the end of this century, indicating that important changes in precipitation patterns are excepted.
Linda Schneider, Christian Barthlott, Corinna Hoose, and Andrew I. Barrett
Atmos. Chem. Phys., 19, 12343–12359, https://doi.org/10.5194/acp-19-12343-2019, https://doi.org/10.5194/acp-19-12343-2019, 2019
Short summary
Short summary
This study addresses the relative impact of orography, soil moisture, and aerosols on precipitation over Germany in different weather regimes. We find that the impact of these perturbations is higher for weak than for strong large-scale forcing. Furthermore, aerosols and soil moisture are both of similar importance for precipitation forecasting, which indicates that their inclusion in operational ensemble forecasting should be assessed in the future.
Lise S. Graff, Trond Iversen, Ingo Bethke, Jens B. Debernard, Øyvind Seland, Mats Bentsen, Alf Kirkevåg, Camille Li, and Dirk J. L. Olivié
Earth Syst. Dynam., 10, 569–598, https://doi.org/10.5194/esd-10-569-2019, https://doi.org/10.5194/esd-10-569-2019, 2019
Short summary
Short summary
Differences between a 1.5 and a 2.0 °C warmer global climate than 1850 conditions are discussed based on a suite of global atmosphere-only, fully coupled, and slab-ocean runs with the Norwegian Earth System Model. Responses, such as the Arctic amplification of global warming, are stronger with the fully coupled and slab-ocean configurations. While ice-free Arctic summers are rare under 1.5 °C warming in the slab-ocean runs, they are estimated to occur 18 % of the time under 2.0 °C warming.
George S. Fanourgakis, Maria Kanakidou, Athanasios Nenes, Susanne E. Bauer, Tommi Bergman, Ken S. Carslaw, Alf Grini, Douglas S. Hamilton, Jill S. Johnson, Vlassis A. Karydis, Alf Kirkevåg, John K. Kodros, Ulrike Lohmann, Gan Luo, Risto Makkonen, Hitoshi Matsui, David Neubauer, Jeffrey R. Pierce, Julia Schmale, Philip Stier, Kostas Tsigaridis, Twan van Noije, Hailong Wang, Duncan Watson-Parris, Daniel M. Westervelt, Yang Yang, Masaru Yoshioka, Nikos Daskalakis, Stefano Decesari, Martin Gysel-Beer, Nikos Kalivitis, Xiaohong Liu, Natalie M. Mahowald, Stelios Myriokefalitakis, Roland Schrödner, Maria Sfakianaki, Alexandra P. Tsimpidi, Mingxuan Wu, and Fangqun Yu
Atmos. Chem. Phys., 19, 8591–8617, https://doi.org/10.5194/acp-19-8591-2019, https://doi.org/10.5194/acp-19-8591-2019, 2019
Short summary
Short summary
Effects of aerosols on clouds are important for climate studies but are among the largest uncertainties in climate projections. This study evaluates the skill of global models to simulate aerosol, cloud condensation nuclei (CCN) and cloud droplet number concentrations (CDNCs). Model results show reduced spread in CDNC compared to CCN due to the negative correlation between the sensitivities of CDNC to aerosol number concentration (air pollution) and updraft velocity (atmospheric dynamics).
Chuncheng Guo, Kerim H. Nisancioglu, Mats Bentsen, Ingo Bethke, and Zhongshi Zhang
Clim. Past, 15, 1133–1151, https://doi.org/10.5194/cp-15-1133-2019, https://doi.org/10.5194/cp-15-1133-2019, 2019
Short summary
Short summary
We present an equilibrium simulation of the climate of Marine Isotope Stage 3, with an IPCC-class model with a relatively high model resolution and a long integration. The simulated climate resembles a warm interstadial state, as indicated by reconstructions of Greenland temperature, sea ice extent, and AMOC. Sensitivity experiments to changes in atmospheric CO2 levels and ice sheet size show that the model is in a relatively stable climate state without multiple equilibria.
Maiken Vassel, Luisa Ickes, Marion Maturilli, and Corinna Hoose
Atmos. Chem. Phys., 19, 5111–5126, https://doi.org/10.5194/acp-19-5111-2019, https://doi.org/10.5194/acp-19-5111-2019, 2019
Short summary
Short summary
Multilayer clouds are coexisting clouds at different heights. We evaluate measurements and find that Arctic multilayer clouds occur in 29 % of the investigated days at Ny-Ålesund, Svalbard. Multilayer clouds can interact by ice crystals falling from the upper cloud into the lower cloud. This is possible in 23 % of the investigated days, and in 9 % it is not possible. Weather models are still error-prone in the Arctic and we suggest that multilayer clouds should be included more in future work.
Michael Boy, Erik S. Thomson, Juan-C. Acosta Navarro, Olafur Arnalds, Ekaterina Batchvarova, Jaana Bäck, Frank Berninger, Merete Bilde, Zoé Brasseur, Pavla Dagsson-Waldhauserova, Dimitri Castarède, Maryam Dalirian, Gerrit de Leeuw, Monika Dragosics, Ella-Maria Duplissy, Jonathan Duplissy, Annica M. L. Ekman, Keyan Fang, Jean-Charles Gallet, Marianne Glasius, Sven-Erik Gryning, Henrik Grythe, Hans-Christen Hansson, Margareta Hansson, Elisabeth Isaksson, Trond Iversen, Ingibjorg Jonsdottir, Ville Kasurinen, Alf Kirkevåg, Atte Korhola, Radovan Krejci, Jon Egill Kristjansson, Hanna K. Lappalainen, Antti Lauri, Matti Leppäranta, Heikki Lihavainen, Risto Makkonen, Andreas Massling, Outi Meinander, E. Douglas Nilsson, Haraldur Olafsson, Jan B. C. Pettersson, Nønne L. Prisle, Ilona Riipinen, Pontus Roldin, Meri Ruppel, Matthew Salter, Maria Sand, Øyvind Seland, Heikki Seppä, Henrik Skov, Joana Soares, Andreas Stohl, Johan Ström, Jonas Svensson, Erik Swietlicki, Ksenia Tabakova, Throstur Thorsteinsson, Aki Virkkula, Gesa A. Weyhenmeyer, Yusheng Wu, Paul Zieger, and Markku Kulmala
Atmos. Chem. Phys., 19, 2015–2061, https://doi.org/10.5194/acp-19-2015-2019, https://doi.org/10.5194/acp-19-2015-2019, 2019
Short summary
Short summary
The Nordic Centre of Excellence CRAICC (Cryosphere–Atmosphere Interactions in a Changing Arctic Climate), funded by NordForsk in the years 2011–2016, is the largest joint Nordic research and innovation initiative to date and aimed to strengthen research and innovation regarding climate change issues in the Nordic region. The paper presents an overview of the main scientific topics investigated and provides a state-of-the-art comprehensive summary of what has been achieved in CRAICC.
Chuncheng Guo, Mats Bentsen, Ingo Bethke, Mehmet Ilicak, Jerry Tjiputra, Thomas Toniazzo, Jörg Schwinger, and Odd Helge Otterå
Geosci. Model Dev., 12, 343–362, https://doi.org/10.5194/gmd-12-343-2019, https://doi.org/10.5194/gmd-12-343-2019, 2019
Short summary
Short summary
In this paper, we describe and evaluate a new variant of the Norwegian Earth System Model (NorESM). It is a computationally efficient model that is designed for experiments such as paleoclimate, carbon cycle, and large ensemble simulations. The model, with various recent code updates, shows improved climate performance compared to the CMIP5 version of NorESM, while the model resolution remains similar.
Michael Weger, Bernd Heinold, Christa Engler, Ulrich Schumann, Axel Seifert, Romy Fößig, Christiane Voigt, Holger Baars, Ulrich Blahak, Stephan Borrmann, Corinna Hoose, Stefan Kaufmann, Martina Krämer, Patric Seifert, Fabian Senf, Johannes Schneider, and Ina Tegen
Atmos. Chem. Phys., 18, 17545–17572, https://doi.org/10.5194/acp-18-17545-2018, https://doi.org/10.5194/acp-18-17545-2018, 2018
Short summary
Short summary
The impact of desert dust on cloud formation is investigated for a major Saharan dust event over Europe by interactive regional dust modeling. Dust particles are very efficient ice-nucleating particles promoting the formation of ice crystals in clouds. The simulations show that the observed extensive cirrus development was likely related to the above-average dust load. The interactive dust–cloud feedback in the model significantly improves the agreement with aircraft and satellite observations.
Sylvia C. Sullivan, Christian Barthlott, Jonathan Crosier, Ilya Zhukov, Athanasios Nenes, and Corinna Hoose
Atmos. Chem. Phys., 18, 16461–16480, https://doi.org/10.5194/acp-18-16461-2018, https://doi.org/10.5194/acp-18-16461-2018, 2018
Short summary
Short summary
Ice crystal formation in clouds can occur via thermodynamic nucleation, but also via mechanical collisions between pre-existing crystals or co-existing droplets. When descriptions of this mechanical ice generation are implemented into the COSMO weather model, we find that the contributions to crystal number from thermodynamic and mechanical processes are of the same order. Mechanical ice generation also intensifies differences in precipitation intensity between dynamic and quiescent regions.
Matthias Hummel, Corinna Hoose, Bernhard Pummer, Caroline Schaupp, Janine Fröhlich-Nowoisky, and Ottmar Möhler
Atmos. Chem. Phys., 18, 15437–15450, https://doi.org/10.5194/acp-18-15437-2018, https://doi.org/10.5194/acp-18-15437-2018, 2018
Short summary
Short summary
How important for clouds is the ability of biological particles to glaciate droplets at little supercooling? In a case study, the regional atmospheric model COSMO–ART is used. Perturbed and control runs are compared.
The number of ice particles that are nucleated by biological particles is highest at around −10 °C. No significant influence on the average state of the cloud ice phase was found. However, the number of ice crystals is slightly enhanced in the absence of other ice nucleators.
Alf Kirkevåg, Alf Grini, Dirk Olivié, Øyvind Seland, Kari Alterskjær, Matthias Hummel, Inger H. H. Karset, Anna Lewinschal, Xiaohong Liu, Risto Makkonen, Ingo Bethke, Jan Griesfeller, Michael Schulz, and Trond Iversen
Geosci. Model Dev., 11, 3945–3982, https://doi.org/10.5194/gmd-11-3945-2018, https://doi.org/10.5194/gmd-11-3945-2018, 2018
Short summary
Short summary
A new aerosol treatment is described and tested in a global climate model. With updated emissions, aerosol chemistry, and microphysics compared to its predecessor, black carbon (BC) mass concentrations aloft better fit observations, surface concentrations of BC and sea salt are less biased, and sulfate and mineral dust slightly more, while the results for organics are inconclusive. Man-made aerosols now yield a stronger cooling effect on climate that is strong compared to results from IPCC.
Michael Schäfer, Katharina Loewe, André Ehrlich, Corinna Hoose, and Manfred Wendisch
Atmos. Chem. Phys., 18, 13115–13133, https://doi.org/10.5194/acp-18-13115-2018, https://doi.org/10.5194/acp-18-13115-2018, 2018
Short summary
Short summary
Airborne observed horizontal fields of cloud optical thickness are compared with semi-idealized large eddy simulations of Arctic stratus. The comparison focuses on horizontal cloud inhomogeneities and directional features of the small-scale cloud structures. Using inhomogeneity parameters and autocorrelation analysis it is investigated, if the observed small-scale cloud inhomogeneities can be represented by the model. Forcings for cloud inhomogeneities are investigated in a sensitivity study.
Robin G. Stevens, Katharina Loewe, Christopher Dearden, Antonios Dimitrelos, Anna Possner, Gesa K. Eirund, Tomi Raatikainen, Adrian A. Hill, Benjamin J. Shipway, Jonathan Wilkinson, Sami Romakkaniemi, Juha Tonttila, Ari Laaksonen, Hannele Korhonen, Paul Connolly, Ulrike Lohmann, Corinna Hoose, Annica M. L. Ekman, Ken S. Carslaw, and Paul R. Field
Atmos. Chem. Phys., 18, 11041–11071, https://doi.org/10.5194/acp-18-11041-2018, https://doi.org/10.5194/acp-18-11041-2018, 2018
Short summary
Short summary
We perform a model intercomparison of summertime high Arctic clouds. Observed concentrations of aerosol particles necessary for cloud formation fell to extremely low values, coincident with a transition from cloudy to nearly cloud-free conditions. Previous analyses have suggested that at these low concentrations, the radiative properties of the clouds are determined primarily by these particle concentrations. The model results strongly support this hypothesis.
Fahad Saeed, Ingo Bethke, Stefan Lange, Ludwig Lierhammer, Hideo Shiogama, Dáithí A. Stone, Tim Trautmann, and Carl-Friedrich Schleussner
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2018-107, https://doi.org/10.5194/gmd-2018-107, 2018
Revised manuscript has not been submitted
Tao Tang, Drew Shindell, Bjørn H. Samset, Oliviér Boucher, Piers M. Forster, Øivind Hodnebrog, Gunnar Myhre, Jana Sillmann, Apostolos Voulgarakis, Timothy Andrews, Gregory Faluvegi, Dagmar Fläschner, Trond Iversen, Matthew Kasoar, Viatcheslav Kharin, Alf Kirkevåg, Jean-Francois Lamarque, Dirk Olivié, Thomas Richardson, Camilla W. Stjern, and Toshihiko Takemura
Atmos. Chem. Phys., 18, 8439–8452, https://doi.org/10.5194/acp-18-8439-2018, https://doi.org/10.5194/acp-18-8439-2018, 2018
Inger Helene Hafsahl Karset, Terje Koren Berntsen, Trude Storelvmo, Kari Alterskjær, Alf Grini, Dirk Olivié, Alf Kirkevåg, Øyvind Seland, Trond Iversen, and Michael Schulz
Atmos. Chem. Phys., 18, 7669–7690, https://doi.org/10.5194/acp-18-7669-2018, https://doi.org/10.5194/acp-18-7669-2018, 2018
Short summary
Short summary
This study highlights the role of oxidants in modeling of the preindustrial-to-present-day aerosol indirect effects. We argue that the aerosol precursor gases should be exposed to oxidants of its era to get a more correct representation of secondary aerosol formation. Our global model simulations show that the total aerosol indirect effect changes from −1.32 to −1.07 W m−2 when the precursor gases in the preindustrial simulation are exposed to preindustrial instead of present-day oxidants.
Camille Li, Clio Michel, Lise Seland Graff, Ingo Bethke, Giuseppe Zappa, Thomas J. Bracegirdle, Erich Fischer, Ben J. Harvey, Trond Iversen, Martin P. King, Harinarayan Krishnan, Ludwig Lierhammer, Daniel Mitchell, John Scinocca, Hideo Shiogama, Dáithí A. Stone, and Justin J. Wettstein
Earth Syst. Dynam., 9, 359–382, https://doi.org/10.5194/esd-9-359-2018, https://doi.org/10.5194/esd-9-359-2018, 2018
Short summary
Short summary
This study investigates the midlatitude atmospheric circulation response to 1.5°C and 2.0°C of warming using modelling experiments run for the HAPPI project (Half a degree Additional warming, Prognosis & Projected Impacts). While the chaotic nature of the atmospheric flow dominates in these low-end warming scenarios, some local changes emerge. Case studies explore precipitation impacts both for regions that dry (Mediterranean) and regions that get wetter (Europe, North American west coast).
Sylvia C. Sullivan, Corinna Hoose, Alexei Kiselev, Thomas Leisner, and Athanasios Nenes
Atmos. Chem. Phys., 18, 1593–1610, https://doi.org/10.5194/acp-18-1593-2018, https://doi.org/10.5194/acp-18-1593-2018, 2018
Short summary
Short summary
Ice multiplication (IM) processes can have a profound impact on cloud and precipitation development but are poorly understood. Here we study whether a lower limit of ice nuclei exists to initiate IM. The lower limit is found to be extremely low (0.01 per liter or less). A counterintuitive but profound conclusion thus emerges: IM requires cloud formation around a thermodynamic
sweet spotand is sensitive to fluctuations in cloud condensation nuclei concentration alone.
Petri Räisänen, Risto Makkonen, Alf Kirkevåg, and Jens B. Debernard
The Cryosphere, 11, 2919–2942, https://doi.org/10.5194/tc-11-2919-2017, https://doi.org/10.5194/tc-11-2919-2017, 2017
Short summary
Short summary
While snow grains are non-spherical, spheres are often assumed in radiation calculations. Here, we replace spherical snow grains with non-spherical snow grains in a climate model. This leads to a somewhat higher snow albedo (by 0.02–0.03), increased snow and sea ice cover, and a distinctly colder climate (by over 1 K in the global mean). It also impacts the radiative effects of aerosols in snow. Overall, this work highlights the important role of snow albedo parameterization for climate models.
Luke B. Hande and Corinna Hoose
Atmos. Chem. Phys., 17, 14105–14118, https://doi.org/10.5194/acp-17-14105-2017, https://doi.org/10.5194/acp-17-14105-2017, 2017
Short summary
Short summary
In this study, the relative contributions of different primary ice nucleation modes (i.e. processes leading to the formation of ice crystals with or without the help of certain aerosol particles, in this case mineral dust) are quantified in model simulations for different cloud types.
Lars Ahlm, Andy Jones, Camilla W. Stjern, Helene Muri, Ben Kravitz, and Jón Egill Kristjánsson
Atmos. Chem. Phys., 17, 13071–13087, https://doi.org/10.5194/acp-17-13071-2017, https://doi.org/10.5194/acp-17-13071-2017, 2017
Short summary
Short summary
We present results from coordinated simulations with three Earth system models focusing on the response of Earth’s radiation balance to the injection of sea salt particles. We find that in most regions the effective radiative forcing by the injected particles is equally large in cloudy and clear-sky conditions, suggesting a more important role of the aerosol direct effect in sea spray climate engineering than previously thought.
Maria Sand, Bjørn H. Samset, Yves Balkanski, Susanne Bauer, Nicolas Bellouin, Terje K. Berntsen, Huisheng Bian, Mian Chin, Thomas Diehl, Richard Easter, Steven J. Ghan, Trond Iversen, Alf Kirkevåg, Jean-François Lamarque, Guangxing Lin, Xiaohong Liu, Gan Luo, Gunnar Myhre, Twan van Noije, Joyce E. Penner, Michael Schulz, Øyvind Seland, Ragnhild B. Skeie, Philip Stier, Toshihiko Takemura, Kostas Tsigaridis, Fangqun Yu, Kai Zhang, and Hua Zhang
Atmos. Chem. Phys., 17, 12197–12218, https://doi.org/10.5194/acp-17-12197-2017, https://doi.org/10.5194/acp-17-12197-2017, 2017
Short summary
Short summary
The role of aerosols in the changing polar climate is not well understood and the aerosols are poorly constrained in the models. In this study we have compared output from 16 different aerosol models with available observations at both poles. We show that the model median is representative of the observations, but the model spread is large. The Arctic direct aerosol radiative effect over the industrial area is positive during spring due to black carbon and negative during summer due to sulfate.
Jörg Schwinger, Jerry Tjiputra, Nadine Goris, Katharina D. Six, Alf Kirkevåg, Øyvind Seland, Christoph Heinze, and Tatiana Ilyina
Biogeosciences, 14, 3633–3648, https://doi.org/10.5194/bg-14-3633-2017, https://doi.org/10.5194/bg-14-3633-2017, 2017
Short summary
Short summary
Transient global warming under the high emission scenario RCP8.5 is amplified by up to 6 % if a pH dependency of marine DMS production is assumed. Importantly, this additional warming is not spatially homogeneous but shows a pronounced north–south gradient. Over the Antarctic continent, the additional warming is almost twice the global average. In the Southern Ocean we find a small DMS–climate feedback that counteracts the original reduction of DMS production due to ocean acidification.
Katharina Loewe, Annica M. L. Ekman, Marco Paukert, Joseph Sedlar, Michael Tjernström, and Corinna Hoose
Atmos. Chem. Phys., 17, 6693–6704, https://doi.org/10.5194/acp-17-6693-2017, https://doi.org/10.5194/acp-17-6693-2017, 2017
Short summary
Short summary
Processes that affect Arctic mixed-phase cloud life cycle are extremely important for the surface energy budget. Three different sensitivity experiments mimic changes in the advection of air masses with different thermodynamic profiles and aerosol properties to find the potential mechanisms leading to the dissipation of the cloud. We found that the reduction of the cloud droplet number concentration was likely the primary contributor to the dissipation of the observed Arctic mixed-phase cloud.
Daniel Mitchell, Krishna AchutaRao, Myles Allen, Ingo Bethke, Urs Beyerle, Andrew Ciavarella, Piers M. Forster, Jan Fuglestvedt, Nathan Gillett, Karsten Haustein, William Ingram, Trond Iversen, Viatcheslav Kharin, Nicholas Klingaman, Neil Massey, Erich Fischer, Carl-Friedrich Schleussner, John Scinocca, Øyvind Seland, Hideo Shiogama, Emily Shuckburgh, Sarah Sparrow, Dáithí Stone, Peter Uhe, David Wallom, Michael Wehner, and Rashyd Zaaboul
Geosci. Model Dev., 10, 571–583, https://doi.org/10.5194/gmd-10-571-2017, https://doi.org/10.5194/gmd-10-571-2017, 2017
Short summary
Short summary
This paper provides an experimental design to assess impacts of a world that is 1.5 °C warmer than at pre-industrial levels. The design is a new way to approach impacts from the climate community, and aims to answer questions related to the recent Paris Agreement. In particular the paper provides a method for studying extreme events under relatively high mitigation scenarios.
Massimo Cassiani, Andreas Stohl, Dirk Olivié, Øyvind Seland, Ingo Bethke, Ignacio Pisso, and Trond Iversen
Geosci. Model Dev., 9, 4029–4048, https://doi.org/10.5194/gmd-9-4029-2016, https://doi.org/10.5194/gmd-9-4029-2016, 2016
Short summary
Short summary
FLEXPART is a community model used by many scientists. Here, an alternative FLEXPART model version has been developed, tailored to use with the output data generated by the Norwegian Earth System Model (NorESM1-M). The model provides an advanced tool to analyse and diagnose atmospheric transport properties of the climate model NorESM. To validate the model, several tests were performed that offered the possibility to investigate some aspects of offline global dispersion modelling.
Luke B. Hande, Christa Engler, Corinna Hoose, and Ina Tegen
Atmos. Chem. Phys., 16, 12059–12079, https://doi.org/10.5194/acp-16-12059-2016, https://doi.org/10.5194/acp-16-12059-2016, 2016
Short summary
Short summary
An aerosol model was used to simulate the concentration of natural and anthropogenic aerosols over Germany. Using a detailed parameterization of CCN activation, which includes information of aerosol chemical and physical properties, CCN concentrations were calculated. Using these results, a series of best fit functions were used to define a new parameterization, which is a simple function of vertical velocity and pressure. The new parameterization is easy to implement in models.
Jörg Schwinger, Nadine Goris, Jerry F. Tjiputra, Iris Kriest, Mats Bentsen, Ingo Bethke, Mehmet Ilicak, Karen M. Assmann, and Christoph Heinze
Geosci. Model Dev., 9, 2589–2622, https://doi.org/10.5194/gmd-9-2589-2016, https://doi.org/10.5194/gmd-9-2589-2016, 2016
Short summary
Short summary
We present an evaluation of the ocean carbon cycle stand-alone configuration of the Norwegian Earth System Model. A re-tuning of the ecosystem parameterisation improves surface tracer fields between versions 1 and 1.2 of the model. Focus is placed on the evaluation of newly implemented parameterisations of the biological carbon pump (i.e. the sinking of particular organic carbon). We find that the model previously underestimated the carbon transport into the deep ocean below 2000 m depth.
Zak Kipling, Philip Stier, Colin E. Johnson, Graham W. Mann, Nicolas Bellouin, Susanne E. Bauer, Tommi Bergman, Mian Chin, Thomas Diehl, Steven J. Ghan, Trond Iversen, Alf Kirkevåg, Harri Kokkola, Xiaohong Liu, Gan Luo, Twan van Noije, Kirsty J. Pringle, Knut von Salzen, Michael Schulz, Øyvind Seland, Ragnhild B. Skeie, Toshihiko Takemura, Kostas Tsigaridis, and Kai Zhang
Atmos. Chem. Phys., 16, 2221–2241, https://doi.org/10.5194/acp-16-2221-2016, https://doi.org/10.5194/acp-16-2221-2016, 2016
Short summary
Short summary
The vertical distribution of atmospheric aerosol is an important factor in its effects on climate. In this study we use a sophisticated model of the many interacting processes affecting aerosol in the atmosphere to show that the vertical distribution is typically dominated by only a few of these processes. Constraining these physical processes may help to reduce the large differences between models. However, the important processes are not always the same for different types of aerosol.
C. Barthlott and C. Hoose
Atmos. Chem. Phys., 15, 12361–12384, https://doi.org/10.5194/acp-15-12361-2015, https://doi.org/10.5194/acp-15-12361-2015, 2015
Short summary
Short summary
This paper assesses the resolution dependance of clouds and precipitation over Germany by numerical simulations with the COnsortium for Small-scale MOdeling model for 7 cases of 2013. By means of a series of grid-refinement resolution tests, the variability of clouds and precipitation and how this variability changes with model resolution are investigated. The performance of the model at these resolutions is of general relevance to the research community as well as to operational forecasters
M. E. Salter, P. Zieger, J. C. Acosta Navarro, H. Grythe, A. Kirkevåg, B. Rosati, I. Riipinen, and E. D. Nilsson
Atmos. Chem. Phys., 15, 11047–11066, https://doi.org/10.5194/acp-15-11047-2015, https://doi.org/10.5194/acp-15-11047-2015, 2015
Short summary
Short summary
We have developed an inorganic sea spray source function that is based upon state-of-the-art measurements of sea spray aerosol production using a temperature-controlled plunging jet sea spray aerosol chamber. The sea spray source function was implemented in a Lagrangian particle dispersion model and showed good skill in predicting measurements of Na+ concentration at a number of field sites, underlining its validity.
A. Stohl, B. Aamaas, M. Amann, L. H. Baker, N. Bellouin, T. K. Berntsen, O. Boucher, R. Cherian, W. Collins, N. Daskalakis, M. Dusinska, S. Eckhardt, J. S. Fuglestvedt, M. Harju, C. Heyes, Ø. Hodnebrog, J. Hao, U. Im, M. Kanakidou, Z. Klimont, K. Kupiainen, K. S. Law, M. T. Lund, R. Maas, C. R. MacIntosh, G. Myhre, S. Myriokefalitakis, D. Olivié, J. Quaas, B. Quennehen, J.-C. Raut, S. T. Rumbold, B. H. Samset, M. Schulz, Ø. Seland, K. P. Shine, R. B. Skeie, S. Wang, K. E. Yttri, and T. Zhu
Atmos. Chem. Phys., 15, 10529–10566, https://doi.org/10.5194/acp-15-10529-2015, https://doi.org/10.5194/acp-15-10529-2015, 2015
Short summary
Short summary
This paper presents a summary of the findings of the ECLIPSE EU project. The project has investigated the climate and air quality impacts of short-lived climate pollutants (especially methane, ozone, aerosols) and has designed a global mitigation strategy that maximizes co-benefits between air quality and climate policy. Transient climate model simulations allowed quantifying the impacts on temperature (e.g., reduction in global warming by 0.22K for the decade 2041-2050) and precipitation.
M. Hummel, C. Hoose, M. Gallagher, D. A. Healy, J. A. Huffman, D. O'Connor, U. Pöschl, C. Pöhlker, N. H. Robinson, M. Schnaiter, J. R. Sodeau, M. Stengel, E. Toprak, and H. Vogel
Atmos. Chem. Phys., 15, 6127–6146, https://doi.org/10.5194/acp-15-6127-2015, https://doi.org/10.5194/acp-15-6127-2015, 2015
L. B. Hande, C. Engler, C. Hoose, and I. Tegen
Atmos. Chem. Phys., 15, 4389–4397, https://doi.org/10.5194/acp-15-4389-2015, https://doi.org/10.5194/acp-15-4389-2015, 2015
Short summary
Short summary
Dust is a significant aerosol on seasonal timescales. There are large differences in dust and INP concentrations between seasons. The INP concentrations have a different vertical distribution than other common parameterisations suggest. We provide a new formulation to estimate the INP particles formed on dust aerosols, for use in process studies and regional simulations over Europe. The new formulation captures a much more realistic seasonal variability and vertical profile.
I. Steinke, C. Hoose, O. Möhler, P. Connolly, and T. Leisner
Atmos. Chem. Phys., 15, 3703–3717, https://doi.org/10.5194/acp-15-3703-2015, https://doi.org/10.5194/acp-15-3703-2015, 2015
Short summary
Short summary
Ice nucleation in clouds has a significant influence on the global radiative budget and the hydrological cycle. Several studies have investigated the ice formation in droplets and parameterizations have been developed in order to include immersion freezing in climate models. In contrast, there are fewer studies regarding the conversion of water vapor into ice (so-called deposition nucleation) which is the topic of this paper which investigates deposition nucleation by Arizona Test dust in detail
N. Hiranuma, M. Paukert, I. Steinke, K. Zhang, G. Kulkarni, C. Hoose, M. Schnaiter, H. Saathoff, and O. Möhler
Atmos. Chem. Phys., 14, 13145–13158, https://doi.org/10.5194/acp-14-13145-2014, https://doi.org/10.5194/acp-14-13145-2014, 2014
Short summary
Short summary
A new heterogeneous ice nucleation parameterization is developed and implemented in cloud models. The results of our simulations suggest stronger influence of dust particles lifted to the upper troposphere on heterogeneous nucleation and more ice nucleation at temperature and humidity conditions relevant to both mixed-phase and cirrus clouds when compared to the existing parametrical frameworks.
B. H. Samset, G. Myhre, A. Herber, Y. Kondo, S.-M. Li, N. Moteki, M. Koike, N. Oshima, J. P. Schwarz, Y. Balkanski, S. E. Bauer, N. Bellouin, T. K. Berntsen, H. Bian, M. Chin, T. Diehl, R. C. Easter, S. J. Ghan, T. Iversen, A. Kirkevåg, J.-F. Lamarque, G. Lin, X. Liu, J. E. Penner, M. Schulz, Ø. Seland, R. B. Skeie, P. Stier, T. Takemura, K. Tsigaridis, and K. Zhang
Atmos. Chem. Phys., 14, 12465–12477, https://doi.org/10.5194/acp-14-12465-2014, https://doi.org/10.5194/acp-14-12465-2014, 2014
Short summary
Short summary
Far from black carbon (BC) emission sources, present climate models are unable to reproduce flight measurements. By comparing recent models with data, we find that the atmospheric lifetime of BC may be overestimated in models. By adjusting modeled BC concentrations to measurements in remote regions - over oceans and at high altitudes - we arrive at a reduced estimate for BC radiative forcing over the industrial era.
D. Neubauer, U. Lohmann, C. Hoose, and M. G. Frontoso
Atmos. Chem. Phys., 14, 11997–12022, https://doi.org/10.5194/acp-14-11997-2014, https://doi.org/10.5194/acp-14-11997-2014, 2014
Short summary
Short summary
Several biases in the representation of clouds in the stratocumulus regime in the ECHAM6-HAM2 global climate model were found by evaluating the model in the stratocumulus cloud regime. Simulations with changes in model resolution and physics to better represent clouds and aerosol in the stratocumulus regime show that the human influence on clouds and thus climate by emission of aerosol particles is sensitive to the representation of (stratocumulus) clouds.
K. Tsigaridis, N. Daskalakis, M. Kanakidou, P. J. Adams, P. Artaxo, R. Bahadur, Y. Balkanski, S. E. Bauer, N. Bellouin, A. Benedetti, T. Bergman, T. K. Berntsen, J. P. Beukes, H. Bian, K. S. Carslaw, M. Chin, G. Curci, T. Diehl, R. C. Easter, S. J. Ghan, S. L. Gong, A. Hodzic, C. R. Hoyle, T. Iversen, S. Jathar, J. L. Jimenez, J. W. Kaiser, A. Kirkevåg, D. Koch, H. Kokkola, Y. H Lee, G. Lin, X. Liu, G. Luo, X. Ma, G. W. Mann, N. Mihalopoulos, J.-J. Morcrette, J.-F. Müller, G. Myhre, S. Myriokefalitakis, N. L. Ng, D. O'Donnell, J. E. Penner, L. Pozzoli, K. J. Pringle, L. M. Russell, M. Schulz, J. Sciare, Ø. Seland, D. T. Shindell, S. Sillman, R. B. Skeie, D. Spracklen, T. Stavrakou, S. D. Steenrod, T. Takemura, P. Tiitta, S. Tilmes, H. Tost, T. van Noije, P. G. van Zyl, K. von Salzen, F. Yu, Z. Wang, Z. Wang, R. A. Zaveri, H. Zhang, K. Zhang, Q. Zhang, and X. Zhang
Atmos. Chem. Phys., 14, 10845–10895, https://doi.org/10.5194/acp-14-10845-2014, https://doi.org/10.5194/acp-14-10845-2014, 2014
Y. Wang, X. Liu, C. Hoose, and B. Wang
Atmos. Chem. Phys., 14, 10411–10430, https://doi.org/10.5194/acp-14-10411-2014, https://doi.org/10.5194/acp-14-10411-2014, 2014
M. Joly, P. Amato, L. Deguillaume, M. Monier, C. Hoose, and A.-M. Delort
Atmos. Chem. Phys., 14, 8185–8195, https://doi.org/10.5194/acp-14-8185-2014, https://doi.org/10.5194/acp-14-8185-2014, 2014
R. Makkonen, Ø. Seland, A. Kirkevåg, T. Iversen, and J. E. Kristjánsson
Atmos. Chem. Phys., 14, 5127–5152, https://doi.org/10.5194/acp-14-5127-2014, https://doi.org/10.5194/acp-14-5127-2014, 2014
C. Jiao, M. G. Flanner, Y. Balkanski, S. E. Bauer, N. Bellouin, T. K. Berntsen, H. Bian, K. S. Carslaw, M. Chin, N. De Luca, T. Diehl, S. J. Ghan, T. Iversen, A. Kirkevåg, D. Koch, X. Liu, G. W. Mann, J. E. Penner, G. Pitari, M. Schulz, Ø. Seland, R. B. Skeie, S. D. Steenrod, P. Stier, T. Takemura, K. Tsigaridis, T. van Noije, Y. Yun, and K. Zhang
Atmos. Chem. Phys., 14, 2399–2417, https://doi.org/10.5194/acp-14-2399-2014, https://doi.org/10.5194/acp-14-2399-2014, 2014
T. Iversen, M. Bentsen, I. Bethke, J. B. Debernard, A. Kirkevåg, Ø. Seland, H. Drange, J. E. Kristjansson, I. Medhaug, M. Sand, and I. A. Seierstad
Geosci. Model Dev., 6, 389–415, https://doi.org/10.5194/gmd-6-389-2013, https://doi.org/10.5194/gmd-6-389-2013, 2013
J. F. Tjiputra, C. Roelandt, M. Bentsen, D. M. Lawrence, T. Lorentzen, J. Schwinger, Ø. Seland, and C. Heinze
Geosci. Model Dev., 6, 301–325, https://doi.org/10.5194/gmd-6-301-2013, https://doi.org/10.5194/gmd-6-301-2013, 2013
B. H. Samset, G. Myhre, M. Schulz, Y. Balkanski, S. Bauer, T. K. Berntsen, H. Bian, N. Bellouin, T. Diehl, R. C. Easter, S. J. Ghan, T. Iversen, S. Kinne, A. Kirkevåg, J.-F. Lamarque, G. Lin, X. Liu, J. E. Penner, Ø. Seland, R. B. Skeie, P. Stier, T. Takemura, K. Tsigaridis, and K. Zhang
Atmos. Chem. Phys., 13, 2423–2434, https://doi.org/10.5194/acp-13-2423-2013, https://doi.org/10.5194/acp-13-2423-2013, 2013
A. Kirkevåg, T. Iversen, Ø. Seland, C. Hoose, J. E. Kristjánsson, H. Struthers, A. M. L. Ekman, S. Ghan, J. Griesfeller, E. D. Nilsson, and M. Schulz
Geosci. Model Dev., 6, 207–244, https://doi.org/10.5194/gmd-6-207-2013, https://doi.org/10.5194/gmd-6-207-2013, 2013
M. Sand, T. K. Berntsen, J. E. Kay, J. F. Lamarque, Ø. Seland, and A. Kirkevåg
Atmos. Chem. Phys., 13, 211–224, https://doi.org/10.5194/acp-13-211-2013, https://doi.org/10.5194/acp-13-211-2013, 2013
Related subject area
Climate and Earth system modeling
Evaluation of polar stratospheric clouds in the global chemistry–climate model SOCOLv3.1 by comparison with CALIPSO spaceborne lidar measurements
Lossy compression of Earth system model data based on a hierarchical tensor with Adaptive-HGFDR (v1.0)
Methane chemistry in a nutshell – the new submodels CH4 (v1.0) and TRSYNC (v1.0) in MESSy (v2.54.0)
Coordinating an operational data distribution network for CMIP6 data
Implementation of sequential cropping into JULESvn5.2 land-surface model
Development of four-dimensional variational assimilation system based on the GRAPES–CUACE adjoint model (GRAPES–CUACE-4D-Var V1.0) and its application in emission inversion
HIRM v1.0: a hybrid impulse response model for climate modeling and uncertainty analyses
CLIMADA v1.4.1: towards a globally consistent adaptation options appraisal tool
FORTE 2.0: a fast, parallel and flexible coupled climate model
Optimization of the sulfate aerosol hygroscopicity parameter in WRF-Chem
Updated European hydraulic pedotransfer functions with communicated uncertainties in the predicted variables (euptfv2)
Spin-up characteristics with three types of initial fields and the restart effects on forecast accuracy in the GRAPES global forecast system
GTS v1.0: a macrophysics scheme for climate models based on a probability density function
Calibration of temperature-dependent ocean microbial processes in the cGENIE.muffin (v0.9.13) Earth system model
Description and evaluation of aerosol in UKESM1 and HadGEM3-GC3.1 CMIP6 historical simulations
DiRong1.0: a distributed implementation for improving routing network generation in model coupling
Overview of the Norwegian Earth System Model (NorESM2) and key climate response of CMIP6 DECK, historical, and scenario simulations
Geospatial input data for the PALM model system 6.0: model requirements, data sources and processing
Exploring the parameter space of the COSMO-CLM v5.0 regional climate model for the Central Asia CORDEX domain
The benefits of increasing resolution in global and regional climate simulations for European climate extremes
European daily precipitation according to EURO-CORDEX regional climate models (RCMs) and high-resolution global climate models (GCMs) from the High-Resolution Model Intercomparison Project (HighResMIP)
Harmonization of global land use change and management for the period 850–2100 (LUH2) for CMIP6
A computationally efficient method for probabilistic local warming projections constrained by history matching and pattern scaling, demonstrated by WASP–LGRTC-1.0
R2D2 v2.0: accounting for temporal dependences in multivariate bias correction via analogue rank resampling
Extending the Modular Earth Submodel System (MESSy v2.54) model hierarchy: the ECHAM/MESSy IdeaLized (EMIL) model setup
Boreal summer intraseasonal oscillation in a superparameterized general circulation model: effects of air–sea coupling and ocean mean state
Reduced Complexity Model Intercomparison Project Phase 1: introduction and evaluation of global-mean temperature response
Modeling land surface processes over a mountainous rainforest in Costa Rica using CLM4.5 and CLM5
A new bias-correction method for precipitation over complex terrain suitable for different climate states: a case study using WRF (version 3.8.1)
A process-based evaluation of the Intermediate Complexity Atmospheric Research Model (ICAR) 1.0.1
ISSM-SLPS: geodetically compliant Sea-Level Projection System for the Ice-sheet and Sea-level System Model v4.17
Newly developed aircraft routing options for air traffic simulation in the chemistry–climate model EMAC 2.53: AirTraf 2.0
Quantifying CanESM5 and EAMv1 sensitivities to Mt. Pinatubo volcanic forcing for the CMIP6 historical experiment
Optimizing high-resolution Community Earth System Model on a heterogeneous many-core supercomputing platform
Understanding the development of systematic errors in the Asian Summer Monsoon
MIROC-INTEG-LAND version 1: a global biogeochemical land surface model with human water management, crop growth, and land-use change
Optimality-based non-Redfield plankton–ecosystem model (OPEM v1.1) in UVic-ESCM 2.9 – Part 2: Sensitivity analysis and model calibration
Optimality-based non-Redfield plankton–ecosystem model (OPEM v1.1) in UVic-ESCM 2.9 – Part 1: Implementation and model behaviour
Effects of Coupling a Stochastic Convective Parameterization with Zhang-McFarlane Scheme on Precipitation Simulation in the DOE E3SMv1 Atmosphere Model
The E3SM version 1 single-column model
RadNet 1.0: exploring deep learning architectures for longwave radiative transfer
Efficient ensemble data assimilation for coupled models with the Parallel Data Assimilation Framework: example of AWI-CM (AWI-CM-PDAF 1.0)
Modelling mineral dust emissions and atmospheric dispersion with MADE3 in EMAC v2.54
Evaluation of the University of Victoria Earth System Climate Model version 2.10 (UVic ESCM 2.10)
Earth System Model Evaluation Tool (ESMValTool) v2.0 – diagnostics for emergent constraints and future projections from Earth system models in CMIP
Evaluating the land-surface energy partitioning in ERA5
Robust Ecosystem Demography (RED version 1.0): a parsimonious approach to modelling vegetation dynamics in Earth system models
The GGCMI Phase 2 emulators: global gridded crop model responses to changes in CO2, temperature, water, and nitrogen (version 1.0)
Role of vegetation in representing land surface temperature in the CHTESSEL (CY45R1) and SURFEX-ISBA (v8.1) land surface models: a case study over Iberia
Simulating the mid-Holocene, Last Interglacial and mid-Pliocene climate with EC-Earth3-LR
Michael Steiner, Beiping Luo, Thomas Peter, Michael C. Pitts, and Andrea Stenke
Geosci. Model Dev., 14, 935–959, https://doi.org/10.5194/gmd-14-935-2021, https://doi.org/10.5194/gmd-14-935-2021, 2021
Short summary
Short summary
We evaluate polar stratospheric clouds (PSCs) as simulated by the chemistry–climate model (CCM) SOCOLv3.1 in comparison with measurements by the CALIPSO satellite. A cold bias results in an overestimated PSC area and mountain-wave ice is underestimated, but we find overall good temporal and spatial agreement of PSC occurrence and composition. This work confirms previous studies indicating that simplified PSC schemes may also achieve good approximations of the fundamental properties of PSCs.
Zhaoyuan Yu, Dongshuang Li, Zhengfang Zhang, Wen Luo, Yuan Liu, Zengjie Wang, and Linwang Yuan
Geosci. Model Dev., 14, 875–887, https://doi.org/10.5194/gmd-14-875-2021, https://doi.org/10.5194/gmd-14-875-2021, 2021
Short summary
Short summary
Few lossy compression methods consider both the global and local multidimensional coupling correlations, which could lead to information loss in data compression. Here we develop an adaptive lossy compression method, Adaptive-HGFDR, to capture both the global and local variation of multidimensional coupling correlations and improve approximation accuracy. The method can achieve good compression performances for most flux variables with significant spatiotemporal heterogeneity.
Franziska Winterstein and Patrick Jöckel
Geosci. Model Dev., 14, 661–674, https://doi.org/10.5194/gmd-14-661-2021, https://doi.org/10.5194/gmd-14-661-2021, 2021
Short summary
Short summary
Atmospheric methane is currently a hot topic in climate research. This is partly due to its chemically active nature. We introduce a simplified approach to simulate methane in climate models to enable large sensitivity studies by reducing computational cost but including the crucial feedback of methane on stratospheric water vapour. We further provide options to simulate the isotopic content of methane and to generate output for an inverse optimization technique for emission estimation.
Ruth Petrie, Sébastien Denvil, Sasha Ames, Guillaume Levavasseur, Sandro Fiore, Chris Allen, Fabrizio Antonio, Katharina Berger, Pierre-Antoine Bretonnière, Luca Cinquini, Eli Dart, Prashanth Dwarakanath, Kelsey Druken, Ben Evans, Laurent Franchistéguy, Sébastien Gardoll, Eric Gerbier, Mark Greenslade, David Hassell, Alan Iwi, Martin Juckes, Stephan Kindermann, Lukasz Lacinski, Maria Mirto, Atef Ben Nasser, Paola Nassisi, Eric Nienhouse, Sergey Nikonov, Alessandra Nuzzo, Clare Richards, Syazwan Ridzwan, Michel Rixen, Kim Serradell, Kate Snow, Ag Stephens, Martina Stockhause, Hans Vahlenkamp, and Rick Wagner
Geosci. Model Dev., 14, 629–644, https://doi.org/10.5194/gmd-14-629-2021, https://doi.org/10.5194/gmd-14-629-2021, 2021
Short summary
Short summary
This paper describes the infrastructure that is used to distribute Coupled Model Intercomparison Project Phase 6 (CMIP6) data around the world for analysis by the climate research community. It is expected that there will be ~20 PB (petabytes) of data available for analysis. The operations team performed a series of preparation "data challenges" to ensure all components of the infrastructure were operational for when the data became available for timely data distribution and subsequent analysis.
Camilla Mathison, Andrew J. Challinor, Chetan Deva, Pete Falloon, Sébastien Garrigues, Sophie Moulin, Karina Williams, and Andy Wiltshire
Geosci. Model Dev., 14, 437–471, https://doi.org/10.5194/gmd-14-437-2021, https://doi.org/10.5194/gmd-14-437-2021, 2021
Short summary
Short summary
Sequential cropping (also known as multiple or double cropping) is a common cropping system, particularly in tropical regions. Typically, land surface models only simulate a single crop per year. To understand how sequential crops influence surface fluxes, we implement sequential cropping in JULES to simulate all the crops grown within a year at a given location in a seamless way. We demonstrate the method using a site in Avignon, four locations in India and a regional run for two Indian states.
Chao Wang, Xingqin An, Qing Hou, Zhaobin Sun, Yanjun Li, and Jiangtao Li
Geosci. Model Dev., 14, 337–350, https://doi.org/10.5194/gmd-14-337-2021, https://doi.org/10.5194/gmd-14-337-2021, 2021
Kalyn Dorheim, Steven J. Smith, and Ben Bond-Lamberty
Geosci. Model Dev., 14, 365–375, https://doi.org/10.5194/gmd-14-365-2021, https://doi.org/10.5194/gmd-14-365-2021, 2021
Short summary
Short summary
Simple climate models are frequently used in research and decision-making communities because of their tractability and low computational cost. Simple climate models are diverse, including highly idealized and process-based models. Here we present a hybrid approach that combines the strength of two types of simple climate models in a flexible framework. This hybrid approach has provided insights into the climate system and opens an avenue for investigating radiative forcing uncertainties.
David N. Bresch and Gabriela Aznar-Siguan
Geosci. Model Dev., 14, 351–363, https://doi.org/10.5194/gmd-14-351-2021, https://doi.org/10.5194/gmd-14-351-2021, 2021
Short summary
Short summary
Climate change is a fact and adaptation a necessity. The Economics of Climate Adaptation methodology provides a framework to integrate risk and reward perspectives of different stakeholders, underpinned by the CLIMADA impact modelling platform. This extended version of CLIMADA enables risk assessment and options appraisal in a modular form and occasionally bespoke fashion yet with high reusability of functionalities to foster usage in interdisciplinary studies and international collaboration.
Adam T. Blaker, Manoj Joshi, Bablu Sinha, David P. Stevens, Robin S. Smith, and Joël J.-M. Hirschi
Geosci. Model Dev., 14, 275–293, https://doi.org/10.5194/gmd-14-275-2021, https://doi.org/10.5194/gmd-14-275-2021, 2021
Short summary
Short summary
FORTE 2.0 is a flexible coupled atmosphere–ocean general circulation model that can be run on modest hardware. We present two 2000-year simulations which show that FORTE 2.0 is capable of producing a stable climate. Earlier versions of FORTE were used for a wide range of studies, ranging from aquaplanet configurations to investigating the cold European winters of 2009–2010. This paper introduces the updated model for which the code and configuration are now publicly available.
Ah-Hyun Kim, Seong Soo Yum, Dong Yeong Chang, and Minsu Park
Geosci. Model Dev., 14, 259–273, https://doi.org/10.5194/gmd-14-259-2021, https://doi.org/10.5194/gmd-14-259-2021, 2021
Short summary
Short summary
A new method to estimate the sulfate aerosol hygroscopicity parameter (κSO4) is suggested that can consider κSO4 for two different sulfate species instead of prescribing a single κSO4 value, as in most previous studies. The new method simulates more realistic cloud droplet concentrations and, thus, a more realistic cloud albedo effect than the original method. The new method is simple and readily applicable to modeling studies investigating sulfate aerosols’ effect in aerosol–cloud interactions.
Brigitta Szabó, Melanie Weynants, and Tobias K. D. Weber
Geosci. Model Dev., 14, 151–175, https://doi.org/10.5194/gmd-14-151-2021, https://doi.org/10.5194/gmd-14-151-2021, 2021
Short summary
Short summary
This paper presents updated European prediction algorithms (euptf2) to compute soil hydraulic parameters from easily available soil properties. The new algorithms lead to significantly better predictions and provide a built-in prediction uncertainty computation. The influence of predictor variables on predicted soil hydraulic properties is explored and practical guidance on how to use the derived PTFs is provided. A website and an R package facilitate easy application of the updated predictions.
Zhanshan Ma, Chuanfeng Zhao, Jiandong Gong, Jin Zhang, Zhe Li, Jian Sun, Yongzhu Liu, Jiong Chen, and Qingu Jiang
Geosci. Model Dev., 14, 205–221, https://doi.org/10.5194/gmd-14-205-2021, https://doi.org/10.5194/gmd-14-205-2021, 2021
Short summary
Short summary
The spin-up in GRAPES_GFS, under different initial fields, goes through a dramatic adjustment in the first half-hour of integration and slow dynamic and thermal adjustments afterwards. It lasts for at least 6 h, with model adjustment gradually completed from lower to upper layers in the model. Thus, the forecast results, at least in the first 6 h, should be avoided when used. In addition, the spin-up process should repeat when the model simulation is interrupted.
Chein-Jung Shiu, Yi-Chi Wang, Huang-Hsiung Hsu, Wei-Ting Chen, Hua-Lu Pan, Ruiyu Sun, Yi-Hsuan Chen, and Cheng-An Chen
Geosci. Model Dev., 14, 177–204, https://doi.org/10.5194/gmd-14-177-2021, https://doi.org/10.5194/gmd-14-177-2021, 2021
Short summary
Short summary
A cloud macrophysics scheme utilizing grid-mean hydrometeor information is developed and evaluated for climate models. The GFS–TaiESM–Sundqvist (GTS) scheme can simulate variations of cloud fraction associated with relative humidity (RH) in a more consistent way than the default scheme of CAM5.3. Through better cloud–RH distributions, the GTS scheme helps to better represent cloud fraction, cloud radiative forcing, and thermodynamic-related climatic fields in climate simulations.
Katherine A. Crichton, Jamie D. Wilson, Andy Ridgwell, and Paul N. Pearson
Geosci. Model Dev., 14, 125–149, https://doi.org/10.5194/gmd-14-125-2021, https://doi.org/10.5194/gmd-14-125-2021, 2021
Short summary
Short summary
Temperature is a controller of metabolic processes and therefore also a controller of the ocean's biological carbon pump (BCP). We calibrate a temperature-dependent version of the BCP in the cGENIE Earth system model. Since the pre-industrial period, warming has intensified near-surface nutrient recycling, supporting production and largely offsetting stratification-induced surface nutrient limitation. But at the same time less carbon that sinks out of the surface then reaches the deep ocean.
Jane P. Mulcahy, Colin Johnson, Colin G. Jones, Adam C. Povey, Catherine E. Scott, Alistair Sellar, Steven T. Turnock, Matthew T. Woodhouse, Nathan Luke Abraham, Martin B. Andrews, Nicolas Bellouin, Jo Browse, Ken S. Carslaw, Mohit Dalvi, Gerd A. Folberth, Matthew Glover, Daniel P. Grosvenor, Catherine Hardacre, Richard Hill, Ben Johnson, Andy Jones, Zak Kipling, Graham Mann, James Mollard, Fiona M. O'Connor, Julien Palmiéri, Carly Reddington, Steven T. Rumbold, Mark Richardson, Nick A. J. Schutgens, Philip Stier, Marc Stringer, Yongming Tang, Jeremy Walton, Stephanie Woodward, and Andrew Yool
Geosci. Model Dev., 13, 6383–6423, https://doi.org/10.5194/gmd-13-6383-2020, https://doi.org/10.5194/gmd-13-6383-2020, 2020
Short summary
Short summary
Aerosols are an important component of the Earth system. Here, we comprehensively document and evaluate the aerosol schemes as implemented in the physical and Earth system models, HadGEM3-GC3.1 and UKESM1. This study provides a useful characterisation of the aerosol climatology in both models, facilitating the understanding of the numerous aerosol–climate interaction studies that will be conducted for CMIP6 and beyond.
Hao Yu, Li Liu, Chao Sun, Ruizhe Li, Xinzhu Yu, Cheng Zhang, Zhiyuan Zhang, and Bin Wang
Geosci. Model Dev., 13, 6253–6263, https://doi.org/10.5194/gmd-13-6253-2020, https://doi.org/10.5194/gmd-13-6253-2020, 2020
Short summary
Short summary
Routing network generation is a major step for initializing the data transfer functionality for model coupling. The distributed implementation for routing network generation (DiRong1.0) proposed in this paper can significantly improve the global implementation of routing network generation used in some existing coupling software, because it does not introduce any gather–broadcast communications and achieves much lower complexity in terms of time, memory, and communication.
Øyvind Seland, Mats Bentsen, Dirk Olivié, Thomas Toniazzo, Ada Gjermundsen, Lise Seland Graff, Jens Boldingh Debernard, Alok Kumar Gupta, Yan-Chun He, Alf Kirkevåg, Jörg Schwinger, Jerry Tjiputra, Kjetil Schanke Aas, Ingo Bethke, Yuanchao Fan, Jan Griesfeller, Alf Grini, Chuncheng Guo, Mehmet Ilicak, Inger Helene Hafsahl Karset, Oskar Landgren, Johan Liakka, Kine Onsum Moseid, Aleksi Nummelin, Clemens Spensberger, Hui Tang, Zhongshi Zhang, Christoph Heinze, Trond Iversen, and Michael Schulz
Geosci. Model Dev., 13, 6165–6200, https://doi.org/10.5194/gmd-13-6165-2020, https://doi.org/10.5194/gmd-13-6165-2020, 2020
Short summary
Short summary
The second version of the coupled Norwegian Earth System Model (NorESM2) is presented and evaluated. The temperature and precipitation patterns has improved compared to NorESM1. The model reaches present-day warming levels to within 0.2 °C of observed temperature but with a delayed warming during the late 20th century. Under the four scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5), the warming in the period of 2090–2099 compared to 1850–1879 reaches 1.3, 2.2, 3.1, and 3.9 K.
Wieke Heldens, Cornelia Burmeister, Farah Kanani-Sühring, Björn Maronga, Dirk Pavlik, Matthias Sühring, Julian Zeidler, and Thomas Esch
Geosci. Model Dev., 13, 5833–5873, https://doi.org/10.5194/gmd-13-5833-2020, https://doi.org/10.5194/gmd-13-5833-2020, 2020
Short summary
Short summary
For realistic microclimate simulations in urban areas with PALM 6.0, detailed description of surface types, buildings and vegetation is required. This paper shows how such input data sets can be derived with the example of three German cities. Various data sources are used, including remote sensing, municipal data collections and open data such as OpenStreetMap. The collection and preparation of input data sets is tedious. Future research aims therefore at semi-automated tools to support users.
Emmanuele Russo, Silje Lund Sørland, Ingo Kirchner, Martijn Schaap, Christoph C. Raible, and Ulrich Cubasch
Geosci. Model Dev., 13, 5779–5797, https://doi.org/10.5194/gmd-13-5779-2020, https://doi.org/10.5194/gmd-13-5779-2020, 2020
Short summary
Short summary
The parameter space of the COSMO-CLM RCM is investigated for the Central Asia CORDEX domain using a perturbed physics ensemble (PPE) with different parameter values. Results show that only a subset of model parameters presents relevant changes in model performance and these changes depend on the considered region and variable: objective calibration methods are highly necessary in this case. Additionally, the results suggest the need for calibrating an RCM when targeting different domains.
Carley E. Iles, Robert Vautard, Jane Strachan, Sylvie Joussaume, Bernd R. Eggen, and Chris D. Hewitt
Geosci. Model Dev., 13, 5583–5607, https://doi.org/10.5194/gmd-13-5583-2020, https://doi.org/10.5194/gmd-13-5583-2020, 2020
Short summary
Short summary
We investigate how increased resolution affects the simulation of European climate extremes for global and regional climate models to inform modelling strategies. Precipitation extremes become heavier with higher resolution, especially over mountains, wind extremes become somewhat stronger, and for temperature extremes warm biases are reduced over mountains. Differences with resolution for the global model appear to come from downscaling effects rather than improved large-scale circulation.
Marie-Estelle Demory, Ségolène Berthou, Jesús Fernández, Silje L. Sørland, Roman Brogli, Malcolm J. Roberts, Urs Beyerle, Jon Seddon, Rein Haarsma, Christoph Schär, Erasmo Buonomo, Ole B. Christensen, James M. Ciarlo ̀, Rowan Fealy, Grigory Nikulin, Daniele Peano, Dian Putrasahan, Christopher D. Roberts, Retish Senan, Christian Steger, Claas Teichmann, and Robert Vautard
Geosci. Model Dev., 13, 5485–5506, https://doi.org/10.5194/gmd-13-5485-2020, https://doi.org/10.5194/gmd-13-5485-2020, 2020
Short summary
Short summary
Now that global climate models (GCMs) can run at similar resolutions to regional climate models (RCMs), one may wonder whether GCMs and RCMs provide similar regional climate information. We perform an evaluation for daily precipitation distribution in PRIMAVERA GCMs (25–50 km resolution) and CORDEX RCMs (12–50 km resolution) over Europe. We show that PRIMAVERA and CORDEX simulate similar distributions. Considering both datasets at such a resolution results in large benefits for impact studies.
George C. Hurtt, Louise Chini, Ritvik Sahajpal, Steve Frolking, Benjamin L. Bodirsky, Katherine Calvin, Jonathan C. Doelman, Justin Fisk, Shinichiro Fujimori, Kees Klein Goldewijk, Tomoko Hasegawa, Peter Havlik, Andreas Heinimann, Florian Humpenöder, Johan Jungclaus, Jed O. Kaplan, Jennifer Kennedy, Tamás Krisztin, David Lawrence, Peter Lawrence, Lei Ma, Ole Mertz, Julia Pongratz, Alexander Popp, Benjamin Poulter, Keywan Riahi, Elena Shevliakova, Elke Stehfest, Peter Thornton, Francesco N. Tubiello, Detlef P. van Vuuren, and Xin Zhang
Geosci. Model Dev., 13, 5425–5464, https://doi.org/10.5194/gmd-13-5425-2020, https://doi.org/10.5194/gmd-13-5425-2020, 2020
Short summary
Short summary
To estimate the effects of human land use activities on the carbon–climate system, a new set of global gridded land use forcing datasets was developed to link historical land use data to eight future scenarios in a standard format required by climate models. This new generation of land use harmonization (LUH2) includes updated inputs, higher spatial resolution, more detailed land use transitions, and the addition of important agricultural management layers; it will be used for CMIP6 simulations.
Philip Goodwin, Martin Leduc, Antti-Ilari Partanen, H. Damon Matthews, and Alex Rogers
Geosci. Model Dev., 13, 5389–5399, https://doi.org/10.5194/gmd-13-5389-2020, https://doi.org/10.5194/gmd-13-5389-2020, 2020
Short summary
Short summary
Numerical climate models are used to make projections of future surface warming for different pathways of future greenhouse gas emissions, where future surface warming will vary from place to place. However, it is so expensive to run complex models using supercomputers that future projections can only be produced for a small number of possible future emissions pathways. This study presents an efficient climate model to make projections of local surface warming using a desktop computer.
Mathieu Vrac and Soulivanh Thao
Geosci. Model Dev., 13, 5367–5387, https://doi.org/10.5194/gmd-13-5367-2020, https://doi.org/10.5194/gmd-13-5367-2020, 2020
Short summary
Short summary
We propose a multivariate bias correction (MBC) method to adjust the spatial and/or inter-variable properties of climate simulations, while also accounting for their temporal dependences (e.g., autocorrelations).
It consists on a method reordering the ranks of the time series according to their multivariate distance to a reference time series.
Results show that temporal correlations are improved while spatial and inter-variable correlations are still satisfactorily corrected.
Hella Garny, Roland Walz, Matthias Nützel, and Thomas Birner
Geosci. Model Dev., 13, 5229–5257, https://doi.org/10.5194/gmd-13-5229-2020, https://doi.org/10.5194/gmd-13-5229-2020, 2020
Short summary
Short summary
Numerical models of Earth's climate system have been gaining more and more complexity over the last decades. Therefore, it is important to establish simplified models to improve process understanding. In our study, we present and document the development of a new simplified model setup within the framework of a complex climate model system that uses the same routines to calculate atmospheric dynamics as the complex model but is simplified in the representation of clouds and radiation.
Yingxia Gao, Nicholas P. Klingaman, Charlotte A. DeMott, and Pang-Chi Hsu
Geosci. Model Dev., 13, 5191–5209, https://doi.org/10.5194/gmd-13-5191-2020, https://doi.org/10.5194/gmd-13-5191-2020, 2020
Short summary
Short summary
Both the air–sea coupling and ocean mean state affect the fidelity of simulated boreal summer intraseasonal oscillation (BSISO). To elucidate their relative effects on the simulated BSISO, a set of experiments was conducted using a superparameterized AGCM and its coupled version. Both air–sea coupling and cold ocean mean state improve the BSISO amplitude due to the suppression of the overestimated variance, while the former (latter) could further upgrade (degrade) the BSISO propagation.
Zebedee R. J. Nicholls, Malte Meinshausen, Jared Lewis, Robert Gieseke, Dietmar Dommenget, Kalyn Dorheim, Chen-Shuo Fan, Jan S. Fuglestvedt, Thomas Gasser, Ulrich Golüke, Philip Goodwin, Corinne Hartin, Austin P. Hope, Elmar Kriegler, Nicholas J. Leach, Davide Marchegiani, Laura A. McBride, Yann Quilcaille, Joeri Rogelj, Ross J. Salawitch, Bjørn H. Samset, Marit Sandstad, Alexey N. Shiklomanov, Ragnhild B. Skeie, Christopher J. Smith, Steve Smith, Katsumasa Tanaka, Junichi Tsutsui, and Zhiang Xie
Geosci. Model Dev., 13, 5175–5190, https://doi.org/10.5194/gmd-13-5175-2020, https://doi.org/10.5194/gmd-13-5175-2020, 2020
Short summary
Short summary
Computational limits mean that we cannot run our most comprehensive climate models for all applications of interest. In such cases, reduced complexity models (RCMs) are used. Here, researchers working on 15 different models present the first systematic community effort to evaluate and compare RCMs: the Reduced Complexity Model Intercomparison Project (RCMIP). Our research ensures that users of RCMs can more easily evaluate the strengths, weaknesses and limitations of their tools.
Jaeyoung Song, Gretchen R. Miller, Anthony T. Cahill, Luiza Maria T. Aparecido, and Georgianne W. Moore
Geosci. Model Dev., 13, 5147–5173, https://doi.org/10.5194/gmd-13-5147-2020, https://doi.org/10.5194/gmd-13-5147-2020, 2020
Short summary
Short summary
The performance of a land surface model (CLM4.5 and 5.0) was examined against a suite of measurements from a tropical montane rainforest in Costa Rica. Both versions failed to capture the effects of frequent rainfall events and mountainous terrain on temperature, leaf wetness, photosynthesis, and transpiration. While the new model version eliminated some errors, it still cannot precisely simulate a number of processes. This suggests that two key components of the model need modification.
Patricio Velasquez, Martina Messmer, and Christoph C. Raible
Geosci. Model Dev., 13, 5007–5027, https://doi.org/10.5194/gmd-13-5007-2020, https://doi.org/10.5194/gmd-13-5007-2020, 2020
Short summary
Short summary
This work presents a new bias-correction method for precipitation that considers orographic characteristics, which can be used in studies where the latter strongly changes. The three-step correction method consists of a separation into orographic features, correction of low-intensity precipitation, and application of empirical quantile mapping. Seasonal bias induced by the global climate model is fully corrected. Rigorous cross-validations illustrate the method's applicability and robustness.
Johannes Horak, Marlis Hofer, Ethan Gutmann, Alexander Gohm, and Mathias W. Rotach
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2020-317, https://doi.org/10.5194/gmd-2020-317, 2020
Revised manuscript accepted for GMD
Short summary
Short summary
The presented process based evaluation of the atmospheric model ICAR is conducted to derive recommendations to increase the likelihood of its results being correct for the right reasons. We conclude that a different diagnosis of the atmospheric background state is necessary, as well as a model top at an elevation of at least 10 km. Alternative boundary conditions at the top were not found effective in reducing this model top elevation. The results have wide implications for future ICAR studies.
Eric Larour, Lambert Caron, Mathieu Morlighem, Surendra Adhikari, Thomas Frederikse, Nicole-Jeanne Schlegel, Erik Ivins, Benjamin Hamlington, Robert Kopp, and Sophie Nowicki
Geosci. Model Dev., 13, 4925–4941, https://doi.org/10.5194/gmd-13-4925-2020, https://doi.org/10.5194/gmd-13-4925-2020, 2020
Short summary
Short summary
ISSM-SLPS is a new projection system for future sea level that increases the resolution and accuracy of current projection systems and improves the way uncertainty is treated in such projections. This will pave the way for better inclusion of state-of-the-art results from existing intercomparison efforts carried out by the scientific community, such as GlacierMIP2 or ISMIP6, into sea-level projections.
Hiroshi Yamashita, Feijia Yin, Volker Grewe, Patrick Jöckel, Sigrun Matthes, Bastian Kern, Katrin Dahlmann, and Christine Frömming
Geosci. Model Dev., 13, 4869–4890, https://doi.org/10.5194/gmd-13-4869-2020, https://doi.org/10.5194/gmd-13-4869-2020, 2020
Short summary
Short summary
This paper describes the updated submodel AirTraf 2.0 which simulates global air traffic in the ECHAM/MESSy Atmospheric Chemistry (EMAC) model. Nine aircraft routing options have been integrated, including contrail avoidance, minimum economic costs, and minimum climate impact. Example simulations reveal characteristics of different routing options on air traffic performances. The consistency of the AirTraf simulations is verified with literature data.
Landon A. Rieger, Jason N. S. Cole, John C. Fyfe, Stephen Po-Chedley, Philip J. Cameron-Smith, Paul J. Durack, Nathan P. Gillett, and Qi Tang
Geosci. Model Dev., 13, 4831–4843, https://doi.org/10.5194/gmd-13-4831-2020, https://doi.org/10.5194/gmd-13-4831-2020, 2020
Short summary
Short summary
Recently, the stratospheric aerosol forcing dataset used as an input to the Coupled Model Intercomparison Project phase 6 was updated. This work explores the impact of those changes on the modelled historical climates in the CanESM5 and EAMv1 models. Temperature differences in the stratosphere shortly after the Pinatubo eruption are found to be significant, but surface temperatures and precipitation do not show a significant change.
Shaoqing Zhang, Haohuan Fu, Lixin Wu, Yuxuan Li, Hong Wang, Yunhui Zeng, Xiaohui Duan, Wubing Wan, Li Wang, Yuan Zhuang, Hongsong Meng, Kai Xu, Ping Xu, Lin Gan, Zhao Liu, Sihai Wu, Yuhu Chen, Haining Yu, Shupeng Shi, Lanning Wang, Shiming Xu, Wei Xue, Weiguo Liu, Qiang Guo, Jie Zhang, Guanghui Zhu, Yang Tu, Jim Edwards, Allison Baker, Jianlin Yong, Man Yuan, Yangyang Yu, Qiuying Zhang, Zedong Liu, Mingkui Li, Dongning Jia, Guangwen Yang, Zhiqiang Wei, Jingshan Pan, Ping Chang, Gokhan Danabasoglu, Stephen Yeager, Nan Rosenbloom, and Ying Guo
Geosci. Model Dev., 13, 4809–4829, https://doi.org/10.5194/gmd-13-4809-2020, https://doi.org/10.5194/gmd-13-4809-2020, 2020
Short summary
Short summary
Science advancement and societal needs require Earth system modelling with higher resolutions that demand tremendous computing power. We successfully scale the 10 km ocean and 25 km atmosphere high-resolution Earth system model to a new leading-edge heterogeneous supercomputer using state-of-the-art optimizing methods, promising the solution of high spatial resolution and time-varying frequency. Corresponding technical breakthroughs are of significance in modelling and HPC design communities.
Gill M. Martin, Richard C. Levine, José M. Rodriguez, and Michael Vellinga
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2020-268, https://doi.org/10.5194/gmd-2020-268, 2020
Revised manuscript accepted for GMD
Short summary
Short summary
Our study highlights a number of different techniques that can be employed to investigate the sources of model error. We demonstrate how this methodology can be used to identify the regions and model components responsible for the development of long-standing errors in the Asian Summer Monsoon. Once these are known, further work can be done to explore the local processes contributing to this behaviour and their sensitivity to changes in physical parameterizations and/or model resolution.
Tokuta Yokohata, Tsuguki Kinoshita, Gen Sakurai, Yadu Pokhrel, Akihiko Ito, Masashi Okada, Yusuke Satoh, Etsushi Kato, Tomoko Nitta, Shinichiro Fujimori, Farshid Felfelani, Yoshimitsu Masaki, Toshichika Iizumi, Motoki Nishimori, Naota Hanasaki, Kiyoshi Takahashi, Yoshiki Yamagata, and Seita Emori
Geosci. Model Dev., 13, 4713–4747, https://doi.org/10.5194/gmd-13-4713-2020, https://doi.org/10.5194/gmd-13-4713-2020, 2020
Short summary
Short summary
The most significant feature of MIROC-INTEG-LAND is that the land surface model that describes the processes of the energy and water balances, human water management, and crop growth incorporates a land-use decision-making model based on economic activities. The future simulations indicate that changes in climate have significant impacts on crop yields, land use, and irrigation water demand.
Chia-Te Chien, Markus Pahlow, Markus Schartau, and Andreas Oschlies
Geosci. Model Dev., 13, 4691–4712, https://doi.org/10.5194/gmd-13-4691-2020, https://doi.org/10.5194/gmd-13-4691-2020, 2020
Short summary
Short summary
We demonstrate sensitivities of tracers to parameters of a new optimality-based plankton–ecosystem model (OPEM) in the UVic-ESCM. We find that changes in phytoplankton subsistence nitrogen quota strongly impact the nitrogen inventory, nitrogen fixation, and elemental stoichiometry of ordinary phytoplankton and diazotrophs. We introduce a new likelihood-based metric for model calibration, and it shows the capability of constraining globally averaged oxygen, nitrate, and DIC concentrations.
Markus Pahlow, Chia-Te Chien, Lionel A. Arteaga, and Andreas Oschlies
Geosci. Model Dev., 13, 4663–4690, https://doi.org/10.5194/gmd-13-4663-2020, https://doi.org/10.5194/gmd-13-4663-2020, 2020
Short summary
Short summary
The stoichiometry of marine biotic processes is important for the regulation of atmospheric CO2 and hence the global climate. We replace a simplistic, fixed-stoichiometry plankton module in an Earth system model with an optimal-regulation model with variable stoichiometry. Our model compares better to the observed carbon transfer from the surface to depth and surface nutrient distributions. This work could aid our ability to describe and project the role of marine ecosystems in the Earth system.
Yong Wang, Guang J. Zhang, Shaocheng Xie, Wuyin Lin, George C. Craig, Qi Tang, and Hsi-Yen Ma
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2020-249, https://doi.org/10.5194/gmd-2020-249, 2020
Preprint under review for GMD
Short summary
Short summary
A stochastic deep convection parameterization is implemented into the U.S. Department of Energy Energy Exascale Earth System Model Atmosphere Model version 1 (EAMv1). Compared to the default model, the well-known problem of
too much light rain and too little heavy rainis largely alleviated over the tropics with the stochastic scheme. Results from this study provide important insights into the model performance of EAMv1 when stochasticity is included in deep convective parameterization.
Peter A. Bogenschutz, Shuaiqi Tang, Peter M. Caldwell, Shaocheng Xie, Wuyin Lin, and Yao-Sheng Chen
Geosci. Model Dev., 13, 4443–4458, https://doi.org/10.5194/gmd-13-4443-2020, https://doi.org/10.5194/gmd-13-4443-2020, 2020
Short summary
Short summary
This paper documents a tool that has been developed that can be used to accelerate the development and understanding of climate models. This version of the model, known as a the single-column model, is much faster to run than the full climate model, and we demonstrate that this tool can be used to quickly exploit model biases that arise due to physical processes. We show examples of how this single-column model can directly benefit the field.
Ying Liu, Rodrigo Caballero, and Joy Merwin Monteiro
Geosci. Model Dev., 13, 4399–4412, https://doi.org/10.5194/gmd-13-4399-2020, https://doi.org/10.5194/gmd-13-4399-2020, 2020
Short summary
Short summary
The calculation of atmospheric radiative transfer is the most computationally expensive part of climate models. Reducing this computational burden could potentially improve our ability to simulate the earth's climate at finer scales. We propose using a statistical model – a deep neural network – to compute approximate radiative transfer in the earth's atmosphere. We demonstrate a significant reduction in computational burden as compared to a traditional scheme, especially when using GPUs.
Lars Nerger, Qi Tang, and Longjiang Mu
Geosci. Model Dev., 13, 4305–4321, https://doi.org/10.5194/gmd-13-4305-2020, https://doi.org/10.5194/gmd-13-4305-2020, 2020
Short summary
Short summary
Data assimilation combines observations with numerical models to get an improved estimate of the model state. This work discusses the technical aspects of how a coupled model that simulates the ocean and the atmosphere can be augmented by data assimilation functionality provided in generic form by the open-source software PDAF (Parallel Data Assimilation Framework). A very efficient program is obtained that can be executed on high-performance computers.
Christof G. Beer, Johannes Hendricks, Mattia Righi, Bernd Heinold, Ina Tegen, Silke Groß, Daniel Sauer, Adrian Walser, and Bernadett Weinzierl
Geosci. Model Dev., 13, 4287–4303, https://doi.org/10.5194/gmd-13-4287-2020, https://doi.org/10.5194/gmd-13-4287-2020, 2020
Short summary
Short summary
Mineral dust aerosol plays an important role in the climate system. Previously, dust emissions have often been represented in global models by prescribed monthly-mean emission fields representative of a specific year. We now apply an online calculation of wind-driven dust emissions. This results in an improved agreement with observations, due to a better representation of the highly variable dust emissions. Increasing the model resolution led to an additional performance gain.
Nadine Mengis, David P. Keller, Andrew H. MacDougall, Michael Eby, Nesha Wright, Katrin J. Meissner, Andreas Oschlies, Andreas Schmittner, Alexander J. MacIsaac, H. Damon Matthews, and Kirsten Zickfeld
Geosci. Model Dev., 13, 4183–4204, https://doi.org/10.5194/gmd-13-4183-2020, https://doi.org/10.5194/gmd-13-4183-2020, 2020
Short summary
Short summary
In this paper, we evaluate the newest version of the University of Victoria Earth System Climate Model (UVic ESCM 2.10). Combining recent model developments as a joint effort, this version is to be used in the next phase of model intercomparison and climate change studies. The UVic ESCM 2.10 is capable of reproducing changes in historical temperature and carbon fluxes well. Additionally, the model is able to reproduce the three-dimensional distribution of many ocean tracers.
Axel Lauer, Veronika Eyring, Omar Bellprat, Lisa Bock, Bettina K. Gier, Alasdair Hunter, Ruth Lorenz, Núria Pérez-Zanón, Mattia Righi, Manuel Schlund, Daniel Senftleben, Katja Weigel, and Sabrina Zechlau
Geosci. Model Dev., 13, 4205–4228, https://doi.org/10.5194/gmd-13-4205-2020, https://doi.org/10.5194/gmd-13-4205-2020, 2020
Short summary
Short summary
The Earth System Model Evaluation Tool is a community software tool designed for evaluation and analysis of climate models. New features of version 2.0 include analysis scripts for important large-scale features in climate models, diagnostics for extreme events, regional model and impact evaluation. In this paper, newly implemented climate metrics, emergent constraints for climate-relevant feedbacks and diagnostics for future model projections are described and illustrated with examples.
Brecht Martens, Dominik L. Schumacher, Hendrik Wouters, Joaquín Muñoz-Sabater, Niko E. C. Verhoest, and Diego G. Miralles
Geosci. Model Dev., 13, 4159–4181, https://doi.org/10.5194/gmd-13-4159-2020, https://doi.org/10.5194/gmd-13-4159-2020, 2020
Short summary
Short summary
Climate reanalyses are widely used in different fields and an in-depth evaluation of the different variables provided by reanalyses is a necessary means to provide feedback on the quality to their users and the operational centres producing these data sets. In this study, we show the improvements of ECMWF's latest climate reanalysis (ERA5) upon its predecessor (ERA-Interim) in partitioning the available energy at the land surface.
Arthur P. K. Argles, Jonathan R. Moore, Chris Huntingford, Andrew J. Wiltshire, Anna B. Harper, Chris D. Jones, and Peter M. Cox
Geosci. Model Dev., 13, 4067–4089, https://doi.org/10.5194/gmd-13-4067-2020, https://doi.org/10.5194/gmd-13-4067-2020, 2020
Short summary
Short summary
The Robust Ecosystem Demography (RED) model simulates cohorts of vegetation through mass classes. RED establishes a framework for representing demographic changes through competition, growth, and mortality across the size distribution of a forest. The steady state of the model can be solved analytically, enabling initialization. When driven by mean growth rates from a land-surface model, RED is able to fit the observed global vegetation map, giving a map of implicit mortality rates.
James A. Franke, Christoph Müller, Joshua Elliott, Alex C. Ruane, Jonas Jägermeyr, Abigail Snyder, Marie Dury, Pete D. Falloon, Christian Folberth, Louis François, Tobias Hank, R. Cesar Izaurralde, Ingrid Jacquemin, Curtis Jones, Michelle Li, Wenfeng Liu, Stefan Olin, Meridel Phillips, Thomas A. M. Pugh, Ashwan Reddy, Karina Williams, Ziwei Wang, Florian Zabel, and Elisabeth J. Moyer
Geosci. Model Dev., 13, 3995–4018, https://doi.org/10.5194/gmd-13-3995-2020, https://doi.org/10.5194/gmd-13-3995-2020, 2020
Short summary
Short summary
Improving our understanding of the impacts of climate change on crop yields will be critical for global food security in the next century. The models often used to study the how climate change may impact agriculture are complex and costly to run. In this work, we describe a set of global crop model emulators (simplified models) developed under the Agricultural Model Intercomparison Project. Crop model emulators make agricultural simulations more accessible to policy or decision makers.
Miguel Nogueira, Clément Albergel, Souhail Boussetta, Frederico Johannsen, Isabel F. Trigo, Sofia L. Ermida, João P. A. Martins, and Emanuel Dutra
Geosci. Model Dev., 13, 3975–3993, https://doi.org/10.5194/gmd-13-3975-2020, https://doi.org/10.5194/gmd-13-3975-2020, 2020
Short summary
Short summary
We used earth observations to evaluate and improve the representation of land surface temperature (LST) and vegetation coverage over Iberia in CHTESSEL and SURFEX land surface models. We demonstrate the added value of updating the vegetation types and fractions together with the representation of vegetation coverage seasonality. Results show a large reduction in daily maximum LST systematic error during warm months, with neutral impacts in other seasons.
Qiong Zhang, Qiang Li, Qiang Zhang, Ellen Berntell, Josefine Axelsson, Jie Chen, Zixuan Han, Wesley de Nooijer, Zhengyao Lu, Klaus Wyser, and Shuting Yang
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2020-208, https://doi.org/10.5194/gmd-2020-208, 2020
Revised manuscript accepted for GMD
Short summary
Short summary
Paleoclimate modelling has long been regarded as a strong out-of-sample test-bed of the climate models that are used for the projection of future climate changes. Here, we document the model experiments setup for the three past warm periods with EC-Earth3-LR and present the results on the large-scale features from the completed production simulations. The simulations demonstrate the good performance of the model to capture the climate response under different climate forcings.
Cited articles
Abdul-Razzak, H. and Ghan, S. J.: A parameterization of aerosol activation 2. Multiple aerosol types, J. Geophys. Res., 105, 6837–6844, https://doi.org/10.1029/1999JD901161, 2000.
Adcroft, A., Hallberg, R., and Harrison, M.: A finite volume discretization of the pressure gradient force using analytic integration, Ocean Model., 22, 106–113, https://doi.org/10.1016/j.ocemod.2008.02.001, 2008.
Adler, R. F., Huffman, G. J., Chang, A., Ferraro, R., Xie, P. P., Janowiak, J., Rudolf, B., Schneider, U., Curtis, S., Bolvin, D., Gruber, A., Susskind, J., Arkin, P., and Nelkin, E.: The version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present), J. Hydrometeorol., 4, 1147–1167, 2003.
Alterskjær, K., Kristjánsson, J. E., and Hoose, C.: Do anthropogenic aerosols enhance or suppress the surface cloud forcing in the Arctic?, J. Geophys. Res., 115, D22204, https://doi.org/10.1029/2010JD014015, 2010.
Ammann, C. M., Meehl, G. A., Washington, W. M., and Zender, C. S.: A monthly and latitudinally varying volcanic forcing dataset in simulations of 20th century climate, Geophys. Res. Lett., 30, 12, https://doi.org/10.1029/2003GL016875, 2003.
Annamalai, H. and Slingo, J. M.: Active/break cycles: diagnosis of the intraseasonal variability of the Asian summer monsoon, Clim. Dynam., 18, 85–102, https://doi.org/10.1007/s003820100161, 2001.
Antonov, J. I., Seidov, D., Boyer, T. P., Locarnini, R. A., Mishonov, A. V., Garcia, H. E., Baranova, O. K., Zweng, M. M., and Johnson, D. R.: World Ocean Atlas 2009, Volume 2: Salinity, in: NOAA Atlas NESDIS 69, edited by: Levitus, S., U.S. Government Printing Office, Washington, DC, 184 pp., 2010.
Årthun, M., Eldevik, T., Smedsrud, L. H., Skagseth, Ø., and Ingvaldsen, R. B.: Quantifying the influence of Atlantic heat on Barents sea ice variability and retreat, J. Climate, 25, 4736–4743, https://doi.org/10.1175/JCLI-D-11-00466.1, 2012.
Assmann, K. M., Bentsen, M., Segschneider, J., and Heinze, C.: An isopycnic ocean carbon cycle model, Geosci. Model Dev., 3, 143–167, https://doi.org/10.5194/gmd-3-143-2010, 2010.
Bengtsson, L., Semenov, V. A., and Johannessen, O. M.: The early twentieth-century warming in the Arctic – a possible mechanism, J. Climate, 17, 4045–4057, 2004.
Bentsen, M., Drange, H., Furevik, T., and Zhou, T.: Simulated variability of the Atlantic meridional overturning circulation, Clim. Dynam., 22, 701–720, https://doi.org/10.1007/s00382-004-0397-x, 2004.
Bleck, R. and Smith, L. T.: A wind-driven isopycnic coordinate model of the North and Equatorial Atlantic Ocean, 1. Model development and supporting experiments, J. Geophys. Res., 95, 3273–3285, 1990.
Bleck, R., Rooth, C., Hu, D., and Smith, L. T.: Salinity-driven thermocline transients in a wind- and thermohaline-forced isopycnic coordinate model of the North Atlantic, J. Phys. Oceanogr., 22, 1486–1505, 1992.
Boé, J., Hall, A., and Qu, X.: September sea-ice cover in the Arctic Ocean projected to vanish by 2100, Nat. Geosci., 2, 341–343, https://doi.org/10.1038/ngeo467, 2009.
Boer, G. J. and Yu, B.: Climate sensitivity and response, Clim. Dynam., 20, 415–429, https://doi.org/10.1007/s00382-002-0283-3, 2003.
Booth, B. B. B., Dunstone, N. J., Halloran, P. R., Andrews, T., and Bellouin, N.: Aerosols implicated as a prime driver of twentieth-century North Atlantic climate variability, Nature, 484, 228–232, https://doi.org/10.1038/nature10946, 2012.
Branstator, G. and Selten, F.: "Modes of variability" and climate change, J. Climate, 22, 2639–2658, https://doi.org/10.1175/2008JCLI2517.1, 2009.
Bretherton, C. S., Widmann, M., Dymnikov, V. P., Wallace, J. M., and Bladé, I.: The effective number of spatial degrees of freedom of a time-varying field, J. Climate, 12, 1990–2009, 1999.
Briegleb, B. P. and Light, B.: A Delta-Eddington Mutiple Scattering Parameterization for Solar Radiation in the Sea Ice Component of the Community Climate System Model, Tech. Rep. NCAR/TN-472+STR, National Center for Atmospheric Research, Boulder, Colorado, USA, 2007.
Bromwich, D. H., Fogt, R. L., Hodges, K. I., and Walsh, J. E.: A tropospheric assessment of the ERA-40, NCEP, and JRA-25 global reanalyses in the polar regions, J. Geophys. Res., 112, D10111, https://doi.org/10.1029/2006JD007859, 2007.
Cassou, C.: Intraseasonal interaction between the Madden–Julian oscillation and the North Atlantic oscillation, Nature, 455, 523–527, https://doi.org/10.1038/nature07286, 2008.
Charlton-Perez, A. J., Baldwin, M. P., Birner, T., Black, R. X., Butler, A. H., Calvo, N., Davis, N. A., Gerber, E. P., Gillett, N., Hardiman, S., Kim, J., Kr{ü}ger, K., Lee, Y.-Y., Manzini, E., McDaniel, B. A., Polvani, L., Reichler, T., Shaw, T. A., Sigmond, M., Son, S.-W., Toohey, M., Wilcox, L., Yoden, S., Christiansen, B., Lott, F., Shindell, D., Yukimoto, S., and Watanabe, S.: On the lack of stratospheric dynamical variability in low-top versions of the CMIP5 models, J. Geophys. Res., 118, 2494–2505, 10.1002/jgrd.50125, 2013.
Chylek, P., Folland, C. K., Dijkstra, H. A., Lesins, G., and Dubey, M. K.: Ice-core data evidence for a prominent near 20 year time-scale of the Atlantic Multidecadal Oscillation, Geophys. Res. Lett., 38, L13704, 10.1029/2011GL047501, 2011.
Collins, W. D., Rasch, P. J., Boville, B. A., Hack, J. J., McCaa, J. R., Williamson, D. L., and Briegleb, B. P.: The formulation and atmospheric simulation of the community atmosphere model version, J. Climate, 19, 2144–2161, 2006.
Comiso, J.: Bootstrap Sea Ice Concentrations from Nimbus-7 SMMR and DMSP SSM/I, (1979–2010), digital media, National Snow and Ice Data Center, Boulder, Colorado, USA, 1999, available at: http://nsidc.org/data/nsidc-0079.html (last access: August 2012), updated 2012.
Cook, K. H., Meehl, G. A., and Arblaster, J. M.: Monsoon regimes and processes in CCSM4, Part II: African and American monsoon systems, J. Climate, 25, 2609–2621, https://doi.org/10.1175/JCLI-D-11-00185.1, 2012.
Craig, A. P., Vertenstein, M., and Jacob, R.: A new flexible coupler for earth system modeling developed for CCSM4 and CESM1, Int. J. High Perform. Comput. Appl., 26, 31–42, https://doi.org/10.1177/1094342011428141, 2012.
Delworth, T. L. and Knutson, T. R.: Simulation of early 20th century global warming, Science, 287, 2246–2250, 2000.
Delworth, T. L. and Mann, M. E.: Observed and simulated multidecadal variability in the Northern Hemisphere, Clim. Dynam., 16, 661–676, 2000.
Deser, C., Phillips, A. S., Tomas, R. A., Okumura, Y. M., Alexander, M. A., Capotondi, A., Scott, J. D., Kwon, Y. O., and Ohba, M.: ENSO and Pacific decadal variability in the community climate system model version, J. Climate, 4, 2622–2651, https://doi.org/10.1175/JCLI-D-11-00301.1, 2012.
Döös, K. and Webb, D. J.: The Deacon cell and the other meridional cells of the Southern Ocean, J. Phys. Oceanogr., 24, 429–442, 1994.
Drange, H., Dokken, T., Furevik, T., Gerdes, R., Berger, W., Nesje, A., Orvik, K. A., Skagseth, Ø., Skjelvan, I., and Østerhus, S.: The Nordic seas: an overview, in: The Nordic Seas: An Integrated Perspective, edited by: Drange, H., Dokken, T., Furevik, T., Gerdes, R., and Berger, W., AGU Monograph 158, American Geophysical Union, Washington DC, 1–10, 2005a.
Drange, H., Gerdes, R., Gao, Y., Karcher, M., Kauker, F., and Bentsen, M.: Ocean general circulation modelling of the Nordic Seas, in: The Nordic Seas: An Integrated Perspective, edited by: Drange, H., Dokken, T., Furevik, T., Gerdes, R., and Berger, W., AGU Monograph 158, American Geophysical Union, Washington DC, 199–200, 2005b.
Dukowicz, J. K. and Baumgardner, J. R.: Incremental remapping as a transport/advection algorithm, J. Comput. Phys., 160, 318–335, 2000.
Dunne, J. P., John, J. G., Adcroft, A. J., Griffies, S. M., Hallberg, R. W., Shevliakova, E., Stouffer, R. J., Cooke, W., Dunne, K. A., Harrison, M. J., Krasting, J. P., Malyshev, S. L., Milly, P. C. D., Phillipps, P. J., Sentman, L. T., Samuels, B. L., Spelman, M. J., Winton, M., Wittenberg, A. T., and Zadeh, N.: GFDL's ESM2 global coupled climate-carbon Earth System Models, Part I: Physical formulation and baseline simulation characteristics, J. Climate, 25, 6646–6665, https://doi.org/10.1175/JCLI-D-11-00560.1, 2012.
Eden, C. and Greatbatch, R. J.: Towards a mesoscale eddy closure, Ocean Model., 20, 223–239, https://doi.org/10.1016/j.ocemod.2007.09.002, 2008.
Eden, C., Jochum, M., and Danabasoglu, G.: Effects of different closures for thickness diffusivity, Ocean Model., 26, 47–59, https://doi.org/10.1016/j.ocemod.2008.08.004, 2009.
Escudier, R., Mignot, J., and Swingedouw, D.: A 20-year coupled ocean-sea ice-atmosphere variability mode in the North Atlantic in an AOGCM, Clim. Dynam., 40, 619–636, https://doi.org/10.1007/s00382-012-1402-4, 2013.
EUMETSAT: Global sea ice concentration reprocessing dataset 1978–2009 (v1.1, 2011), digital media, EUMETSAT Ocean and Sea Ice Satelitte Application Facility, Norwegian and Danish Meteorological Institutes, available at: http://osisaf.met.no (last access: August 2012), 2011.
Fasullo, J. T. and Trenberth, K. E.: The annual cycle of the energy budget, Part II: Meridional structures and poleward transports, J. Climate, 21, 2313–2325, https://doi.org/10.1175/2007JCLI1936.1, 2008.
Fetterer, F., Knowles, K., Meier, W., and Savoie, M.: Sea Ice Index, digital media, National Snow and Ice Data Center, Boulder, Colorado, USA, available at: http://nsidc.org/data/g02135.html (last access: August 2012), 2009.
Flanner, M. G. and Zender, C. S.: Linking snowpack microphysics and albedo evolution, J. Geophys. Res., 111, D12208, https://doi.org/10.1029/2005JD006834, 2006.
Forster, P., Ramaswamy, V., Artaxo, P., Berntsen, T., Betts, R., Fahey, D., Haywood, J., Lean, J., Lowe, D. C., Myhre, G., Nganga, J., Prinn, R., Raga, G., Schulz, M., and Dorland, R. V.: Changes in atmospheric constituents and in radiative forcing, in: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M., and Miller, H. L., chap. 2, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 129–234, 2007.
Fox-Kemper, B., Ferrari, R., and Hallberg, R.: Parameterization of mixed layer eddies, Part I: Theory and diagnosis, J. Phys. Oceanogr., 38, 1145–1165, 2008.
Frankcombe, L. M. and Dijkstra, H. A.: Coherent multidecadal variability in North Atlantic sea level, Geophys. Res. Lett., 36, L15604, https://doi.org/10.1029/2009GL039455, 2009.
Frankcombe, L. M., von der Heydt, A., and Dijkstra, H. A.: North Atlantic multidecadal climate variability: An investigation of dominant time scales and processes, J. Climate, 23, 3626–3638, 10.1175/2010JCLI3471.1, 2010.
Furevik, T., Bentsen, M., Drange, H., Kindem, I. K. T., Kvamstø, N. G., and Sorteberg, A.: Description and evaluation of the bergen climate model: ARPEGE coupled with MICOM, Clim. Dynam., 21, 27–51, 2003.
Gaspar, P.: Modeling the seasonal cycle of the upper ocean, J. Phys. Oceanogr., 18, 161–180, 1988.
Gent, P. R., Yeager, S. G., Neale, R. B., Levis, S., and Bailey, D. A.: Improvements in a half degree atmosphere/land version of the CCSM, Clim. Dynam., 34, 819–833, https://doi.org/10.1007/s00382-009-0614-8, 2010.
Gent, P. R., Danabasoglu, G., Donner, L. J., Holland, M. M., Hunke, E. C., Jayne, S. R., Lawrence, D. M., Neale, R. B., Rasch, P. J., Vertenstein, M., Worley, P. H., Yang, Z.-L., and Zhang, M.: The Community Climate System Model Version 4, J. Climate, 24, 4973–4991, https://doi.org/10.1175/2011JCLI4083.1, 2011.
Ghil, M., Allen, M. R., Dettinger, M. D., Ide, K., Kondrashov, D., Mann, M. E., Robertson, A. W., Saunders, A., Tian, Y., Varadi, F., and Yiou, P.: Advanced spectral methods for climatic time series, Rev. Geophys., 40, 1003, https://doi.org/10.1029/2000RG000092, 2002.
Greenwald, T. J.: A 2 year comparison of AMSR-E and MODIS cloud liquid water path observations, Geophys. Res. Lett., 36, L20805, https://doi.org/10.1029/2009GL040394, 2009.
Gregg, M. C., Sanford, T. B., and Winkel, D. P.: Reduced mixing from the breaking of internal waves in equatorial waters, Nature, 422, 513–515, https://doi.org/10.1038/nature01507, 2003.
Häkkinen, S. and Rhines, P. B.: Decline of subpolar North Atlantic circulation during the 1990s, Science, 304, 555–559, https://doi.org/10.1126/science.1094917, 2004.
Hallberg, R.: Time integration of diapycnal diffusion and richardson number-dependent mixing in isopycnal coordinate ocean models, Mon. Weather Rev., 128, 1402–1419, 2000.
Harrison, E. F., Minnis, P., Barkstrom, B. R., Ramanathan, V., Cess, R. D., and Gibson, G. G.: Seasonal variation of cloud radiative forcing derived from the earth radiation budget experiment, J. Geophys. Res., 95, 18687–18703, 1990.
Hátún, H., Sandø, A. B., Drange, H., Hansen, B., and Valdimarsson, H.: Influence of the Atlantic subpolar gyre on the thermohaline circulation, Science, 309, 1841–1844, https://doi.org/10.1126/science.1114777, 2005.
Hendon, H. H., Wheeler, M. C., and Zhang, C.: Seasonal Dependence of the MJO–ENSO Relationship, J. Climate, 20, 531–543, https://doi.org/10.1175/JCLI4003.1, 2007.
Holland, M. M., Bailey, D. A., Briegleb, B. P., Light, B., and Hunke, E.: Improved sea ice shortwave radiation physics in CCSM4: the impact of melt ponds and aerosols on arctic sea ice, J. Climate, 25, 1413–1430, https://doi.org/10.1175/JCLI-D-11-00078.1, 2012.
Hoose, C., Kristjánsson, J. E., Iversen, T., Kirkevåg, A., Seland, Ø., and Gettelman, A.: Constraining cloud droplet number concentration in GCMs suppresses the aerosol indirect effect, Geophys. Res. Lett., 36, L12807, https://doi.org/10.1029/2009GL038568, 2009.
Hoose, C., Kristjánsson, J. E., Chen, J. P., and Hazra, A.: A classical-theory-based parameterization of heterogeneous ice nucleation by mineral dust, soot, and biological particles in a global climate model, J. Atmos. Sci., 67, 2483–2503, https://doi.org/10.1175/2010JAS3425.1, 2010.
Huffman, G. J., Adler, R. F., Bolvin, D. T., Gu, G., Nelkin, E. J., Bowman, K. P., Hong, Y., Stocker, E. F., and Wolff, D. B.: The TRMM multisatellite precipitation analysis (TMPA): quasi-global, multiyear, combined-sensor precipitation estimates at fine scales, J. Hydrometeorol., 8, 38–55, https://doi.org/10.1175/JHM560.1, 2007.
Huffman, G. J., Adler, R. F., Bolvin, D. T., and Gu, G.: Improving the global precipitation record: GPCP Version 2.1, Geophys. Res. Lett., 36, L17808, https://doi.org/10.1029/2009GL040000, 2009.
Hunke, E. C. and Lipscomb, W. H.: CICE: the Los Alamos Sea Ice Model, documentation and software, version 4.0, Tech. Rep. LA-CC-06-012, Los Alamos National Laboratory, Los Alamos, New Mexico, USA, 2008.
Hurrell, J. W., Hack, J. J., Phillips, A. S., Caron, J., and Yin, J.: The dynamical simulation of the community atmosphere model version, J. Climate, 19, 2162–2183, https://doi.org/10.1175/JCLI3762.1, 2006.
Iversen, T.: Preface to special issue on RegClim, Tellus A, 60, 395–397, https://doi.org/10.1111/j.1600-0870.2008.00319.x, 2008.
Iversen, T., Bentsen, M., Bethke, I., Debernard, J. B., Kirkevåg, A., Seland, Ø., Drange, H., Kristjansson, J. E., Medhaug, I., Sand, M., and Seierstad, I. A.: The Norwegian Earth System Model, NorESM1-M – Part 2: Climate response and scenario projections, Geosci. Model Dev., 6, 389–415, https://doi.org/10.5194/gmd-6-389-2013, 2013.
Jayne, S. R.: The impact of abyssal mixing parameterizations in an ocean general circulation model, J. Phys. Oceanogr., 39, 1756–1775, https://doi.org/10.1175/2009JPO4085.1, 2009.
Jiang, J. H., Su, H., Zhai, C., Perun, V. S., Genio, A. D., Nazarenko, L. S., Donner, L. J., Horowitz, L., Seman, C., Cole, J., Gettelman, A., Ringer, M. A., Rotstayn, L., Jeffrey, S., Wu, T., Brient, F., Dufresne, J.-L., Kawai, H., Koshiro, T., Watanabe, M., L'Ecuyer, T. S., Volodin, E. M., Iversen, T., Drange, H., Mesquita, M. D. S., Read, W. G., Waters, J. W., Tian, B., Teixeira, J., and Stephens, G. L.: Evaluation of cloud and water vapor simulations in CMIP5 climate models using NASA "A-Train" satellite observations, J. Geophys. Res., 117, D14105, https://doi.org/10.1029/2011JD017237, 2012.
Jung, M., Reichstein, M., Margolis, H. A., Cescatti, A., Richardson, A. D., Arain, M. A., Arneth, A., Bernhofer, C., Bonal, D., Chen, J., Gianelle, D., Gobron, N., Kiely, G., Kutsch, W., Lasslop, G., Law, B. E., Lindroth, A., Merbold, L., Montagnani, L., Moors, E. J., Papale, D., Sottocornola, M., Vaccari, F., and Williams, C.: Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations, J. Geophys. Res., 116, G00J07, https://doi.org/10.1029/2010JG001566, 2011.
Jungclaus, J. H. and Koenigk, T.: Low-frequency variability of the arctic climate: the role of oceanic and atmospheric heat transport variations, Clim. Dynam., 34, 265–279, https://doi.org/10.1007/s00382-009-0569-9, 2010.
Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K. C., Ropelewski, C., Wang, J., Leetmaa, A., Reynolds, R., Jenne, R., and Joseph, D.: The NCEP/NCAR 40-year reanalysis project, Bull. Amer. Meteor. Soc., 77, 437–471, 1996.
Kanamitsu, M., Ebisuzaki, W., Woollen, J., Yang, S. K., Hnilo, J. J., Fiorino, M., and Potter, G. L.: NCEP-DOE AMIP-II reanalysis (R-2), Bull. Amer. Meteor. Soc., 83, 1631–1643, https://doi.org/10.1175/BAMS-83-11-1631, 2002.
Kiehl, J. T. and Trenberth, K. E.: Earth's annual global mean energy budget, Bull. Amer. Meteor. Soc., 78, 197–208, 1997.
Kirkevåg, A., Iversen, T., Kristjánsson, J. E., Seland, Ø., and Debernard, J. B.: On the additivity of climate response to anthropogenic aerosols and CO2, and the enhancement of future global warming by carbonaceous aerosols, Tellus A, 60, 513–527, https://doi.org/10.1111/j.1600-0870.2008.00308.x, 2008a.
Kirkevåg, A., Iversen, T., Seland, Ø., Debernard, J. B., Storelvmo, T., and Kristjánsson, J. E.: Aerosol-cloud-climate interactions in the climate model CAM-Oslo, Tellus A, 60, 492–512, https://doi.org/10.1111/j.1600-0870.2008.00313.x, 2008b.
Kirkevåg, A., Iversen, T., Seland, Ø., Hoose, C., Kristjánsson, J. E., Struthers, H., Ekman, A. M. L., Ghan, S., Griesfeller, J., Nilsson, E. D., and Schulz, M.: Aerosol-climate interactions in the Norwegian Earth System Model – NorESM1-M, Geosci. Model Dev., 6, 207–244, https://doi.org/10.5194/gmd-6-207-2013, 2013.
Kraus, E. B. and Turner, J. S.: A one-dimensional model of the seasonal thermocline –II. The general theory and its consequences, Tellus, 19, 98–105, 1967.
Kristjánsson, J. E.: Studies of the aerosol indirect effect from sulfate and black carbon aerosols, J. Geophys. Res., 107, D15, https://doi.org/10.1029/2001JD000887, 2002.
Kristjánsson, J. E., Iversen, T., Kirkevåg, A., Seland, Ø, and Debernard, J.: Response of the climate system to aerosol direct and indirect forcing: role of cloud feedbacks, J. Geophys. Res., 110, D24206, https://doi.org/10.1029/2005JD006299, 2005.
Kwok, R. and Cunningham, G. F.: ICESat over Arctic sea ice: estimation of snow depth and ice thickness, J. Geophys. Res., 113, C08010, https://doi.org/10.1029/2008JC004753, 2008.
Kwok, R. and Rothrock, D. A.: Decline in Arctic sea ice thickness from submarine and ICESat records: 1958–2008, Geophys. Res. Lett., 36, L15501, https://doi.org/10.1029/2009GL039035, 2009.
Lamarque, J.-F., Bond, T. C., Eyring, V., Granier, C., Heil, A., Klimont, Z., Lee, D., Liousse, C., Mieville, A., Owen, B., Schultz, M. G., Shindell, D., Smith, S. J., Stehfest, E., Van Aardenne, J., Cooper, O. R., Kainuma, M., Mahowald, N., McConnell, J. R., Naik, V., Riahi, K., and van Vuuren, D. P.: Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application, Atmos. Chem. Phys., 10, 7017–7039, https://doi.org/10.5194/acp-10-7017-2010, 2010.
Large, W. G. and Yeager, S.: Diurnal to decadal global forcing for ocean and sea-ice models: the data sets and flux climatologies, Tech. Rep. NCAR/TN-460+STR, National Center for Atmospheric Research, Boulder, Colorado, USA, 2004.
Large, W. G. and Yeager, S. G.: The global climatology of an interannually varying air-sea flux data set, Clim. Dynam., 33, 341–364, https://doi.org/10.1007/s00382-008-0441-3, 2008.
Large, W. G., McWilliams, J. C., and Doney, S. C.: Oceanic vertical mixing: a review and a model with a nonlocal boundary layer parameterization, Rev. Geophys., 32, 363–403, 1994.
Lawrence, D. M., Oleson, K. W., Flanner, M. G., Thornton, P. E., Swenson, S. C., Lawrence, P. J., Zeng, X., Yang, Z.-L., Levis, S., Sakaguchi, K., Bonan, G. B., and Slater, A. G.: Parameterization improvements and functional and structural advances in version 4 of the community land model, J. Adv. Model. Earth Syst., 3, M03001, https://doi.org/10.1029/2011MS000045, 2011.
Lean, J., Rottman, G., Harder, J., and Kopp, G.: SORCE contributions to new understanding of global change and solar variability, Solar Phys., 230, 27–53, https://doi.org/10.1007/s11207-005-1527-2, 2005.
L'Ecuyer, T. S., Wood, N. B., Haladay, T., Stephens, G. L., and Stackhouse Jr., P. W.: Impact of clouds on atmospheric heating based on the R04 CloudSat fluxes and heating rates data set, J. Geophys. Res., 113, D00A15, https://doi.org/10.1029/2008JD009951, 2008.
Legates, D. R. and Willmott, C. J.: Mean seasonal and spatial variability in gauge-corrected, global precipitation, Int. J. Climatol., 10, 111–127, 1990.
Legg, S., Hallberg, R. W., and Girton, J. B.: Comparison of entrainment in overflows simulated by z-coordinate, isopycnal and non-hydrostatic models, Ocean Model., 11, 69–97, https://doi.org/10.1016/j.ocemod.2004.11.006, 2006.
Liebmann, B., Hendon, H. H., and Glick, J. D.: The relationship between tropical cyclones of the Western Pacific and Indian Oceans and the Madden–Julian oscillation, J. Meteor. Soc. Japan, 72, 401–412, 1994.
Lin, J. L.: The double-ITCZ problem in IPCC AR4 coupled GCMs: ocean-atmosphere feedback analysis, J. Climate, 20, 4497–4525, https://doi.org/10.1175/JCLI4272.1, 2007.
Lin, J. L., Kiladis, G. N., Mapes, B. E., Weickmann, K. M., Sperber, K. R., Lin, W., Wheeler, M. C., Schubert, S. D., Genio, A. D., Donner, L. J., Emori, S., Gueremy, J. F., Hourdin, F., Rasch, P. J., Roeckner, E., and Scinocca, J. F.: Tropical intraseasonal variability in 14 IPCC AR4 climate models, Part I: convective signals, J. Climate, 19, 2665–2690, https://doi.org/10.1175/JCLI3735.1, 2006.
Locarnini, R. A., Mishonov, A. V., Antonov, J. I., Boyer, T. P., Garcia, H. E., Baranova, O. K., Zweng, M. M., and Johnson, D. R.: World Ocean Atlas 2009, Volume 1: Temperature, in: NOAA Atlas NESDIS 68, edited by: Levitus, S., US Government Printing Office, Washington, D.C., 184 pp., 2010.
Loeb, N. G., Kato, S., Loukachine, K., and Manalo-Smith, N.: Angular distribution models for top-of-atmosphere radiative flux estimation from the clouds and the earths radiant energy system instrument on the Terra satellite, Part I: Methodology, J. Atmos. Ocean. Tech., 22, 338–351, https://doi.org/10.1175/JTECH1712.1, 2005.
Loeb, N. G., Wielicki, B. A., Doelling, D. R., Smith, G. L., Keyes, D. F., Kato, S., Manalo-Smith, N., and Wong, T.: Toward optimal closure of the earth's top-of-atmosphere radiation budget, J. Climate, 22, 748–766, https://doi.org/10.1175/2008JCLI2637.1, 2009.
Loeb, N. G., Lyman, J. M., Johnson, G. C., Allan, R. P., Doelling, D. R., Wong, T., Soden, B. J., and Stephens, G. L.: Observed changes in top-of-the-atmosphere radiation and upper-ocean heating consistent within uncertainty, Nat. Geosci., 5, 110–113, https://doi.org/10.1038/ngeo1375, 2012.
Lohmann, K., Drange, H., and Bentsen, M.: A possible mechanism for the strong weakening of the North Atlantic subpolar gyre in the mid-1990s, Geophys. Res. Lett., 36, L15602, https://doi.org/10.1029/2009GL039166, 2009.
Madden, R. A. and Julian, P. R.: Detection of a 40–50 day oscillation in the zonal wind in the Tropical Pacific, J. Atmos. Sci., 28, 702–708, 1971.
Maier-Reimer, E.: Geochemical cycles in an ocean general circulation model. Preindustrial tracer distributions, Glob. Biogeochem. Cy., 7, 645–677, https://doi.org/10.1029/93GB01355, 1993.
Maier-Reimer, E., Kriest, I., Segschneider, J., and Wetzel, P.: The HAMburg Ocean Carbon Cycle model HAMOCC 5.1 - Technical description release 1.1, Reports on Earth System Science 14, Max Planck Institute for Meteorology, Hamburg, Germany, 2005.
Marks, K. and Smith, W.: An evaluation of publicly available global bathymetry grids, Mar. Geophys. Res., 27, 19–34, https://doi.org/10.1007/s11001-005-2095-4, 2006.
Maximenko, N., Niiler, P., Rio, M. H., Melnichenko, O., Centurioni, L., Chambers, D., Zlotnicki, V., and Galperin, B.: Mean dynamic topography of the ocean derived from satellite and drifting buoy data using three different techniques, J. Atmos. Ocean. Tech., 26, 1910–1919, https://doi.org/10.1175/2009JTECHO672.1, 2009.
McDougall, T. J. and Jackett, D. R.: An assessment of orthobaric density in the global ocean, J. Phys. Oceanogr., 35, 2054–2075, https://doi.org/10.1175/JPO2796.1, 2005.
Medhaug, I. and Furevik, T.: North Atlantic 20th century multidecadal variability in coupled climate models: sea surface temperature and ocean overturning circulation, Ocean Sci., 7, 389–404, https://doi.org/10.5194/os-7-389-2011, 2011.
Meehl, G. A., Stocker, T. F., Collins, W. D., Friedlingstein, P., Gaye, A. T., Gregory, J. M., Kitoh, A., Knutti, R., Murphy, J. M., Noda, A., Raper, S. C. B., Watterson, I. G., Weaver, A. J., and Zhao, Z.-C.: Global climate projections, in: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M., and Miller, H. L., chap. 10, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 747–845, 2007.
Megann, A. P., New, A. L., Blaker, A. T., and Sinha, B.: The sensitivity of a coupled climate model to its ocean component, J. Climate, 23, 5126–5150, https://doi.org/10.1175/2010JCLI3394.1, 2010.
Mitchell, T. D. and Jones, P. D.: An improved method of constructing a database of monthly climate observations and associated high-resolution grids, Int. J. Climatol., 25, 693–712, https://doi.org/10.1002/joc.1181, 2005.
Morel, Y., Baraille, R., and Pichon, A.: Time splitting and linear stability of the slow part of the barotropic component, Ocean Model., 23, 73–81, https://doi.org/10.1016/j.ocemod.2008.04.001, 2008.
Morice, C. P., Kennedy, J. J., Rayner, N. A., and Jones, P. D.: Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: the HadCRUT4 data set, J. Geophys. Res., 117, D08101, https://doi.org/10.1029/2011JD017187, 2012.
Morrison, H. and Gettelman, A.: A new two-moment bulk stratiform cloud microphysics scheme in the community atmosphere model, version 3 (CAM3). Part I: Description and numerical tests, J. Climate, 21, 3642–3659, https://doi.org/10.1175/2008JCLI2105.1, 2008.
Moss, R. H., Edmonds, J. A., Hibbard, K. A., Manning, M. R., Rose, S. K., van Vuuren, D. P., Carter, T. R., Emori, S., Kainuma, M., Kram, T., Meehl, G. A., Mitchell, J. F. B., Nakicenovic, N., Riahi, K., Smith, S. J., Stouffer, R. J., Thomson, A. M., Weyant, J. P., and Wilbanks, T. J.: The next generation of scenarios for climate change research and assessment, Nature, 463, 747–756, https://doi.org/10.1038/nature08823, 2010.
Munk, W. H.: Abyssal recipes, Deep-Sea Res., 13, 707–730, 1966.
Neale, R. B., Richter, J. H., and Jochum, M.: The impact of convection on ENSO: from a delayed oscillator to a series of events, J. Climate, 21, 5904–5924, https://doi.org/10.1175/2008JCLI2244.1, 2008.
Neale, R. B., Richter, J. H., Conley, A. J., Park, S., Lauritzen, P. H., Gettelman, A., Williamson, D. L., Rasch, P. J., Vavrus, S. J., Taylor, M. A., Collins, W. D., Zhang, M., and Lin, S.-J.: Description of the NCAR Community Atmosphere Model (CAM 4.0), Tech. Rep. NCAR/TN-485+STR, National Center for Atmospheric Research, Boulder, Colorado, USA, 2010.
Neale, R. B., Richter, J., Park, S., Lauritzen, P. H., Vavrus, S. J., Rasch, P. J., and Zhang, M.: The mean climate of the Community Atmosphere Model (CAM4) in forced SST and fully coupled experiments, J. Climate, https://doi.org/10.1175/JCLI-D-12-00236.1, in press, 2013.
Oberhuber, J. M.: Simulation of the Atlantic circulation with a coupled sea ice-mixed layer-isopycnal general circulation model, Part I: Model description, J. Phys. Oceanogr., 23, 808–829, 1993.
O'Dell, C. W., Wentz, F. J., and Bennartz, R.: Cloud liquid water path from satellite-based passive microwave observations: a new climatology over the global oceans, J. Climate, 21, 1721–1739, https://doi.org/10.1175/2007JCLI1958.1, 2008.
Oleson, K. W., Lawrence, D. M., Bonan, G. B., Flanner, M. G., Kluzek, E., Lawrence, P. J., Levis, S., Swenson, S. C., Thornton, P. E., Dai, A., Decker, M., Dickinson, R., Feddema, J., Heald, C. L., Hoffman, F., Lamarque, J.-F., Mahowald, N., Niu, G.-Y., Qian, T., Randerson, J., Running, S., Sakaguchi, K., Slater, A., Stöckli, R., Wang, A., Yang, Z.-L., Zeng, X., and Zeng, X.: Technical Description of version 4.0 of the Community Land Model (CLM), Tech. Rep. NCAR/TN-478+STR, National Center for Atmospheric Research, Boulder, Colorado, USA, 2010.
Onogi, K., Tsutsui, J., Koide, H., Sakamoto, M., Kobayashi, S., Hatsushika, H., Matsumoto, T., Yamazaki, N., Kamahori, H., Takahashi, K., Kadokura, S., Wada, K., Kato, K., Oyama, R., Ose, T., Mannoji, N., and Taira, R.: The JRA-25 reanalysis, J. Meteor. Soc. Jpn., 85, 369–432, 2007.
Orre, S., Smith, J. N., Alfimov, V., and Bentsen, M.: Simulating transport of 129I and idealized tracers in the Northern North Atlantic Ocean, Environ. Fluid Mech., 10, 213–233, https://doi.org/10.1007/s10652-009-9138-3, 2010.
Osborn, T. J.: Simulating the winter North Atlantic oscillation: the roles of internal variability and greenhouse gas forcing, Clim. Dynam., 22, 605–623, https://doi.org/10.1007/s00382-004-0405-1, 2004.
Otterå, O. H., Bentsen, M., Bethke, I., and Kvamstø, N. G.: Simulated pre-industrial climate in Bergen Climate Model (version 2): model description and large-scale circulation features, Geosci. Model Dev., 2, 197–212, https://doi.org/10.5194/gmd-2-197-2009, 2009.
Otterå, O. H., Bentsen, M., Drange, H., and Suo, L.: External forcing as a metronome for Atlantic multidecadal variability, Nat. Geosci., 3, 688–694, https://doi.org/10.1038/ngeo955, 2010.
Palmer, T. N.: A nonlinear dynamical perspective on climate prediction, J. Climate, 12, 575–591, 1999.
Quenouille, M. H.: Associated Measurements, Butterworths Scientific, London, 242 pp., 1952.
Räisänen, J.: CO2-induced climate change in CMIP2 experiments: quantification of agreement and role of internal variability, J. Climate, 14, 2088–2104, 2001.
Rasch, P. J. and Kristjánsson, J. E.: A comparison of the CCM3 model climate using diagnosed and predicted condensate parameterizations, J. Climate, 11, 1587–1614, 1998.
Rasch, P. J., Coleman, D. B., Mahowald, N., Williamson, D. L., Lin, S. J., Boville, B. A., and Hess, P.: Characteristics of atmospheric transport using three numerical formulations for atmospheric dynamics in a single GCM framework, J. Climate, 19, 2243–2266, https://doi.org/10.1175/JCLI3763.1, 2006.
Rayner, N. A., Parker, D. E., Horton, E. B., Folland, C. K., Alexander, L. V., Rowell, D. P., Kent, E. C., and Kaplan, A.: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century, J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670, 2003.
Reichler, T. and Kim, J.: How well do coupled models simulate today's climate?, Bull. Amer. Meteor. Soc., 89, 303–311, https://doi.org/10.1175/BAMS-89-3-303, 2008.
Richter, J. H. and Rasch, P. J.: Effects of convective momentum transport on the atmospheric circulation in the community atmosphere model, version 3, J. Climate, 21, 1487–1499, https://doi.org/10.1175/2007JCLI1789.1, 2008.
Rossow, W. B. and Dueñas, E. N.: The International Satellite Cloud Climatology Project (ISCCP) web site: an online resource for research, Bull. Amer. Meteor. Soc., 85, 167–172, https://doi.org/10.1175/BAMS-85-2-167, 2004.
Rossow, W. B. and Schiffer, R. A.: Advances in understanding clouds from ISCCP, Bull. Amer. Meteor. Soc., 80, 2261–2287, 1999.
Rothrock, D. A., Percival, D. B., and Wensnahan, M.: The decline in arctic sea-ice thickness: separating the spatial, annual, and interannual variability in a quarter century of submarine data, J. Geophys. Res., 113, C05003, https://doi.org/10.1029/2007JC004252, 2008.
Rotstayn, L. D. and Lohmann, U.: Tropical rainfall trends and the indirect aerosol effect, J. Climate, 15, 2103–2116, 2002.
Sadourny, R.: The dynamics of finite-difference models of the shallow-water equations, J. Atmos. Sci., 32, 680–689, 1975.
Seager, R., Battisti, D. S., Yin, J., Gordon, N., Naik, N., Clement, A. C., and Cane, M. A.: Is the Gulf Stream responsible for Europes mild winters?, Q. J. Roy. Meteorol. Soc., 128, 2563–2586, 2002.
Seethala, C. and Horváth, \'A.: Global assessment of AMSR-E and MODIS cloud liquid water path retrievals in warm oceanic clouds, J. Geophys. Res., 115, D13202, https://doi.org/10.1029/2009JD012662, 2010.
Seland, Ø, Iversen, T., Kirkevåg, A., and Storelvmo, T.: Aerosol-climate interactions in the CAM-Oslo atmospheric GCM and investigation of associated basic shortcomings, Tellus A, 60, 459–491, https://doi.org/10.1111/j.1600-0870.2008.00318.x, 2008.
Shaffrey, L. and Sutton, R.: Bjerknes compensation and the decadal variability of the energy transports in a coupled climate model, J. Climate, 19, 1167–1181, https://doi.org/10.1175/JCLI3652.1, 2006.
Simmons, H. L., Jayne, S. R., St. Laurent, L. C., and Weaver, A. J.: Tidally driven mixing in a numerical model of the ocean general circulation, Ocean Model., 6, 245–263, https://doi.org/10.1016/S1463-5003(03)00011-8, 2004.
Sorteberg, A., Furevik, T., Drange, H., and Kvamstø, N. G.: Effects of simulated natural variability on Arctic temperature projections, Geophys. Res. Lett., 32, L18708, https://doi.org/10.1029/2005GL023404, 2005.
Spencer, R. W.: Global oceanic precipitation from the MSU during 1979–91 and comparisons to other climatologies, J. Climate, 6, 1301–1326, 1993.
Srokosz, M., Baringer, M., Bryden, H., Cunningham, S., Delworth, T., Lozier, S., Marotzke, J., and Sutton, R.: Past, present, and future changes in the Atlantic meridional overturning circulation, Bull. Amer. Meteor. Soc., 93, 1663–1676, https://doi.org/10.1175/BAMS-D-11-00151.1, 2012.
Steele, M., Morley, R., and Ermold, W.: PHC: A global ocean hydrography with a high-quality Arctic Ocean, J. Climate, 14, 2079–2087, 2001.
Storelvmo, T., Kristjánsson, J. E., Ghan, S. J., Kirkevåg, A., Seland, Ø., and Iversen, T.: Predicting cloud droplet number concentration in Community Atmosphere Model (CAM)-Oslo, J. Geophys. Res., 111, D24208, https://doi.org/10.1029/2005JD006300, 2006.
Stroeve, J. C., Serreze, M. C., Holland, M. M., Kay, J. E., Malanik, J., and Barrett, A. P.: The Arctic's rapidly shrinking sea ice cover: a research synthesis, Clim. Change, 110, 1005–1027, https://doi.org/10.1007/s10584-011-0101-1, 2012.
Struthers, H., Ekman, A. M. L., Glantz, P., Iversen, T., Kirkevåg, A., Mårtensson, E. M., Seland, Ø., and Nilsson, E. D.: The effect of sea ice loss on sea salt aerosol concentrations and the radiative balance in the Arctic, Atmos. Chem. Phys., 11, 3459–3477, https://doi.org/10.5194/acp-11-3459-2011, 2011.
Subramanian, A. C., Jochum, M., Miller, A. J., Murtugudde, R., Neale, R. B., and Waliser, D. E.: The Madden–Julian oscillation in CCSM4, J. Climate, 24, 6261–6282, https://doi.org/10.1175/JCLI-D-11-00031.1, 2011.
Sun, S., Bleck, R., Rooth, C., Dukowicz, J., Chassignet, E., and Killworth, P.: Inclusion of thermobaricity in isopycnic-coordinate ocean models, J. Phys. Oceanogr., 29, 2719–2729, 1999.
Sutton, R. T. and Hodson, D. L. R.: Atlantic ocean forcing of North American and European summer climate, Science, 309, 115–118, https://doi.org/10.1126/science.1109496, 2005.
Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An overview of CMIP5 and the experiment design, Bull. Amer. Meteor. Soc., 93, 485–498, https://doi.org/10.1175/BAMS-D-11-00094.1, 2012.
Thompson, D. W. J. and Wallace, J. M.: Annular modes in the extratropical circulation, Part I: month-to-month variability, J. Climate, 13, 1000–1016, 2000.
Thornton, P. E., Lamarque, J.-F., Rosenbloom, N. A., and Mahowald, N. M.: Influence of carbon-nitrogen cycle coupling on land model response to CO2 fertilization and climate variability, Global Biogeochem. Cy., 21, GB4018, https://doi.org/10.1029/2006GB002868, 2007.
Ting, M., Kushnir, Y., Seager, R., and Li, C.: Robust features of Atlantic multi-decadal variability and its climate impacts, Geophys. Res. Lett., 38, L17705, https://doi.org/10.1029/2011GL048712, 2011.
Tjiputra, J. F., Assmann, K., Bentsen, M., Bethke, I., Otterå, O. H., Sturm, C., and Heinze, C.: Bergen Earth system model (BCM-C): model description and regional climate-carbon cycle feedbacks assessment, Geosci. Model Dev., 3, 123–141, https://doi.org/10.5194/gmd-3-123-2010, 2010.
Tjiputra, J. F., Roelandt, C., Bentsen, M., Lawrence, D. M., Lorentzen, T., Schwinger, J., Seland, Ø., and Heinze, C.: Evaluation of the carbon cycle components in the Norwegian Earth System Model (NorESM), Geosci. Model Dev., 6, 301–325, https://doi.org/10.5194/gmd-6-301-2013, 2013.
Trenberth, K. E. and Shea, D. J.: Atlantic hurricanes and natural variability in 2005, Geophys. Res. Lett., 33, L12704, https://doi.org/10.1029/2006GL026894, 2006.
Trenberth, K. E., Branstator, G. W., Karoly, D., Kumar, A., Lau, N. C., and Ropelewski, C.: Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures, J. Geophys. Res., 103, 14291–14324, https://doi.org/10.1029/97JC01444, 1998.
Trenberth, K. E., Smith, L., Qian, T., Dai, A., and Fasullo, J.: Estimates of the global water budget and its annual cycle using observational and model data, J. Hydrometeorol., 8, 758–769, https://doi.org/10.1175/JHM600.1, 2007.
Trenberth, K. E., Fasullo, J. T., and Mackaro, J.: Atmospheric moisture transports from ocean to land and global energy flows in reanalyses, J. Climate, 24, 4907–4924, https://doi.org/10.1175/2011JCLI4171.1, 2011.
Uppala, S. M., Kållberg, P. W., Simmons, A. J., Andrae, U., Bechtold, V. D. C., Fiorino, M., Gibson, J. K., Haseler, J., Hernandez, A., Kelly, G. A., Li, X., Onogi, K., Saarinen, S., Sokka, N., Allan, R. P., Andersson, E., Arpe, K., Balmaseda, M. A., Beljaars, A. C. M., Berg, L. V. D., Bidlot, J., Bormann, N., Caires, S., Chevallier, F., Dethof, A., Dragosavac, M., Fisher, M., Fuentes, M., Hagemann, S., Hólm, E., Hoskins, B. J., Isaksen, L., Janssen, P. A. E. M., Jenne, R., Mcnally, A. P., Mahfouf, J. F., Morcrette, J. J., Rayner, N. A., Saunders, R. W., Simon, P., Sterl, A., Trenberth, K. E., Untch, A., Vasiljevic, D., Viterbo, P., and Woollen, J.: The ERA-40 re-analysis, Quart. J. Roy. Meteorol. Soc., 131, 2961–3012, https://doi.org/10.1256/qj.04.176, 2005.
van Vuuren, D. P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K., Hurtt, G. C., Kram, T., Krey, V., Lamarque, J. F., Masui, T., Meinshausen, M., Nakicenovic, N., Smith, S. J., and Rose, S. K.: The representative concentration pathways: an overview, Climate Change, 109, 5–31, https://doi.org/10.1007/s10584-011-0148-z, 2011.
Vertenstein, M., Craig, T., Middleton, A., Feddema, D., and Fischer, C.: CCSM4.0 User's Guide, available at: http://www.cesm.ucar.edu/models/ccsm4.0/ccsm_doc/book1.htm (last access: August 2012), 2010.
Waliser, D., Sperber, K., Hendon, H., Kim, D., Wheeler, M., Weickmann, K., Zhang, C., Donner, L., Gottschalck, J., Higgins, W., Kang, I. S., Legler, D., Moncrieff, M., Vitart, F., Wang, B., Wang, W., Woolnough, S., Maloney, E., Schubert, S., and Stern, W.: MJO simulation diagnostics, J. Climate, 22, 3006–3030, https://doi.org/10.1175/2008JCLI2731.1, 2009.
Wallace, J. M., Zhang, Y., and Bajuk, L.: Interpretation of interdecadal trends in Northern Hemisphere surface air temperature, J. Climate, 9, 249–259, 1996.
Wallace, J. M., Rasmusson, E. M., Mitchell, T. P., Kousky, V. E., Sarachik, E. S., and von Storch, H.: On the structure and evolution of ENSO-related climate variability in the tropical Pacific: lessons from TOGA, J. Geophys. Res., 103, 14241–14259, https://doi.org/10.1029/97JC02905, 1998.
Wang, Y. M., Lean, J. L., and Sheeley Jr., N. R.: Modeling the sun's magnetic field and irradiance since 1713, Astrophys. J., 625, 522–538, https://doi.org/10.1086/429689, 2005.
Wentz, F. J.: A well-calibrated ocean algorithm for special sensor microwave/imager, J. Geophys. Res., 102, 8703–8718, https://doi.org/10.1029/96JC01751, 1997.
Worby, A. P., Geiger, C. A., Paget, M. J., Woert, M. L. V., Ackley, S. F., and DeLiberty, T. L.: Thickness distribution of Antarctic sea ice, J. Geophys. Res., 113, C05S92, https://doi.org/10.1029/2007JC004254, 2008.
Yu L. and Weller, R. A.: Objectively analyzed air-sea heat fluxes for the global ice-free oceans (1981–2005), Bull. Amer. Meteor. Soc., 88, 527–539, https://doi.org/10.1175/BAMS-88-4-527, 2007.
Yu, L., Jin, X., and Weller, R. A.: Multidecade Global Flux Datasets from the Objectively Analyzed Air-sea Fluxes (OAFlux) Project: Latent and sensible heat fluxes, ocean evaporation, and related surface meteorological variables, Tech. Rep. OA-2008-01, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA, 2008.
Zhang, C.: Madden–Julian oscillation, Rev. Geophys., 43, RG2003, https://doi.org/10.1029/2004RG000158, 2005.
Zhang, G. J. and McFarlane, N. A.: Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian Climate Centre general circulation model, Atmos. Ocean, 33, 407–446, 1995.
Zhang, Z. S., Nisancioglu, K., Bentsen, M., Tjiputra, J., Bethke, I., Yan, Q., Risebrobakken, B., Andersson, C., and Jansen, E.: Pre-industrial and mid-Pliocene simulations with NorESM-L, Geosci. Model Dev., 5, 523–533, https://doi.org/10.5194/gmd-5-523-2012, 2012.