Articles | Volume 18, issue 3
https://doi.org/10.5194/gmd-18-763-2025
https://doi.org/10.5194/gmd-18-763-2025
Development and technical paper
 | 
10 Feb 2025
Development and technical paper |  | 10 Feb 2025

Improving the representation of major Indian crops in the Community Land Model version 5.0 (CLM5) using site-scale crop data

Kangari Narender Reddy, Somnath Baidya Roy, Sam S. Rabin, Danica L. Lombardozzi, Gudimetla Venkateswara Varma, Ruchira Biswas, and Devavat Chiru Naik

Related authors

Carbon fluxes in spring wheat agroecosystem in India
Kangari Narender Reddy, Shilpa Gahlot, Somnath Baidya Roy, Gudimetla Venkateswara Varma, Vinay Kumar Sehgal, and Gayatri Vangala
Earth Syst. Dynam., 14, 915–930, https://doi.org/10.5194/esd-14-915-2023,https://doi.org/10.5194/esd-14-915-2023, 2023
Short summary

Related subject area

Climate and Earth system modeling
Development and evaluation of a new 4DEnVar-based weakly coupled ocean data assimilation system in E3SMv2
Pengfei Shi, L. Ruby Leung, and Bin Wang
Geosci. Model Dev., 18, 2443–2460, https://doi.org/10.5194/gmd-18-2443-2025,https://doi.org/10.5194/gmd-18-2443-2025, 2025
Short summary
TemDeep: a self-supervised framework for temporal downscaling of atmospheric fields at arbitrary time resolutions
Liwen Wang, Qian Li, Qi Lv, Xuan Peng, and Wei You
Geosci. Model Dev., 18, 2427–2442, https://doi.org/10.5194/gmd-18-2427-2025,https://doi.org/10.5194/gmd-18-2427-2025, 2025
Short summary
The ensemble consistency test: from CESM to MPAS and beyond
Teo Price-Broncucia, Allison Baker, Dorit Hammerling, Michael Duda, and Rebecca Morrison
Geosci. Model Dev., 18, 2349–2372, https://doi.org/10.5194/gmd-18-2349-2025,https://doi.org/10.5194/gmd-18-2349-2025, 2025
Short summary
Presentation, calibration and testing of the DCESS II Earth system model of intermediate complexity (version 1.0)
Esteban Fernández Villanueva and Gary Shaffer
Geosci. Model Dev., 18, 2161–2192, https://doi.org/10.5194/gmd-18-2161-2025,https://doi.org/10.5194/gmd-18-2161-2025, 2025
Short summary
Synthesizing global carbon–nitrogen coupling effects – the MAGICC coupled carbon–nitrogen cycle model v1.0
Gang Tang, Zebedee Nicholls, Alexander Norton, Sönke Zaehle, and Malte Meinshausen
Geosci. Model Dev., 18, 2193–2230, https://doi.org/10.5194/gmd-18-2193-2025,https://doi.org/10.5194/gmd-18-2193-2025, 2025
Short summary

Cited articles

Asseng, S., Cammarano, D., Basso, B., Chung, U., Alderman, P. D., Sonder, K., Reynolds, M., and Lobell, D. B.: Hot spots of wheat yield decline with rising temperatures, Glob. Change Biol., 23, 2464–2472, https://doi.org/10.1111/gcb.13530, 2017. 
Bal, S. K., Sattar, A., Nidhi., Chandran, M. A. S., Subba Rao, A. V. M., Manikandan. N., Banerjee. S., Choudhary. J. L., More. V. G., Singh. C. B., Sandhu, S. S., and Singh, V. K.: Critical weather limits for paddy rice under diverse ecosystems of India, Front. Plant Sci., 14, 1226064, https://doi.org/10.3389/fpls.2023.1226064, 2023. 
Biemans, H., Siderius, C., Mishra, A., and Ahmad, B.: Crop-specific seasonal estimates of irrigation-water demand in South Asia, Hydrol. Earth Syst. Sci., 20, 1971–1982, https://doi.org/10.5194/hess-20-1971-2016, 2016. 
Blyth, E. M., Arora, V. K., Clark, D. B., Dadson, S. J., de Kauwe, M. G., Lawrence, D. M., Melton, J. R., Pongratz, J., Turton, R. H., Yoshimura, K., and Yuan, H.: Advances in Land Surface Modelling, Curr. Clim. Change Rep., 7, 45–71, https://doi.org/10.1007/S40641-021-00171-5, 2021. 
Boas, T., Bogena, H., Grünwald, T., Heinesch, B., Ryu, D., Schmidt, M., Vereecken, H., Western, A., and Hendricks Franssen, H.-J.: Improving the representation of cropland sites in the Community Land Model (CLM) version 5.0, Geosci. Model Dev., 14, 573–601, https://doi.org/10.5194/gmd-14-573-2021, 2021. 
Download
Short summary
The study aimed to improve the representation of wheat and rice in a land model for the Indian region. The modified model performed significantly better than the default model in simulating crop phenology, yield, and carbon, water, and energy fluxes compared to observations. The study highlights the need for global land models to use region-specific crop parameters for accurately simulating vegetation processes and land surface processes.
Share