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Abstract. Accurate representation of croplands is essential
for simulating terrestrial water, energy, and carbon fluxes
over India because croplands constitute more than 50 % of
the Indian land mass. Wheat and rice are the two major crops
grown in India, covering more than 80 % of the agricultural
land. The Community Land Model version 5 (CLM5) has
significant errors in simulating the crop phenology, yield, and
growing season lengths due to errors in the parameterizations
of the crop module, leading to errors in carbon, water, and en-
ergy fluxes over these croplands. Our study aimed to improve
the representation of wheat and rice crops in CLM5. Unfor-
tunately, the crop data necessary to calibrate and evaluate the
models over the Indian region are not readily available. This
study used comprehensive wheat and rice novel crop data
for India created by digitizing historical observations. This
dataset is the first of its kind, covering 50 years and over 20
sites of crop growth data across tropical regions, where data
have traditionally been spatially and temporally sparse. We
used eight wheat sites and eight rice sites from the recent
decades. Many sites have multiple growing seasons, taking
the total up to nearly 20 growing seasons for each crop. We
used these data to calibrate and improve the representation
of the sowing dates, growing season, growth parameters, and
base temperature in CLM5. The modified CLM5 performed
much better than the default model in simulating the crop
phenology, yield, and carbon, water, and energy fluxes com-
pared to site-scale data and remote sensing observations. For

instance, Pearson’s r for monthly leaf area index (LAI) im-
proved from 0.35 to 0.92, and monthly gross primary pro-
duction (GPP) improved from −0.46 to 0.79 compared to
Moderate Resolution Imaging Spectroradiometer (MODIS)
monthly data. The r value of the monthly sensible and la-
tent heat fluxes improved from 0.76 and 0.52 to 0.9 and 0.88,
respectively. Moreover, because of the corrected representa-
tion of the growing seasons, the seasonality of the simulated
irrigation matched the observations. This study demonstrates
that global land models must use region-specific parameters
rather than global parameters for accurately simulating veg-
etation processes and corresponding land surface processes.
The improved CLM5 can be used to investigate the changes
in growing season lengths, water use efficiency, and climate
impacting crop growth of Indian crops in future scenarios.
The model can also help provide estimates of crop produc-
tivity and net carbon capture abilities of agroecosystems in
future climate.

1 Introduction

Land surface models (LSMs), the land components of Earth
system models (ESMs), represent a wide variety of pro-
cesses, including energy partitioning, carbon and mass ex-
change, and interaction with the hydrological cycle, to name
a few. LSMs provide boundary conditions and interact with
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various components of ESMs (Fisher and Koven, 2020;
Strebel et al., 2022). LSMs have come a long way, from a
very basic representation of the energy budget at the surface
level to a very complex state where each grid cell consists
of multiple land units and a unique interaction of the indi-
vidual land unit with the atmospheric forcings (Blyth et al.,
2021; Ruiz-Vásquez et al., 2023). LSMs use sophisticated
parameterization and modules to represent complex land sur-
faces and their interactions with other components of ESMs.
One important component of LSMs that significantly im-
pacts not only land processes but also atmospheric processes
is agricultural land. LSMs strive towards a realistic depic-
tion of agricultural land cover and its processes. Until the
last decade, the depiction of crops was mainly constrained
to rudimentary models that do not include agricultural prac-
tices such as irrigation and fertilization or simply depicted
crops as natural grassland (Elliott et al., 2015; McDermid
et al., 2017). Enhancements to crop modules gave LSMs a
greater capacity to investigate changes in water and energy
cycles from croplands and crop yield in response to climate,
environment, land use, and land management variations. Re-
cent studies provide valuable insights for enhancing the accu-
racy of simulating biogeophysical and biogeochemical pro-
cesses at both regional and global scales in LSMs (Lobell
et al., 2011; Osborne et al., 2015; Sheng et al., 2018; Lom-
bardozzi et al., 2020; Boas et al., 2021; Ma et al., 2023).

The Community Land Model (CLM) has, since version
4.0, included a prognostic crop module based on the Agroe-
cosystem Integrated Biosphere Simulator (Agro-IBIS) (Levis
et al., 2012; Lawrence et al., 2018, 2019). This module can
simulate the soil–vegetation–atmosphere system, including
crop yields. The most recent version of CLM, CLM5, is a
leading land surface model with an interactive crop module
representing crop management. The module comprises eight
crop types that are actively managed: temperate soybean,
tropical soybean, temperate corn, tropical corn, spring wheat,
cotton, rice, and sugarcane. It also contains irrigated, non-
irrigated, and unmanaged crops (Lombardozzi et al., 2020).
Currently, CLM5 is the sole land surface model incorpo-
rating dynamic spatial patterns of significant crop varieties
and their management (Lombardozzi et al., 2020). Although
CLM5 showed advancements compared to its previous ver-
sions, limited research conducted at the point and regional
scales indicates that it may provide poor phenology and yield
predictions for specific crops (Chen et al., 2018; Sheng et al.,
2018; Boas et al., 2021). The energy and carbon fluxes are
highly affected by inaccuracies in crop phenology, particu-
larly concerning the timing of planting and harvesting.

The Indian subcontinent is a significant land mass that sig-
nificantly affects the Earth system’s energy, water, and car-
bon fluxes. Nearly 50 % of the land cover is used for agri-
culture in India, and two major cereal crops, wheat and rice,
occupy nearly 80 % of the total agricultural land. However,
CLM5 simulations of rice and wheat over the Indian sub-
continent show large biases in simulating annual crop yield

(Lombardozzi et al., 2020). The major growing seasons of
wheat and rice are the rabi and kharif seasons, but CLM5
grows wheat and rice in the summer and rabi seasons, respec-
tively. The irrigation patterns simulated by CLM have a bias
in seasonality, which Mathur and AchuthaRao (2019) high-
lighted. Irrigation is an essential feature of the croplands in
India, especially during the rabi season (Gahlot et al., 2020)
for wheat and in dry regions for rice. Therefore, the bias in
irrigation points to the lack of accurate representation of In-
dian crops.

Gahlot et al. (2020) used an LSM (Integrated Science As-
sessment Model; ISAM) to investigate the wheat croplands
of India. The major drawback of the study was the lack of
enough site-scale observations to calibrate and validate the
model while covering the broad growing conditions of India.
Therefore, in this study, we aim to investigate and improve
the representation of major Indian crops – wheat and rice – in
the latest version of CLM (CLM5.0). We used site-scale ob-
servations from multiple sites to calibrate the parameters es-
sential for the crop module in CLM5 and evaluate the model.
The site-scale observations cover various climatic conditions
experienced by crops in India, thus making this a robust cal-
ibration of an LSM. Further, we aimed to quantify the im-
pacts of realistic representation of Indian crops on various
land processes such as irrigation, gross primary production,
latent heat, and sensible heat.

The current paper is structured as follows: first, we briefly
describe CLM5 and the site-scale data used in this study.
Then, we describe the shortcomings of CLM5 in simulat-
ing Indian crops, comparing them to the observations. Next,
we dive into the need for modifications in CLM5 and the
changes made to parameters and the source code of CLM5.
The Results section compares our improved model at site and
regional scales. We compare the CLM5 simulations against
observed leaf area index (LAI), yield, and growing sea-
son length at site scale. At the regional scale, we compare
against yield, irrigation patterns, LAI, gross primary produc-
tion (GPP), latent heat flux (LH), and sensible heat flux (SH)
observations. Finally, we discuss the impact of the study and
the conclusions.

2 Materials and methods

2.1 Community Land Model version 5 (CLM5.0)

CLM5 is the latest version of the land component in the
Community Earth System Model (CESM) (Lawrence et al.,
2018, 2019). The biogeochemistry mode of CLM5 (CLM5-
BGC) is widely used to estimate the water, energy, and car-
bon fluxes in various climatic zones (Cheng et al., 2021; De-
nager et al., 2023; Song et al., 2020; Seo and Kim, 2023). The
biogeochemistry and crop module of CLM5 (BGC-Crop) is
modified in various studies to meet regional constraints, and
the resulting impact on various fluxes is analyzed (Boas et al.,
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2021, 2023; Raczka et al., 2021; Yin et al., 2023). Studies
show that incorporating agriculturally managed land cover
can improve the general representation of biogeochemical
processes (Boas et al., 2021). The CLM5 crop module in-
cludes new crop functional types, updated fertilization rates
and irrigation triggers, a transient crop management option,
and some adjustments to phenological parameters (Lombar-
dozzi et al., 2020).

CLM5 has a better representation of the land surface by
using a tile representation. This allows the model to have
various land types inside a grid cell. In its latest version, the
model supports 79 plant functional types with 32 rainfed and
32 irrigated crop types. The complex representation of the
land surface makes CLM5 a better model on various metrics
tested by International Land Model Benchmarking (ILAMB)
(Collier et al., 2018).

The current study used CLM5 in the data atmosphere
mode, i.e., not interacting with the atmosphere. The GSWP3
atmospheric data are used for the simulations. We ran CLM5
at two different spatial resolutions from 2000 to 2014: site-
scale simulations to calibrate the crop module and regional
simulations to evaluate the calibrated model against remote
sensing data and derived surface flux data (Sect. 2.5). The
plant functional types of the crops in CLM5 considered in
this study are wheat (19: rainfed and 20: irrigated) and rice
(61: rainfed and 62: irrigated). The default CLM5 is referred
to as CLM5_Def throughout this paper. CLM5_Mod1 and
CLM5_Mod2 are the two setups of the model developed in
this study, and they are described in detail in Sect. 2.3. The
overall methodology and steps followed in this study are de-
picted as a flowchart (Fig. S1 in the Supplement) and ex-
plained in detail in the following sections.

2.1.1 Site-scale simulations

For site-scale simulations, we created domain, surface, and
land use time series data for the respective sites (for details
on sites, see Sect. 2.2 and Fig. 1). The resolution of the data
is 0.1° and has one grid cell with the site at its center. The
method used to generate the data is available in the docu-
mentation of Reddy et al. (2024). The domain file represents
the spatial extent of our simulation. The surface data repre-
sent the local soil and surface properties. The land use time
series reflects the varying land use and land cover change
from 1850 to 2015 at sites. Spin-up at each site is carried out
for 200 years in accelerated deposition mode (AD mode) and
400 years in normal mode. The GSWP3 atmospheric data are
used for the site-scale simulations.

2.1.2 Regional-scale simulations

For regional-scale simulations, we fixed the domain between
60 and 100° E and between 0 and 40° N (Fig. S2), cover-
ing the Indian subcontinent. The domain, surface, and land
use time series data are generated for the domain mentioned

above with a spatial resolution of 0.5° (files available in
Reddy et al., 2024). The spin-up for the regional case is car-
ried out in two stages: 200 years of spin-up in AD mode and
400 years in normal mode. The simulation data at the end
of 400 years are used as initial conditions for our regional
simulations. The regional simulations are run from 1995 to
2014, and the data from 2000 to 2014 are used for the anal-
ysis. The GSWP3 atmospheric data are used as atmospheric
forcing for the regional-scale simulations.

2.2 Site-scale crop data

Site-scale data of the type and quality required for calibrat-
ing and validating crop models are not readily available in In-
dia. This is unfortunate because plenty of data have been col-
lected, but they have never been properly archived. India has
invested heavily in agricultural studies and has built nearly
70 agricultural institutes nationwide since the green revolu-
tion in the 1960s, with each state having at least one institute
dedicated to studying regional crops. Master’s and PhD stu-
dent theses from these institutes, many containing site-scale
observations, were recently consolidated and brought into the
public domain in the KrishiKosh repository (Veeranjaneyulu,
2014). However, the data are complex to extract from these
theses because of the data collection and reporting structure
differences followed by various institutes. For this study, we
assembled data on wheat and rice in a formatted, machine-
readable format that can be downloaded and used for model
development. The data are available on the PANGEA repos-
itory (Varma et al., 2024). We used the site-scale data (years
2000 to 2014) generated by Varma et al. (2024) to evaluate
our CLM5 (Table S1 and Fig. 1).

2.3 Improvements in CLM5

The parameters impacting planting and growing stages in
CLM5 are minimum and maximum planting dates, minimum
planting temperature, planting temperature, base temperature
for growing degree-day (GDD) calculations, minimum GDD
for crop emergence, and GDD threshold for crop grain fill.
The minimum planting temperature and the average min-
imum planting temperature of the growing season govern
the planting date of the crop in CLM5. The base tempera-
ture defines the crop growth rate and the accumulation of
GDDs. Crop growth has different phases: emergence, flower-
ing, grain fill, and maturity. CLM5 simulates the crop growth
phases using the accumulated GDDs. Therefore, base tem-
perature becomes a critical parameter that defines the crop
growth in CLM5. The base temperature and maximum GDD
control the longevity of each phase in crop growth. The allo-
cation to the grain starts once the crop reaches the grain fill
stage, which is controlled through the “grnfill” parameter in
CLM5. The grnfill parameter defines the threshold for initiat-
ing the grain-filling stage as a fraction of the GDDs required
for maturity (hybgdd in Table 1). Growing season length in
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Figure 1. Location of sites used in the current study for calibrating and validating the major Indian crops: (1) wheat and (2) rice. The contour
map shows the percent of crop area in each 0.5° grid cell.

CLM5 is directly controlled through base temperature. The
lower the base temperature, the faster the GDD accumula-
tion and the shorter the growing season length. The planting
window, base temperature, GDDs required for maturity, and
grain fill parameters have a significant impact on crop growth
and are considered widely when calibrating the crop module
in CLM5 (Fisher et al., 2019; Cheng et al., 2020; Boas et al.,
2021).

The improvements to the wheat and rice crops in CLM5
were made in two steps. We first performed a literature sur-
vey and conducted sensitivity experiments to find the best-
performing parameters shown in Table 1 (Sect. 2.3.1). The
CLM5_Mod1 setup is the result of the new parameter values.
Second, we calibrated the latitudinal variation in base tem-
perature through sensitivity experiments (Sect. 2.3.2). The
CLM5_Mod2 setup results from calibrating the latitudinal
variation in base temperature. Changes in the source code
of CLM5 were necessary to facilitate the incorporation of
changes made to parameters (see Sect. 2.3.1).

2.3.1 Improvements in CLM5_Mod1

Wheat

CLM5_Def simulated the wheat growth from April to Au-
gust. This starkly contrasts with ground reality, where Indian
farmers sow wheat in late October to early November and
harvest in late March or April (rabi season) (Sacks et al.,
2010; Gahlot et al., 2020). To implement a realistic growing
season, we performed sensitivity simulations by varying the
planting window of 45 d, from mid-October to late Novem-
ber (see Table S2 in the Supplement). The planting window
shown in Table 1 produced the best results in lowering the
bias in simulated LAI, yield, and growing season length and
is therefore used in CLM5_Mod1. The CLM5_Def base tem-
perature for wheat is 0 °C, but during our literature survey, we
found that the optimal base temperature for wheat in India

is 5 °C (Mukherjee et al., 2019; Mehta and Dhaliwal, 2023).
The planting temperature threshold in CLM5 for wheat is low
compared to observations in India (Rao et al., 2015; Asseng
et al., 2017; Mukherjee et al., 2019). The grain fill thresh-
old of 0.6 for wheat performed well amongst tested values in
our sensitivity studies (Table S2), and therefore we did not
change the parameter value.

Rice

CLM5_Def simulated rice growth from January to May. In
contrast, rice is grown in India during the monsoon season
due to the high water requirements of the rice crop. Rice is
sown in the last week of June to early July and harvested at
the end of October and early November, also known as the
kharif season. Many regions in India grow rice during the
summer and rabi seasons, which meet their water require-
ments mainly through irrigation. The rice crop area grown in
summer and rabi is very low compared to the rice crop grown
in the kharif season (Biemans et al., 2016). Therefore, we
confined ourselves to the major rice-growing season (kharif
season) to calibrate the model. A sensitivity study was con-
ducted with a planting window of 45 d, from early June to
late July (Table S2). The planting window shown in Table 1
for rice gave the best results. The base temperature used for
rice crop (10 °C) in CLM5_Def is the same as that observed
in the literature for the Indian region (Thakur et al., 2022).
However, we found that the planting temperature observed in
India differs from those used in CLM5_Def (Jat et al., 2019;
Bal et al., 2023). The grain fill threshold used for rice in the
CLM5_Def case resulted in very poor LAI and yield simula-
tions, which was recognized earlier by Lu and Yang (2021)
while studying rice in China using the CLM. Through a sen-
sitivity test, we found that the grain fill threshold of 0.65 per-
formed the best in simulating LAI and yield for rice amongst
the tested grain fill values in Table S2.
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The parameter of growing degree days required for matu-
rity (hybgdd) in both wheat and rice performed well during
our sensitivity simulations, and therefore its value is not al-
tered. Table 1 shows all the parameters changed in the default
CLM5 to improve wheat and rice crop growth for the Indian
region.

Source code changes

Along with the parameter changes, we had to change the
model source code to fix a bug with Northern Hemisphere
crop seasons that start in one calendar year and finish in the
next. The code added to the module CNPhenologyMod.F90
begins at line 2001 (Sect. S1). The code changes are available
in Reddy et al. (2024).

This bug is fixed in more recent versions of the CLM,
starting with tag ctsm5.1.dev131. A bug was also fixed to
make the CLM use user-specified values of the parameters
latvary_intercept and latvary_slope, which allow latitudinal
variation of the base temperature. More recent versions of
the CLM, starting with tag ctsm5.1.dev155, include this fix.

2.3.2 Mod2 case parameters: varying base temperature
by latitude

CLM5 can vary crop functional type (CFT) base temperature
by latitude to account for cultivars bred for optimal perfor-
mance in different climates. Currently, only wheat and sug-
arcane have these capabilities turned on. We extended this
latitudinal variability to rice and improved the existing one
for wheat in India. The latitudinal variation in base tempera-
ture is defined by two parameters: latvary_intercept and lat-
vary_slope. The equation in the model that uses these param-
eters is

Tbaselat = Tbase+ latvaryintercept

−min{latvaryintercept, latvrayslope · |latitude|}, (1)

where latvary_slope and latvary_intercept define the latitudi-
nal extent of the base temperature variation. Tbase refers to
the base temperature used for GDD calculation beyond the
latitudinal limit.

We conducted sensitivity studies to find the optimal lat-
vary_intercept and latvary_slope values for wheat and rice.
We ran the site-scale simulations at experimental sites and
compared the model estimates against the LAI, yield, and
growing-season-length observational data. This resulted in
14 sites in total (Table S1), 7 for rice and 8 for wheat. Bias is
considered to calibrate the model. The bias formula used in
the study is

mean absolute bias (MAB)=
∑
|CLMvar−Obsvar|∑

(Obsvar)
, (2)

where var is LAI, yield, or growing season length.
MAB is calculated for LAI, yield, and growing season

length. The overall bias, used as our evaluation metric during

calibration, is calculated as the equally weighted average of
mean absolute bias in LAI, yield, and growing season length.

We ran 10 simulations at each site to test the sensitiv-
ity of base temperature to crop growth and evaluate opti-
mal base temperatures. Two simulations, CLM5_Def and
CLM5_Mod1, use the parameter values shown in Table 1.
The other eight simulations at each site used the same pa-
rameter set as given in Table 1 but with a base temperature
(based) changed relative to the CLM5_Mod1 values given:
±[1,2,3,4] °C. The total number of site-scale simulations
conducted and used for this sensitivity analysis is 150 (15
sites, 10 simulations per site). These simulations helped us
understand the bias in the CLM5_Def and CLM5_Mod1
simulations and the sensitivity of base temperature to crop
growth and phenology at individual sites.

Figure 2 represents the sensitivity of wheat and rice crop
growth to base temperature in the site-scale sensitivity simu-
lations. The y axis depicts the overall bias in the model (sum
of bias in LAI, yield, and the growing season length). In the
case of wheat, the CLM5_Def parameterization has the high-
est bias at all sites in the range 0.45–0.8 (markers in dark
green in Fig. 2a). The bias in CLM5_Mod1 is in the range of
0.1–0.3 (markers in light green in Fig. 2a). The bias in sen-
sitivity experiments with the base temperature at each site is
shown in Fig. 2 with gray markers, and the least biased simu-
lation at each site is shown with black markers. The base tem-
perature of 5 °C produced the least bias at three sites (Pant-
nagar, Meerut, and Jobner). The remaining four sites have
the least bias at temperatures above 5 °C. The Ludhiana site,
which is above 30° N, performed the best at 6 °C, while Parb-
hani, Cooch Behar, and Faizabad had the least bias at 7 °C.
The three sites having the least bias at 7 °C are in the cen-
tral and southern parts of the wheat-growing regions of India.
The sites performing best at 5 °C are in the northern part of
the wheat-growing region.

In the case of rice, CLM5_Def has the highest bias, rang-
ing from 0.5–0.95 (shown as dark green markers in Fig. 2b).
The difference between the CLM5_Def and CLM5_Mod1
cases is the grain fill parameter (Table 1). Using 0.65 as the
grain fill value drastically improved the rice crop simula-
tions. The bias in CLM5_Mod1 is in the range of 0.1–0.3
(markers in light green in Fig. 2b). All the sensitivity experi-
ments used the grain fill parameter of 0.65. The sensitivity of
base temperature in rice showed that the sites in the southern
rice-growing regions (lower than the Tropic of Cancer, lati-
tude< 23.5° N) have the least bias at 11 or 12 °C. The sites
in the central rice-growing regions (23.5< latitude< 29° N)
have the least bias when using base temperatures of 8 or 9 °C.
Finally, the sites towards the country’s northern parts (lati-
tude> 29° N) perform best at 9 °C as the base temperature.
Therefore, not all sites perform optimally at a single base
temperature, and a latitudinal variation in base temperature
can improve the rice crop simulations.

The base temperature at which the least bias is observed at
each site and the corresponding latitude are noted for wheat
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Table 1. Parameter values for wheat and rice in the CLM5 crop module.

Parameter Description (units) Wheat Rice

CLM5_Def CLM5_Mod1 CLM5_Def CLM5_Mod1

min_NH_planting_date Minimum planting date for the
Northern Hemisphere (MMDD)

401 1115
(calibrated in
this study)

101 701
(calibrated in
this study)

max_NH_planting_date Maximum planting date for the
Northern Hemisphere (MMDD)

615 1231
(calibrated in
this study)

228 815
(calibrated in
this study)

min_planting_temp Average 5 d daily minimum
temperature needed for planting
(K)

272.15 283.15
(Rao et al.,
2015)

283.15 294.15
(Bal et al.,
2023)

planting_temp Average 10 d temperature needed
for planting (K)

280.15 290.15
(Asseng et al.,
2017; Mukherjee
et al., 2019)

294.15 300.15
(Jat et al., 2019)

baset Base temperature (°C) 0 5
(Mukherjee
et al., 2019;
Mehta and
Dhaliwal, 2023)

10 10
(Thakur et al.,
2022)

grnfill Grain fill parameter 0.6 0.6 0.4 0.65
(calibrated in
this study)

hybgdd Growing degree days for maturity
(°C-days)

1700 1700 2100 2100

baset_mapping Switch to turn on/off the
latitudinal variation in “baset” in
the
tropics

“constant” “constant” “constant” “constant”

and rice crops (Table S3). Using the ordinary least-squares
method, the values for latvary_intercept and latvary_slope
are calculated, satisfying Eq. (1) for wheat and rice (Table 2
and Fig. S3). Figure S3 shows the linear fit of the base tem-
perature at which the lowest bias is observed (Table S3) and
the latitude of the site. The linear fit has a high R2 of 0.64 for
wheat and 0.68 for rice.

The Mod2 version of the model used these parameters. In
CLM5_Mod2, we used the baset_mapping equal to “vary-
tropicsbylat” in the CLM namelist to turn on the latitudinal
variation in base temperature in the model. To incorporate
the latitudinal variation for rice crops in CLM5, an addition
to the code of CropType.F90 is made at line 602 (see the
Supplement).

2.4 Evaluation metrics

The comparison of CLM5 simulations with observations at
site scale and regional scale used four evaluation parame-
ters: mean absolute bias (MAB) (Eq. 2), root mean square er-

ror (RMSE), Pearson’s r , and Kling–Gupta efficiency (KGE;
Gupta et al., 2009). MAB is the normalized deviation from
the observations, with values close to 0 indicating good per-
formance. RMSE is the mean deviation of model simulations
from observations. Pearson’s r gives the correlation between
the model estimates and observations. KGE (Eq. 3) offers a
diagnostic insight into the model performance because it is a
composite of correlation, bias, and variability.

KGE= 1−
√
(r − 1)2+ (β − 1)2+ (γ − 1)2 (3)

β =
µCLM

µObs

γ =
σCLM

σObs

Here, KGE is the Kling–Gupta efficiency, r is the Pearson’s
coefficient between the CLM-simulated variable and obser-
vations, β is the bias ratio (ratio of means µ of the modeled
and observation values), and γ is the variability ratio (ratio
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Figure 2. The overall bias in the site-scale simulations during the sensitivity study of base temperature (x axis) for (a) spring wheat and (b)
rice. The y axis shows the overall bias (mean of absolute bias in LAI, yield, and growing season length). The dark green markers show the
bias in the Def case at a site, the light green marker shows the bias in the Mod1 case at a site, and the black marker shows the lowest bias
simulated at a site. The gray markers show the bias simulated in the sensitivity study of base temperature at a site. The legend shows the
name and latitude of the sites.

Table 2. Latitudinal variation parameters for wheat and rice.

Parameter name Wheat Rice

CLM5_Def CLM5_Mod2 CLM5_Def CLM5_Mod2

baset 0 5.4* 10 9*
latvary_intercept 12 6* n/a 6.8*
latvary_slope 0.4 0.19* n/a 0.26*

* Significant at p < 0.05 using the t statistic of the two-sided hypothesis test. The notation “n/a” indicates
not applicable.

of standard deviations σ of modeled and observation values).
KGE, r , β, and γ have their optimum at unity.

KGE is widely used in hydrological modeling because of
its easy formulation and interpretation (Kling et al., 2012).
KGE also makes sense from an agroecosystem point of view
because we are interested in reproducing temporal dynam-
ics, as well as preserving the spatial variation in crop growth
caused by diverse climatic conditions in the Indian region,
which are given by the first (β) and second (γ ) moments,
respectively.

A Taylor diagram (Taylor, 2001) is used to assess CLM5.
The Taylor diagram summarizes the relative skill with which
different models imitate the pattern in observations. The

three versions of CLM5 from the study are represented by tri-
angles on the Taylor diagram (Fig. 10). The distance between
each CLM5 setup and the point displayed as a black star (ob-
servation data) on the Taylor diagram indicates how accu-
rately each model reproduces observations. Three statistics
of the simulated fields are plotted on the Taylor diagram: (a)
the centered RMSE that is proportional to the distance from
the point on the x axis shown as a black star (dark green con-
tours), (b) the standard deviation that is proportional to the
radial distance from the origin (gray semicircular contours),
and (c) the Pearson correlation coefficient that is proportional
to the azimuthal angle (light gray contours). Higher correla-
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tion, lower RMSE, and smaller standard deviation character-
ize the most accurate CLM5 configuration.

2.5 Model evaluation at the site scale

We compared the CLM5_Def, CLM5_Mod1, and
CLM5_Mod2 simulations against the site-scale obser-
vations. We evaluated three crop variables: LAI, growing
season length, and yield. We used four evaluation metrics:
MAB, RMSE, Pearson’s r , and KGE (described in Sect. 2.4).
Because the count of observation data points is low, we
used the bootstrapping method to estimate the significance
of improvement from CLM5_Def to CLM5_Mod1 and
CLM5_Mod1 to CLM5_Mod2. Bootstrapping is carried
out with 10 000 samples for each evaluation metric, and
the Student’s t test is conducted to check if each model
improvement performs significantly better (p < 0.05) than
its predecessor. Table 3 shows the abovementioned evalu-
ation metrics. Note that 64 % of the observations are used
for calibration, and the rest marked with an asterisk (*) in
Table S1 are used for validation.

2.6 Model evaluation at the regional scale

2.6.1 Yield

We compared the yield simulated by CLM5 against the
EarthStat yield data (Ray et al., 2012) retrieved from
the “Harvested Area and Yield for 4 Crops (1995–2005)”
dataset. EarthStat yield data are available at a spatial reso-
lution of 0.1°× 0.1° and are given as a 5-year average. In
this study, we used the 2005 EarthStat data (representing the
average yield from 2003 to 2007) regridded to 0.5°× 0.5°
and compared them against the CLM5-simulated yield data
averaged from 2003 to 2007.

2.6.2 Irrigation

An investigation of irrigation using a climate model in In-
dian croplands was carried out by Biemans et al. (2016). The
study highlighted the necessity of improving the cropping
patterns to improve the irrigation patterns. We compared the
annual mean irrigation pattern simulated by three versions
of CLM5 against the annual mean irrigation water demand
for wheat and rice from Biemans et al. (2016). The irrigation
pattern data from Biemans et al. (2016) were unavailable as
a supplement. Therefore, we extracted data from Fig. 5 of
Biemans et al. (2016).

2.6.3 LAI and GPP

We compared the regional-scale model simulations against
the Moderate Resolution Imaging Spectroradiometer
(MODIS) 8 d GPP (MOD17A2HV006) (Running and
Zhao, 2015) and LAI (MOD15A2HV0061) (Myneni
et al., 2021). GPP and LAI data were retrieved from

the Integrated Climate Data Centre (ICDC) website
(http://icdc.cen.uni-hamburg.de/las/, last access: 4 February
2025). The MODIS GPP and LAI data mostly have four
observations per month. We took the average of the obser-
vations in a month and compared them against the monthly
averaged CLM5 data. We compared the MODIS monthly
spatial observations with corresponding CLM5 simulations
from 2001 to 2014. This exercise is to observe the spatial
variation in LAI and GPP over the Indian region. We also
compared the spatially averaged time series of monthly LAI
and GPP over the Indian subcontinent from 2001 to 2014.
This exercise is to compare the interannual cycle in MODIS
observations and CLM5 simulations.

2.6.4 Latent and sensible heat flux

For the evaluation of changes in surface energy fluxes, we
used FLUXCOM data (Tramontana et al., 2016; Jung et al.,
2019). FLUXCOM data are generated using machine learn-
ing to merge the flux measurements in eddy covariance tow-
ers with remote sensing and meteorological data and estimate
surface fluxes (Jung et al., 2019). We used the monthly 0.5°
resolution RS_METEO version of the FLUXCOM data for
comparison against the CLM5 simulations. We compared the
monthly spatial average of heat fluxes against CLM5 simu-
lations. We also compared the interannual time series of heat
fluxes with the CLM5 simulations.

3 Results

3.1 Outcomes of model improvements at site scale

3.1.1 Wheat

LAI

The leaf area index (LAI) impacts biomass accumulation
and transpiration process, while biomass distribution directly
affects the yield. Furthermore, LAI is crucial in modeling
multiple processes, including evapotranspiration and canopy
photosynthesis. Additionally, the contact between the plant
and the atmosphere is crucial in estimating the transfer of
energy and matter between the canopy and the atmosphere
(Su et al., 2022). Therefore, LAI is the most important of the
three variables evaluated here.

Figure 3 depicts the time series of LAI simulated by the
three different versions of CLM5 for different sites. Results
show that CLM5_Def simulated wheat growth during April–
June, while CLM_Mod1 and CLM_Mod2 simulated wheat
growth in November–March. CLM5_Def simulated the
wheat growth in the wrong season compared to observations.
Furthermore, CLM5_Def also underestimated LAI. The sea-
sonality error is corrected in CLM5_Mod1 to the change in
the sowing window (min_and max_NH_planting_date in Ta-
ble 1), but it still underestimated LAI. Including latitudinal
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variation in base temperature in the CLM5_Mod2 case im-
proved the LAI simulation by reducing the underestimation
at most sites except Cooch Behar (Fig. 3a and b), Faizabad
(Fig. 3c–e), and a few growing seasons in Nadia (Fig. 3o).
Overall, CLM5_Mod2 provided the best estimates of LAI
(Fig. 4).

Table 3 shows the impact of improvements made to
CLM5. The observed mean maximum LAI is 4.22 m2 m−2.
CLM5_Mod2 is the closest to the observation with a value
of 3.47 m2 m−2, while CLM5_Def is the worst with a value
of 2.36 m2 m−2. Figure 3 shows us that the crop in the
CLM5_Def case grows in the wrong season compared to
what is observed. Hence, all performance metrics for the
LAI simulations in the CLM5_Def case will show very poor
results because the simulated LAI values are all zero dur-
ing the observed growing season. To ensure a fairer com-
parison between the CLM5_Def and CLM5_Mod cases, we
used days from sowing instead of calendar dates in the LAI
time series. Even after adjusting for the growing season,
the LAI in the CLM5_Def case has a large MAB of 0.81.
CLM5_Mod1 and CLM5_Mod2 performed much better with
MABs of 0.52 and 0.43. The negative r value for LAI in the
case of CLM5_Def is due to the simulation of shorter grow-
ing lengths and having zero LAI values when the observa-
tions reach their maximum values. The r value improved in
both the Mod cases, with a higher r value of 0.3041 (signif-
icant at p < 0.01) in the CLM5_Mod2 case. KGE value is a
good measure of how the model is performing in seasonal-
ity and spatially. KGE for CLM5_Def is very low (−0.62).
CLM5_Mod1 showed improvement with a value of −0.02,
but it is still negative. CLM5_Mod2 has the highest value of
0.19.

Figure 4 shows the CLM5 performance in simulating crop
growth at each site. The larger the marker size, the higher
the bias simulated at that site. The three model versions
are shown in three distinct colors, with red representing
CLM5_Def, cyan representing CLM5_Mod1, and blue rep-
resenting CLM5_Mod2. The improvement in LAI simula-
tions is evident from Fig. 4a.1. The LAI simulations in Mod
cases have a lower bias (smaller and the top marker) com-
pared to the CLM5_Def case. The improvement in model
simulation is not uniform across the wheat-growing region.
A more significant improvement is seen in Ludhiana, Meerut,
and Pantnagar, which belong to the most fertile and well-
irrigated regions of India. Jobner and Parbhani also saw con-
siderable improvement from CLM5_Def to CLM5_Mod2.
These two sites belong to regions with a limited water supply.
The introduction of latitudinal variation drastically improved
the simulation at Ludhiana, Meerut, Pantnagar, Jobner, Na-
dia, and Parbhani, all belonging to distinct agro-climatic re-
gions, proving the robustness of the model and the impor-
tance of varying base temperatures for better crop simulation.

Overall, the modified models significantly improved over
the default model, with CLM5_Mod2 performing the best
(Table 3 and Fig. S4).

Yield

The observed mean yield is 3.88 tha−1 (Table 3). The de-
fault model underestimated the mean yield with a value of
3.05 tha−1. The modified models performed better, simulat-
ing a mean yield of 3.68 tha−1 across all sites. All metrics in
Table 3 show that the default model is the worst performer
with high MAB and RMSE and low correlation and KGE
values. The CLM5_Mod1 is the best performer in all met-
rics (bold text). It is important to note that CLM5_Mod2
performs quite well. The mean yields of CLM5_Mod1 and
CLM5_Mod2 are identical, and the correlation values of 0.38
in CLM5_Mod1 and 0.30 for CLM5_Mod2 are not statisti-
cally different (significance level, p < 0.05).

Site-scale comparison of wheat yield (Fig. 4b.1) high-
lights that the yield simulated in CLM5_Def has a high
bias at all sites. The high bias in most regions is reduced
by an improved growing season (CLM5_Mod1) and Tbase
(CLM5_Mod2). Cooch Behar, Faizabad, and Nadia all saw
improvement in wheat yield simulation from CLM5_Def to
CLM5_Mod1 to CLM5_Mod2 (Figs. 4b.1 and S5). How-
ever, sites in southern (Parbhani) and northern regions (Lud-
hiana, Meerut, and Pantnagar) improved from CLM5_Def
to CLM5_Mod1 but did not improve from CLM5_Mod1 to
CLM5_Mod2 (Figs. 4b.1 and S5). The latitudinal variation in
base temperature showed improvements at the sites in central
wheat-growing regions, while the sites in southern and north-
ern regions did not improve over CLM5_Mod1 (Fig. 4b.1).

Growing season length

The growing season length simulated by CLM5_Def is very
short, with a mean growing season of just 69 d compared to
129 d in observations (Table 3). The growing season length
considerably increased to 126 d in CLM5_Mod1 and 136 d
in CLM5_Mod2. The MABs in the growing season length in
CLM5_Mod1 and CLM5_Mod2 are 0.11 and 0.10, respec-
tively, much lower than the 0.47 in the CLM5_Def case. An
incorrect growing season and a lower Tbase for wheat led to a
very short growing-season-length simulation in CLM5_Def.
The modified models performed significantly better than the
default in terms of all the evaluation metrics (Table 3). Their
performances are comparable, with no statistically signifi-
cant difference (p < 0.05) between the metrics.

Figure 4c.1 shows the MAB in the growing-season-length
simulation by three CLM5 models across the sites in vari-
ous climatic conditions. CLM5_Def has the largest bias, per-
forming poorly at all sites (large red markers in Fig. 4c.1).
With the improvements made in CLM5_Mod1, the growing-
season-length simulation considerably improved at all sites.
The changes made in CLM5_Mod2 showed mixed results.
The growing-season-length simulation in CLM5_Mod2 im-
proved over CLM5_Mod1 at Parbhani, Nadia, Pantnagar, and
Ludhiana (Fig. 4c.1). Ludhiana and Pantnagar belong to very
fertile regions with very low water stress. Nadia belongs to
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Figure 3. Site-scale LAI simulated by three versions of CLM5 against observations for wheat.

the delta region, and Parbhani belongs to an arid region.
CLM5_Mod2 simulations did not show a considerable im-
provement over CLM5_Mod1 at Cooch Behar, Jobner, and
Meerut.

The results in wheat showed that both the LAI and growing
season length significantly improved in CLM5_Mod2 over
CLM5_Mod1. Table S4 expands on the results discussed
above to show the improvements observed during the cali-
bration and validation stages separately. Based on the overall
bias in Tables 3 and S3 and Fig. S4, we find that wheat sim-
ulation largely improved from the default to Mod2.

3.1.2 Rice

LAI

A significant improvement in LAI rice simulations can
be seen in Figs. 4b.2 and 5 and Table 3, especially af-

ter introducing the latitudinal variation in base tempera-
ture. CLM5_Def underestimated the mean maximum LAI
with a value of 1.65 m2 m−2, much lower than the ob-
served 5.29 m2 m−2 (Table 3). The modified models perform
much better, simulating maximum LAI in the range of 4.45–
4.5 m2 m−2. We compared the CLM5-simulated LAI against
the observations after correcting the difference in the grow-
ing season in CLM5_Def, as discussed in Sect. 3.1.1.1. The
MAB was reduced from 0.66 in the CLM5_Def case to 0.387
in the CLM5_Mod1 case and to 0.343 in the CLM5_Mod2
case. CLM5_Mod2 LAI performed better than CLM5_Mod1
in other metrics – RMSE, r value, and KGE (Table 3) – and
the improvement is significant at p < 0.05.

Figure 4a.2 shows the LAI simulation of rice by three ver-
sions of the model. The bias markers at each site clearly
show that the changes made to the model in CLM5_Mod1
and CLM5_Mod2 significantly reduced the bias in maximum
LAI simulated during a growing season. CLM5_Mod2 sim-
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Figure 4. Site-scale CLM performance against observations for (1) wheat and (2) rice. Crop variables compared are (a) maximum LAI
during the growing season, (b) yield, and (c) growing season length. The three markers at each site location show the MAB of CLM5_Def
(red), CLM5_Mod1 (cyan), and CLM5_Mod2 (blue). The MAB ranges from 0 to 1. The contour on the map is the crop area per 0.5° grid
cell.

ulations performed better for sites in the southern (Fig. 5a–c)
and northern parts of India (Fig. 5g, i, and j). The observed
model improvements strongly suggest that latitudinal varia-
tion in base temperature implemented in CLM5_Mod2 is es-
sential to capture the growth variation in LAI observed across
Indian rice-growing regions (Figs. 4a.2 and S4).

Yield

The CLM5_Def yield of 2.62 tha−1 is much lower than the
observed 4.56 tha−1 (Table 3). The mean yield improved

by nearly 1 tha−1 in the CLM5_Mod runs but is still lower
than observations. The MAB improved from 0.699 in the
CLM5_Def case to 0.297 in the CLM5_Mod1 case and
0.291 in the CLM5_Mod2 case. The most significant im-
provement from the CLM5_Def to CLM5_Mod cases is
in rice yield predictions (Table 3). RMSE improved from
1.63 tha−1 in CLM5_Def to 0.65 tha−1 in CLM5_Mod1 and
0.53 tha−1 in CLM5_Mod2. Similarly, the r value improved
from –0.76 in CLM5_Def to –0.04 in CLM5_Mod1 and
0.16 in CLM5_Mod2. KGE has the best value of –0.04 in
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Figure 5. Site-scale LAI simulated by three versions of CLM5 against observations for rice.

Table 3. Evaluation of wheat and rice across three CLM5 setups at site scale.

Parameter Evaluation
metrics

Wheat Rice

Obs CLM5_Def CLM5_Mod1 CLM5_Mod2 Obs CLM5_Def CLM5_Mod1 CLM5_Mod2

LAI
(m2 m−2)

Mean of
max. LAI

4.22 2.36 2.69 3.47 5.29 1.65 4.48 4.45

MAB – 0.81 0.52 0.43 – 0.66 0.39 0.34
RMSE – 2.61 1.76 1.41 – 3.00 1.94 1.68
r – –0.45∗ 0.11 0.30∗ – 0.34∗ 0.34∗ 0.43∗
KGE – –0.62 –0.02 0.19 – –0.06 0.33 0.42

Yield Mean 3.88 3.05 3.68 3.68 4.56 2.62 3.51 3.43
(t ha−1) MAB – 0.25 0.15 0.19 – 0.70 0.30 0.29

RMSE – 1.19 0.77 0.93 – 3.82 1.70 1.64
r – 0.27 0.38 0.30 – –0.76∗ –0.04 0.16
KGE – 0.12 0.26 0.10 – –1.06 –0.17 –0.04

Growing Mean 129 69 126 136 117 114 123 121
season MAB – 0.47 0.11 0.10 – 0.07 0.08 0.10
length RMSE – 62.84 15.62 15.44 – 11.3 12.02 15.24
(d) r – 0.37 0.66∗ 0.62∗ – 0.25 0.40 –0.07

KGE – –0.21 0.57 0.52 – 0.21 0.39 –0.07

Overall
bias

– 0.51 0.26 0.24 – 0.48 0.26 0.25

∗ Significant at p < 0.05 using the Student’s t test. The bold font indicates the best performer in each category; if multiple models are marked in bold font, it indicates a lack of
statistically significant difference between them.
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CLM5_Mod2, which is far from perfect but is much better
than –1.06 in CLM5_Def and –0.17 in CLM5_Mod1. The
improvement from CLM5_Mod1 to CLM5_Mod2 is signifi-
cant (p < 0.01), especially in terms of r value and KGE.

Figure 4b.2 highlights the significant improvement made
through CLM5_Mod1 and CLM5_Mod2 in reducing the
bias at all sites. The bias in CLM5_Mod1 overlaps the
bias in CLM5_Mod2 at Raipur, Kuthulia, Jabalpur, Faiz-
abad, Pantnagar, and Kaul. The biases in CLM5_Mod1 and
CLM5_Mod2 are identical at all the abovementioned sites.
Therefore, introducing latitudinal variation in CLM5_Mod2
has a significant impact on improving LAI simulation at
all sites (Fig. 4a.2) and simulated yield better than the
CLM5_Mod1, especially in the southern region (Anantapur
and Hyderabad) (Figs. 4b.2 and S6).

Growing season length

The CLM5_Def model performed exceptionally well in sim-
ulating the growing season length with a value of 114 d,
which is closest to the observed value of 117 d (Table 3).
The MAB and the RMSE in the default case are the low-
est, even though the MAB shows no significant difference
among the three CLM5 versions. During our bootstrap ex-
ercise with 10 000 samples, no significant difference be-
tween MAB among the three setups was observed. RMSE
in CLM5_Mod1 is lower than CLM5_Mod2. The r value
in CLM5_Mod2 (–0.07) shows no variation in growing sea-
son length among the sites. However, Fig. 5 shows that the
longer or shorter growing season lengths observed at the site
scale are simulated in CLM5_Mod2. Figure 4c.2 shows that
no version of CLM5 outperforms the others in simulating the
growing season length of rice. Additionally, bias in all mod-
els is very low, less than 0.2 at most sites.

The overall bias in Table 3 and Fig. S4 for rice shows that
CLM5_Mod2 performs significantly better than the other
CLM5 versions. Using latitudinal variation in base temper-
ature for rice improved the LAI and yield at all sites (Figs. 4,
5, S4, and S6). This suggests that latitudinal variation in
base temperature implemented in CLM5_Mod2 is necessary
to capture the growth variation observed across Indian rice-
growing regions.

3.2 Outcome of model improvements at the regional
scale

3.2.1 Yield

Figure 6 compares regional-scale yield simulations by CLM5
against EarthStat data (Ray et al., 2012). CLM5_Def simula-
tions underestimated the wheat yield in central and south-
central areas of the wheat-growing regions, which is also
identified by Lombardozzi et al. (2020). In the CLM5_Mod1
case, the underestimation found by Lombardozzi et al. (2020)
is reduced, but at the same time, an overestimation of yield is

observed in the eastern parts of the wheat-growing regions.
The overestimation is reduced by introducing latitudinal vari-
ation in the CLM5_Mod2 case. Large parts of the wheat-
growing regions have a low bias between −1 and 1 tha−1

compared to the EarthStat data. One important region where
CLM5_Mod2 is underestimating is the Punjab and Haryana
regions (the northwest region in the map). In Fig. S7, we
compare the total annual yield from wheat-growing regions
simulated by CLM5 with FAO data. CLM5_Mod1 replicates
the trend observed in FAO data. CLM5_Def underestimated
the total yield owing to the shorter growing season simulated
in the default case.

The CLM5_Def rice simulations underestimated the yield
across large parts of the rice-growing regions and overesti-
mated it in the Indo-Gangetic Plains (IGP) and northeast re-
gions. CLM5 simulated a higher yield in IGP, which has a
comparatively smaller rice-growing area than in the central
and eastern parts of India (Fig. S8). Improved yield simu-
lation is observed in the CLM5_Mod1 case due to changes
in the growing season and grain fill threshold. The overes-
timation in IGP and the underestimation in southern parts
of India decreased (Fig. 6b.3). However, changes made in
the CLM5_Mod2 case showed slight improvement in most
regions over the CLM5_Mod1 case (Fig. 6b.3 and b.4). In
CLM5, rice is grown only during the kharif season; how-
ever, in the southern regions of India, where water is avail-
able throughout the year, rice is grown in two or three sea-
sons (Wang et al., 2022). Therefore, the annual yield obser-
vations in EarthStat are higher in this region and are not re-
flected in the CLM5 simulations. In Fig. S7b, we compare
the annual rice yield over rice-growing regions of India from
CML5 simulations and FAO data. CLM5_Def overestimated
the yield, considering the fact that rice grows in only one sea-
son in CLM5. With the improvements made in CLM5, the
trend in FAO is matched by the modified simulations; how-
ever, yield in modified cases is lower compared to FAO data
across the 15 years. The underestimation in yield is expected
because rice grows in only one season in CLM5.

The improvement in rice crop growth and yield is twofold
in this study: one aspect is changing the growing season,
and the other is the grain fill parameter. A study by Rabin
et al. (2023) used CLM5 to simulate crop yields of major
crops across the globe. The important point to note here is
that they used a prescribed calendar; therefore, the growing
season is accurate for crops in all regions, but they did not
change the grain fill parameter and used the default value
of 0.4. The results for rice yield were poor compared to the
FAO data (Rabin et al., 2023). Therefore, changing the grow-
ing season would not improve the yield of rice crops. Our
sensitivity studies with the grain fill parameter showed that
the value 0.65 produced better crop growth and yields after
changing the growing season. The underestimation of yield
for wheat and rice pointed out by Lombardozzi et al. (2020)
is reduced to some extent with the modifications in this
study. In the default case, the bias in yield, especially in
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Figure 6. Yield estimates of (a) wheat and (b) rice by (column 1) EarthStat 2005 and (columns 2–4) the difference in yield between CLM5
(mean 2003–2007) versions and EarthStat data.

rice, is around ±3 t ha−1, which is reduced in CLM5_Mod2
to ±1.5 tha−1. However, more research is required to un-
derstand the reason for the bias in CLM5_Mod cases in the
range of ±1.5 tha−1 in both rice and wheat.

3.2.2 Irrigation

We compared our simulated irrigation across wheat and rice-
growing regions of India against the annual irrigation pat-
terns from Biemans et al. (2016). In Fig. 7, the blue line
shows the annual irrigation pattern simulated by Biemans
et al. (2016), the black line depicts irrigation simulated by
the CLM-Def case, and the green and orange lines show the
CLM5_Mod1 and CLM5_Mod2 simulations, respectively.
CLM5_Def has anomalous peaks in the pre-monsoon sum-
mer season for wheat and rice. These are also found in
Mathur and AchuthaRao (2019). This error in irrigation sea-
sonality resulted from wrong cropping patterns of wheat and
rice in India in the CLM5_Def case. The modified CLM5
simulations matched the patterns from Biemans et al. (2016).
One significant difference between the current study and Bie-
mans et al. (2016) is that rice is grown in the rabi and kharif
seasons in Biemans et al. (2016), while in our study, rice
is sown in only the kharif season. CLM5 is not currently
equipped to simulate multiple crop sowings in a year, and
the rainfed and irrigated rice crop maps of CLM5 (Fig. S8)
do not reflect the kharif and rabi rice crop maps. Another im-
portant point to note is that Biemans et al. (2016) reported the
total irrigation water demand of the crop during the growing
season, and we are comparing it with water added through
irrigation to the crops.

The improvements made in our study improved the sea-
sonality of the irrigation in wheat and rice croplands. The
improved models simulate less water added through irri-
gation for the wheat and rice crops. Water added through
irrigation over the wheat-growing region is reduced from

4.32× 109 m3 d−1 in CLM5_Def to 3.08× 109 m3 d−1 in
CLM5_Mod1 and 3.53× 109 m3 d−1 in CLM5_Mod2. The
drastic difference in irrigation water added is because wheat
is now growing in the rabi season in the Mod cases com-
pared to the summer season in CLM5_Def. A more signifi-
cant reduction in irrigation water added to crops is observed
in the case of rice. CLM5_Def simulates 8.09× 109 m3 d−1

of water added through irrigation, while CLM5_Mod1 and
CLM5_Mod2 simulate only 2.97 and 3.09× 109 m3 d−1, re-
spectively. Such drastic differences in water added through
irrigation will significantly impact the hydrological cycle.

3.2.3 GPP and LAI

Spatiotemporal variation

The monthly spatial patterns of simulated GPP and LAI are
shown in Figs. 8 and 9. The primary crop-growing months
are June to March. This is evident in the MODIS GPP and
LAI observations. However, the CLM5_Def simulated low
GPP and LAI during this period. This is due to the error in
the crop calendar in the default model. CLM5_Def simulated
maximum carbon uptake (GPP) and LAI in April and May
(Fig. 8: April and May) when very little vegetation activity
is observed across India, which is also evident from MODIS
GPP and LAI data (Fig. 9: April and May). In contrast, the
modified models simulated the GPP and LAI cycle as ob-
served in the MODIS data with high GPP and LAI during
June–March and low values during the rest of the year.

The maximum observed GPP in the MODIS data is in the
northeast and peninsular regions of India. In contrast, the
maximum GPP simulated by CLM5_Def is in the IGP re-
gion. The CLM5_Mod1 and CLM5_Mod2 simulations are
similar to the MODIS observations with maximum LAI in
the central and eastern parts of the country from July to
February of the year. Even though the modified models cap-
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Figure 7. Comparison of water added through irrigation simulated by CLM5 and water demand data from Biemans et al. (2016).

tured the observed spatial patterns, they tend to overestimate
the magnitudes.

Monthly time series

We evaluated the monthly time series of GPP and LAI
from 2000 to 2014 (Table 4; Fig. S9). The simulated GPP
performed better in the modified versions of CLM5 than
the default one. The monthly mean GPP has a MAB of
0.51 in CLM5_Def, 0.241 in CLM5_Mod1, and 0.235 in
CLM5_Mod2. The RMSE decreased from 6.95 kgCm−2 per
month in CLM5_Def to 3.48 kgCm−2 per month in Mod1
and 3.56 kgCm−2 per month in Mod2. The most significant
improvement in the model simulations is seen in the corre-
lation of CLM5-simulated GPP against the MODIS obser-
vations. The r value is negative in the case of CLM5_Def
(–0.47) because the seasonality of vegetation growth in the
Indian region is incorrect. The r value improved to 0.76 in
CLM5_Mod1 and CLM5_Mod2. Similarly, KGE has a neg-
ative value (–0.48) in CLM5-Def and improved to 0.72 in
CLM5_Mod1 and 0.71 in CLM5_Mod2.

The peaks in annual GPP from 2001 to 2014 (in Fig. S9a)
in the case of CLM5_Def are off by at least 3 months com-
pared to MODIS GPP, while the peaks in CLM5_Mod1
and CLM5_Mod2 are consistent with the observations. Fig-
ure 10b shows the monthly GPP comparison of CLM5 simu-
lations against MODIS data in a Taylor diagram. Higher cor-
relation, lower RMSE, and smaller standard deviation char-
acterize the most accurate CLM5 configuration, as seen in

the closer proximity of CLM5_Mod2 markers to the obser-
vational reference point. A drastic improvement is observed
from default to modified cases; the correlation improved
along with standard deviation, which got very close to ob-
servations (black star on the Taylor diagram) in the modified
cases. CLM5_Mod2 is the best-performing setup in Fig. 10b,
with high correlation and low standard deviation.

Interestingly, not all evaluation metrics for LAI improved
with changes made to CLM5 in this study. The monthly mean
LAI had a MAB of 0.19 in the CLM5_Def case, 0.24 in
the CLM5_Mod1 case, and 0.3 in the CLM5_Mod2 case.
RMSE in CLM5_Def is 0.27 m2 m−2, which increased to
0.29 m2 m−2 in the CLM5_Mod1 case and 0.35 m2 m−2 in
the CLM5_Mod2 case. The overestimation of LAI is con-
sistent across all CLM5 simulations (Fig. S9b). The overes-
timation of LAI by process-based vegetation models com-
pared to MODIS LAI data is widely reported (Fang et al.,
2019). The reasons are processes like carbon fixation and al-
location of biomass to leaves in the models (Gibelin et al.,
2006; Richardson et al., 2012), differences in defining the
LAI by various models and MODIS (Fang et al., 2019), and
inherent bias in LAI estimation in MODIS in the equatorial
region (20° S to 15° N) (Fang et al., 2019; Lin et al., 2023).
Figure S9b illustrates that although the bias is higher in Mod
cases, the peaks in annual LAI in MODIS data are captured
accurately by the Mod cases. The CLM5_Def peak in LAI is
off by 2 to 3 months.

Other evaluation metrics of LAI showed that the modi-
fied models perform much better than the default case. The
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Figure 8. Spatial variation of GPP simulated by CLM5 against MODIS data. The data show the monthly GPP averaged over 2000–2014.

Table 4. Evaluation of CLM5 simulations at the regional scale against MODIS (LAI and GPP) and FLUXCOM (LH and SH) data. The bold
text indicates that the version of CLM5 performed the best.

Parameter Evaluation metrics CLM5_Def CLM5_Mod1 CLM5_Mod2

GPP MAB 0.51 0.24 0.24
RMSE 6.95 3.48 3.56
r –0.47* 0.76* 0.76*
KGE –0.48 0.72 0.71

LAI MAB 0.19 0.24 0.31
RMSE 0.27 0.29 0.35
r 0.35* 0.92* 0.93*
KGE 0.34 0.40 0.41

LH MAB 0.22 0.17 0.16
RMSE 14.78 11.91 11.28
r 0.69* 0.93* 0.93*
KGE 0.60 0.77 0.77

SH MAB 0.22 0.19 0.20
RMSE 14.34 11.16 11.56
r 0.85* 0.94* 0.95*
KGE 0.52 0.73 0.73

* Significant at p < 0.01 using the Student’s t test.
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Figure 9. Spatial variation of LAI simulated by CLM5 against MODIS data. The data show the monthly LAI averaged over 2000–2014.

r value in CLM5_Def is 0.35, which increased to 0.92 in
the CLM5_Mod1 case and 0.93 in the CLM5_Mod2 case.
Higher r values in modified runs imply that the seasonality
of LAI simulated by CLM5 considerably improved due to the
improvements made in the model. The KGE metric showed
improvement from 0.35 in the CLM5_Def case to 0.4 in the
CLM5_Mod1 case and to 0.41 in the CLM5_Mod2 case (Ta-
ble 4). The Taylor diagram of LAI (Fig. 10a) shows improve-
ment in correlation, but the error and standard deviation are
higher than the observations.

3.3 Heat fluxes

3.3.1 Latent heat flux

Spatial variation

The spatial and monthly variation in the CLM5 simulation of
LH is illustrated in Fig. S10. Most of the spatial pattern in ob-
served LH is captured by all setups of CLM5. However, one
error in the case of CLM5_Def is observed in March, April,
and May, where the IGP region shows high LH values absent
in FLUXCOM observations. This erroneous high LH in this

region is due to the wheat growth evident from Fig. 9. The
least LH is observed during the winter months of November
to February across all CLM5 simulations.

Monthly time series

Comparing the latent heat flux (LH) simulated by CLM5
with FLUXCOM data, we observe that the MAB of the
LH was reduced from 0.22 in CLM5_Def to 0.27 in
CLM5_Mod1 and 0.16 in CLM5_Mod2. The RMSE was re-
duced from 14.74 Wm−2 in CLM5_Def to 11.91 Wm−2 in
CLM5_Mod1 and 11.28 Wm−2 in CLM5_Mod2. The cor-
relation improved from 0.69 in CLM5_Def to 0.93 in the
CLM5_Mod1 and CLM5_Mod2 cases. The KGE metric im-
proved from 0.70 in CLM5_Def to 0.77 in CLM5_Mod
cases. The improvement is evident in the Taylor diagram
(Fig. 10c). CLM5_Mod simulations are much closer to the
observations than the CLM5_Def case. CLM5_Mod1 and
CLM5_Mod2 have similar performance, even though LAI
improved in CLM5_Mod2 over CLM5_Mod1. Figure S12a
shows that the CLM5 simulations underestimate the LH
compared to FLUXCOM data.
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Figure 10. Comparing CLM5-simulated (a) LAI, (b) GPP, (c) LH, and (d) SH against observations. The data used here are the monthly
mean from 2000 to 2014.

3.3.2 Sensible heat flux

Spatial variation

The spatial and monthly variation in the CLM5 simulation
of SH is illustrated in Fig. S11. Most of the spatial pattern
in observed SH is captured by all setups of CLM5. However,
CLM5_Def simulated slightly lower SH than the modified
model simulations, especially from March to June. Low SH
is observed from August to December across all CLM5 sim-
ulations.

Monthly time series

Comparing the sensible heat flux (SH) simulated by CLM5,
we observed that the MAB of SH was reduced from
0.22 in CLM5_Def to 0.19 in CLM5_Mod1 and 0.20 in
CLM5_Mod2. The RMSE was reduced from 14.34 Wm−2

in CLM5_Def to 11.16 Wm−2 in CLM5_Mod1. The RMSE
in CLM5_Mod2 is 11.56 Wm−2, slightly higher than in
the CLM5_Mod1 case. The correlation improved from
0.85 in CLM5_Def to 0.94 in CLM5_Mod1 and 0.95
in CLM5_Mod2. The KGE metric improved from 0.52
in CLM5_Def to 0.73 in CLM5_Mod cases. The SH in
CLM5 is affected by vegetation temperature and ground
temperatures. The results suggest that a difference in veg-
etation temperatures is observed between CLM5_Def and
CLM5_Mod1, and little to no difference is observed between
CLM5_Mod1 and CLM5_Mod2. The difference in vegeta-
tion temperature is likely caused by the accurate representa-

tion of the growing season in CLM5_Mod cases compared
to CLM5_Def. This is also evident from the Taylor diagram
(Fig. 10d), where we see improvement from CLM5_Def to
CLM5_Mod1, but CLM5_Mod1 and CLM5_Mod2 markers
overlap. Figure S12b shows that the CLM5 simulations un-
derestimated the highs and lows of SH in FLUXCOM data.
The peak of SH in all CLM5 simulations is in line with the
FLUXCOM data. However, CLM5_Def has a larger bias in
estimating the maximum SH during a year.

Overall, the improvements in the representation of the two
major Indian crops drastically improved the surface energy
flux simulations by CLM5 (Fig. 10b–d).

4 Discussion

In this study, we improved the representation of wheat and
rice, the two major crops grown in India, in the CLM5 land
model. One major strength of the current study is using mul-
tiple site-scale observations for calibrating and validating the
crop modules in CLM5. Studies such as those by Gahlot et
al. (2020), who looked at Indian crops, used only one site
for calibrating and evaluating their model. Even studies car-
ried out for winter wheat across the globe (Lokupitiya et al.,
2009; Lu et al., 2017; Boas et al., 2021) used two or three
sites for calibrating the model. In contrast, we used 33 grow-
ing seasons from 14 sites, resulting in a rigorous calibration
and evaluation exercise. The improved model in our study not
only simulated crop phenology better but also improved the
simulation of energy and water fluxes. The results demon-
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strate the importance of accurate representation of crops in
land surface models, especially in a country like India, where
more than 50 % of land is used for agriculture.

This study looked at the variability in yield simulations at
a regional scale for two major Indian crops. When compared
against the EarthStat 2005 yield data, few regions showed
improvement from the default CLM5 version to the modi-
fied version. Nevertheless, the yield simulated by CLM5 for
wheat and rice needs improvement. Yield is now calculated
as the available dry matter allocated to the grain after the
allocation to the root, leaf, and stem. Global studies like Ra-
bin et al. (2023) have highlighted the issue of inconsistent
improvement in yield estimates at different scales while ana-
lyzing the interannual and spatial variation in yield estimates.
A recent study by Yin et al. (2024), which looked at the yield
estimates by various models, concluded that CLM5 simu-
lated the temporal variability well but failed to simulate the
spatial variability across China’s wheat- and rice-growing re-
gions. Similarly, in our study, we found an improvement in
site-scale yield estimates over different growing seasons but
found mixed results in regional yield estimates. The yield
should perform better since CLM5 simulates the GPP with
lower bias and improved seasonality. However, that is not the
case here. Therefore, an investigation into the yield estima-
tion, especially wheat in CLM5, is necessary.

A region with significant agricultural coverage and prac-
tices is misrepresented in the most widely used land sur-
face model. Our study improved the model representation
of the two major Indian crops. Our future goal is to study
the feedback in the land–atmosphere system using the im-
proved land model. The enhanced crop representation and
management practices will impact the water cycle and lo-
cal and global temperature and precipitation (Mathur and
AchuthaRao, 2019). Rice and wheat constitute 80 % of In-
dia’s harvested land area, followed by maize, sugarcane,
and cotton. Improving parameterizations for all these Indian
crops (seasonal and cash crops) would be an ideal next step.

While our study made progress in correcting shortcom-
ings, it is critical to recognize that CLM5, like any sophis-
ticated climate model, is still a work in progress. Future im-
provements should address broader model deficiencies high-
lighted in our study and various other studies. The deficien-
cies include the inclusion of sophisticated plant and soil hy-
draulics (Boas et al., 2021; Raczka et al., 2021), improve-
ment in yield predictions, improved or new management
practices like tillage (Graham et al., 2021), and post-harvest
crop residual management. Furthermore, our research con-
tributes to continuing attempts to improve CLM5 by ad-
dressing shortcomings in Indian crop representation. The en-
hancements are a step forward, emphasizing the iterative na-
ture of model development and the importance of constant
refinement to ensure the accuracy of the model in replicat-
ing complex Earth system processes. Future studies should
build on these findings, including additional enhancements
to address broader shortcomings in the model.

The major drawback of this study is that it does not con-
sider the multiple croppings of rice followed in major parts
of India. Although the harvested area of rice grown in the
rabi and summer seasons is very low (Biemans et al., 2016),
it is important to include the rice growth in these seasons
in LSMs. This will significantly impact the terrestrial fluxes
at the local scale (Oo et al., 2023). The lower LH sim-
ulated by the CLM5 models during the rabi and summer
season (November to June) compared to FLUXCOM data
(Fig. S12a) might be due to growing rice in the kharif sea-
son only. However, because of the small areal coverage of
rabi and summer rice, their impact on large-scale fluxes and
weather/climate is likely to be small. This study did not
consider other major crops, such as maize, soybean, and
pulses, which cover substantial harvesting areas. Future stud-
ies should focus on improving the representation of these
crops in CLM5 for a comprehensive study of climate impacts
on Indian agroecosystems.

5 Conclusion

Two major modifications were made to CLM5 in this study.
First, the representation of wheat- and rice-growing seasons
in India was improved to align better with the observations.
Second, a latitudinal variation in base temperature was im-
plemented to capture the crop varieties grown across di-
verse Indian agro-climatic conditions. These modifications
resulted in the following improvements in the CLM5 simula-
tions.

– The crop phenology is realistic in the modified models.
The models simulate rice and wheat growth in the sea-
sons they are grown in the field.

– The LAI simulations are significantly better in wheat
and rice at the site scale – the bias in the simulations was
reduced by nearly 50 % compared to the default model.

– The simulated growing season length for wheat is sig-
nificantly better at the site scale. The RMSE improved
from over 60 d in the default model to just over 15 d.

– The simulations of rice yield are significantly better at
both site and regional scales.

– The carbon uptake (GPP) simulations over the Indian
region are significantly better, improving from a nega-
tive correlation in the default model to a high positive
correlation.

– The seasonality of simulated irrigation patterns across
crop regimes in India is realistic.

Irrigation is a significant part of agriculture in India. With
the improvements made to the model, irrigation patterns im-
proved drastically and are now in line with a study by Bie-
mans et al. (2016). The amount of water taken up by the crops
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through irrigation during their respective growing seasons
decreased, and at the same time, the latent heat simulations
improved from the default case.

CLM5 defines its crop parameters globally and, there-
fore, has a significant bias in regions such as India, where
crop practices are unlike those in Europe or North America.
This study demonstrated that global land models must use
region-specific parameters rather than global ones for accu-
rately simulating vegetation and land surface processes. Such
improved land models will be a great asset in investigat-
ing global and regional-scale land–atmosphere interactions
and developing improved future climate scenarios. Models
that can simulate regional crop and land processes accurately
will be able to predict the future water demand of the crops
and whether enough water sources are available to meet the
needs. They can also help provide estimates of the produc-
tivity and net carbon capture abilities of agroecosystems in
future climate.

Code and data availability. The site-scale data used
in the study are available in Varma et al. (2024)
(https://doi.org/10.1594/PANGAEA.964634). The code changes
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series data used for the site-scale and regional simulations are
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