Articles | Volume 18, issue 5
https://doi.org/10.5194/gmd-18-1413-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-18-1413-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Modeling commercial-scale CO2 storage in the gas hydrate stability zone with PFLOTRAN v6.0
Pacific Northwest National Laboratory, Richland, WA, 99354, USA
Jonah Bartrand
Pacific Northwest National Laboratory, Richland, WA, 99354, USA
Fawz Naim
School of Earth Sciences, Ohio State University, Columbus, OH, 43210, USA
Glenn Hammond
Pacific Northwest National Laboratory, Richland, WA, 99354, USA
Related authors
Michael Nole, Katherine Muller, Glenn Hammond, Xiaoliang He, and Peter Lichtner
EGUsphere, https://doi.org/10.5194/egusphere-2025-1343, https://doi.org/10.5194/egusphere-2025-1343, 2025
Short summary
Short summary
Subsurface injection of carbon dioxide (CO2) can be used for a variety of purposes including geologic carbon storage and enhanced oil recovery. Recently, CO2 injection into reactive host rocks has been explored as a way to transform CO2 into dense solid minerals. We present a simulation framework for modeling flow of CO2 due to injection and subsequent reactions that take place to mineralize CO2.
Michael Nole, Katherine Muller, Glenn Hammond, Xiaoliang He, and Peter Lichtner
EGUsphere, https://doi.org/10.5194/egusphere-2025-1343, https://doi.org/10.5194/egusphere-2025-1343, 2025
Short summary
Short summary
Subsurface injection of carbon dioxide (CO2) can be used for a variety of purposes including geologic carbon storage and enhanced oil recovery. Recently, CO2 injection into reactive host rocks has been explored as a way to transform CO2 into dense solid minerals. We present a simulation framework for modeling flow of CO2 due to injection and subsequent reactions that take place to mineralize CO2.
Sergi Molins, Benjamin J. Andre, Jeffrey N. Johnson, Glenn E. Hammond, Benjamin N. Sulman, Konstantin Lipnikov, Marcus S. Day, James J. Beisman, Daniil Svyatsky, Hang Deng, Peter C. Lichtner, Carl I. Steefel, and J. David Moulton
Geosci. Model Dev., 18, 3241–3263, https://doi.org/10.5194/gmd-18-3241-2025, https://doi.org/10.5194/gmd-18-3241-2025, 2025
Short summary
Short summary
Developing scientific software and making sure it functions properly requires a significant effort. As we advance our understanding of natural systems, however, there is the need to develop yet more complex models and codes. In this work, we present a piece of software that facilitates this work, specifically with regard to reactive processes. Existing tried-and-true codes are made available via this new interface, freeing up resources to focus on the new aspects of the problems at hand.
Katherine A. Muller, Peishi Jiang, Glenn Hammond, Tasneem Ahmadullah, Hyun-Seob Song, Ravi Kukkadapu, Nicholas Ward, Madison Bowe, Rosalie K. Chu, Qian Zhao, Vanessa A. Garayburu-Caruso, Alan Roebuck, and Xingyuan Chen
Geosci. Model Dev., 17, 8955–8968, https://doi.org/10.5194/gmd-17-8955-2024, https://doi.org/10.5194/gmd-17-8955-2024, 2024
Short summary
Short summary
The new Lambda-PFLOTRAN workflow incorporates organic matter chemistry into reaction networks to simulate aerobic respiration and biogeochemistry. Lambda-PFLOTRAN is a Python-based workflow in a Jupyter notebook interface that digests raw organic matter chemistry data via Fourier transform ion cyclotron resonance mass spectrometry, develops a representative reaction network, and completes a biogeochemical simulation with the open-source, parallel-reactive-flow, and transport code PFLOTRAN.
Piyoosh Jaysaval, Glenn E. Hammond, and Timothy C. Johnson
Geosci. Model Dev., 16, 961–976, https://doi.org/10.5194/gmd-16-961-2023, https://doi.org/10.5194/gmd-16-961-2023, 2023
Short summary
Short summary
We present a robust and highly scalable implementation of numerical forward modeling and inversion algorithms for geophysical electrical resistivity tomography data. The implementation is publicly available and developed within the framework of PFLOTRAN (http://www.pflotran.org), an open-source, state-of-the-art massively parallel subsurface flow and transport simulation code. The paper details all the theoretical and implementation aspects of the new capabilities along with test examples.
Glenn E. Hammond
Geosci. Model Dev., 15, 1659–1676, https://doi.org/10.5194/gmd-15-1659-2022, https://doi.org/10.5194/gmd-15-1659-2022, 2022
Short summary
Short summary
This paper describes a simplified interface for implementing and testing new chemical reactions within the reactive transport simulator PFLOTRAN. The paper describes the interface, providing example code for the interface. The paper includes several chemical reactions implemented through the interface.
Cited articles
Al Hameli, F., Belhaj, H., and Al Dhuhoori, M.: CO2 sequestration overview in geological formations: Trapping mechanisms matrix assessment, Energies, 15, 7805, https://doi.org/10.3390/en15207805, 2022.
Anderson, R., Llamedo, M., Tohidi, B., and Burgass, R. W.: Experimental measurement of methane and carbon dioxide clathrate hydrate equilibria in mesoporous silica, J. Phys. Chem. B, 107, 3507–3514, 2003.
Belgodere, C., Dubessy, J., Vautrin, D., Caumon, M. C., Sterpenich, J., Pironon, J., Robert, P., Randi, A., and Birat, J. P.: Experimental determination of CO2 diffusion coefficient in aqueous solutions under pressure at room temperature via Raman spectroscopy: impact of salinity (NaCl), J. Raman Spectrosc., 46, 1025–1032, 2015.
Cadogan, S. P., Maitland, G. C., and Trusler, J. M.: Diffusion coefficients of CO2 and N2 in water at temperatures between 298.15 and 423.15 K at pressures up to 45 MPa, J. Chem. Eng. Data, 59, 519–525, 2014.
Carty, O. R. and Daigle, H.: Microbial methane generation and implications for stability of shallow sediments on the upper slope, US Atlantic margin, Front. Earth Sci., 10, 835685, https://doi.org/10.3389/feart.2022.835685, 2022.
Clennell, M. B., Hovland, M., Booth, J. S., Henry, P., and Winters, W. J.: Formation of natural gas hydrates in marine sediments: 1. Conceptual model of gas hydrate growth conditioned by host sediment properties, J. Geophys. Res.-Sol. Ea., 104, 22985–23003, 1999.
Collett, T. S.: Natural gas hydrate as a potential energy resource, in: Natural Gas Hydrate in Oceanic and Permafrost Environments, Springer Netherlands, Dordrecht, 123–136, https://doi.org/10.1007/978-94-011-4387-5_10, 2000.
Dai, S. and Seol, Y.: Water permeability in hydrate-bearing sediments: A pore-scale study, Geophys. Res. Lett., 41, 4176–4184, 2014.
Eymold, W. K., Frederick, J. M., Nole, M., Phrampus, B. J., and Wood, W. T.: Prediction of gas hydrate formation at Blake Ridge using machine learning and probabilistic reservoir simulation, Geochem. Geophy. Geosy., 22, e2020GC009574, https://doi.org/10.1029/2020GC009574, 2021.
Frederick, J. M., Eymold, W. K., Nole, M. A., Phrampus, B. J., Lee, T. R., Wood, W. T., Fukuyama, D., Carty, O., Daigle, H., Yoon, H., and Conley, E.: Forecasting marine sediment properties with geospatial machine learning (No. SAND2021-10675), Sandia National Lab.(SNL-NM), Albuquerque, NM, USA, https://doi.org/10.2172/1817972, 2021.
Fu, X., Waite, W. F., and Ruppel, C. D.: Hydrate formation on marine seep bubbles and the implications for water column methane dissolution, J. Geophys. Res.-Oceans, 126, e2021JC017363, https://doi.org/10.1029/2021JC017363, 2021.
Fukuyama, D., Daigle, H. C., Nole, M. A., and Song, W.: Onset of convection from hydrate formation and salt exclusion in marine sands, Earth Planet. Sc. Lett., 605, 118039, https://doi.org/10.1016/j.epsl.2023.118039, 2023.
Garapati, N., Velaga, S., and Anderson, B. J.: Development of a thermodynamic framework for the simulation of mixed gas hydrates: Formation, dissociation, and CO2–CH4 exchange. in: Proceedings of the 7th International Conference on Gas Hydrates (ICGH 2011), Edinburgh, Scotland, UK, 17–21 July 2011, https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf &doi=e70d8c5b832454d152172b957186225f6542ed02 (last access: 3 March 2025), 2011.
Gauteplass, J., Almenningen, S., Ersland, G., Barth, T., Yang, J., and Chapoy, A.: Multiscale investigation of CO2 hydrate self-sealing potential for carbon geo-sequestration, Chem. Eng. J., 381, 122646, https://doi.org/10.1016/j.cej.2019.122646, 2020.
Goldberg, D., Aston, L., Bonneville, A., Demirkanli, I., Evans, C., Fisher, A., Garcia, H., Gerrard, M., Heesemann, M., Hnottavange-Telleen, K., and Hsu, E.: Geological storage of CO2 in sub-seafloor basalt: the CarbonSAFE pre-feasibility study offshore Washington State and British Columbia, Energy Proced., 146, 158–165, 2018.
Haas, J. L.: Physical properties of the coexisting phases and thermochemical properties of the H2O component in boiling NaCl solution, Geol. Surv. Bull. A, 1421, 1–73, 1976.
Hammond, G. E., Lichtner, P. C., and Mills, R. T.: Evaluating the performance of parallel subsurface simulators: An illustrative example with PFLOTRAN, Water Resour. Res., 50, 208–228, 2014.
Handa, Y. P.: A calorimetric study of naturally occurring gas hydrates, Ind. Eng. Chem. Res., 27, 872–874, 1988.
Kaminski, P., Urlaub, M., Grabe, J., and Berndt, C.: Geomechanical behaviour of gassy soils and implications for submarine slope stability: a literature analysis, vol. 500, Geological Society, London, Special Publications, 277–288, https://doi.org/10.1144/SP500-2019-149, 2020.
Koh, D. Y., Kang, H., Lee, J. W., Park, Y., Kim, S. J., Lee, J., Lee, J. Y., and Lee, H.: Energy-efficient natural gas hydrate production using gas exchange, Appl. Energ., 162, 114–130, 2016.
Lane, J., Greig, C., and Garnett, A.: Uncertain storage prospects create a conundrum for carbon capture and storage ambitions, Nat. Clim. Change, 11, 925–936, 2021.
Lide, D. R. and Kehiaian, H. V.: CRC handbook of thermophysical and thermochemical data, CRC Press, https://doi.org/10.1201/9781003067719, 2020.
Liu, X. and Flemings, P. B.: Capillary effects on hydrate stability in marine sediments, J. Geophys. Res.-Sol. Ea., 116, B07102, https://doi.org/10.1029/2010JB008143, 2011.
McGrail, B. P., Schaef, H. T., White, M. D., Zhu, T., Kulkarni, A. S., Hunter, R. B., Patil, S. L., Owen, A. T., and Martin, P. F.: Using carbon dioxide to enhance recovery of methane from gas hydrate reservoirs: final summary report (No. PNNL-17035), PNNL – Pacific Northwest National Lab., Richland, WA, USA, https://doi.org/10.2172/929209, 2007.
Men, W., Peng, Q., and Gui, X.: Hydrate phase equilibrium determination and thermodynamic modeling of CO2 + epoxy heterocycle + water systems, Fluid Phase Equilibr., 556, 113395, https://doi.org/10.1016/j.fluid.2022.113395, 2022.
Moridis, G. J.: Numerical studies of gas production from methane hydrates, SPE J., 8, 359–370, 2003.
Nole, M., Daigle, H., Cook, A. E., Malinverno, A., and Flemings, P. B.: Burial-driven methane recycling in marine gas hydrate systems, Earth Planet. Sc. Lett., 499, 197–204, 2018.
Nole, M., Bartrand, J., Naim, F., and Hammond, G.: Modeling Commercial-Scale CO2 Storage in the Gas Hydrate Stability Zone: Input Data, Zenodo [code and data set], https://doi.org/10.5281/zenodo.13619874, 2025.
Oluwunmi, P., Pecher, I., Archer, R., Reagan, M., and Moridis, G.: The response of gas hydrates to tectonic uplift, Transport Porous Med., 144, 739–758, 2022.
Oyama, A. and Masutani, S. M.: A review of the methane hydrate program in Japan, Energies, 10, 1447, https://doi.org/10.3390/en10101447, 2017.
Pang, W., Chen, M., Fu, Q., Ge, Y., Zhang, X., Wen, H., Zhou, S., and Li, Q.: A Comparative Study of Hydrate-Based CO2 Sequestration at Different Scales, Energ. Fuel., 38, 16599–16609, https://doi.org/10.1021/acs.energyfuels.4c01941, 2024.
PFLOTRAN Developers: PFLOTRAN Website, http://www.pflotran.org, last access: 3 March 2025a.
PFLOTRAN Developers: PFLOTRAN Repository, PFLOTRAN [code], https://bitbucket.org/pflotran/pflotran, last access: 3 March 2025.
Phillips, S. L., Igbene, A., Fair, J. A., Ozbek, H., and Tavana, M.: A technical databook for geothermal energy utilization, https://escholarship.org/uc/item/2v39z4tw (last access: 3 March 2025), 1981.
Poling, B. E., Prausnitz, J. M., and O'connell, J. P.: The properties of gases and liquids, Vol. 5, New York: Mcgraw-hill, ISBN 978-0070116825, 2001.
Rehman, A. N., Bavoh, C. B., Pendyala, R., and Lal, B.: Research advances, maturation, and challenges of hydrate-based CO2 sequestration in porous media, ACS Sustain. Chem. Eng., 9, 15075–15108, 2021.
Ruppel, C. D. and Kessler, J. D.: The interaction of climate change and methane hydrates, Rev. Geophys., 55, 126–168, 2017.
Singh, R. P., Lall, D., and Vishal, V.: Prospects and challenges in unlocking natural-gas-hydrate energy in India: Recent advancements, Mar. Petrol. Geol., 135, 105397, https://doi.org/10.1016/j.marpetgeo.2021.105397, 2022.
Sloan Jr., E. D. and Koh, C. A.: Clathrate hydrates of natural gases, CRC press, https://doi.org/10.1201/9781420008494, 2007.
Snæbjörnsdóttir, S. Ó., Sigfússon, B., Marieni, C., Goldberg, D., Gislason, S. R., and Oelkers, E. H.: Carbon dioxide storage through mineral carbonation, Nature Reviews Earth and Environment, 1, 90–102, 2020.
Span, R. and Wagner, W.: A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100 K at pressures up to 800 MPa, J. Phys. Chem. Ref. Data, 25, 1509–1596, 1996.
Spycher, N. and Pruess, K.: A phase-partitioning model for CO2-brine mixtures at elevated temperatures and pressures: application to CO2-enhanced geothermal systems, Transport Porous Med., 82, 173–196, 2010.
Sullivan, M., Rodosta, T., Mahajan, K., and Damiani, D.: An overview of the Department of Energy's CarbonSAFE Initiative: Moving CCUS toward commercialization, AIChE J., 66, e16855, https://doi.org/10.1002/aic.16855, 2020.
Tohidi, B., Yang, J., Salehabadi, M., Anderson, R., and Chapoy, A.: CO2 hydrates could provide secondary safety factor in subsurface sequestration of CO2, Environ. Sci. Technol., 44, 1509–1514, 2010.
Verma, A. and Pruess, K.: Thermohydrological conditions and silica redistribution near high-level nuclear wastes emplaced in saturated geological formations, J. Geophys. Res.-Sol. Ea., 93, 1159–1173, 1988.
Wagner, W. and Kretzschmar, H. J.: IAPWS industrial formulation 1997 for the thermodynamic properties of water and steam, International steam tables: properties of water and steam based on the industrial formulation IAPWS-IF97, 7–150, https://doi.org/10.1007/978-3-540-74234-0_3, 2008.
White, M. D., Bacon, D. H., White, S. K., and Zhang, Z. F.: Fully coupled well models for fluid injection and production, Energy Proced., 37, 3960–3970, 2013.
White, M. D., Kneafsey, T. J., Seol, Y., Waite, W. F., Uchida, S., Lin, J. S., Myshakin, E. M., Gai, X., Gupta, S., Reagan, M. T., and Queiruga, A. F.: An international code comparison study on coupled thermal, hydrologic and geomechanical processes of natural gas hydrate-bearing sediments, Mar. Petrol. Geol., 120, 104566, https://doi.org/10.1016/j.marpetgeo.2020.104566, 2020.
You, K. and Flemings, P. B.: Methane hydrate formation in thick sandstones by free gas flow, J. Geophys. Res.-Sol. Ea., 123, 4582–4600, 2018.
Zander, T., Choi, J. C., Vanneste, M., Berndt, C., Dannowski, A., Carlton, B., and Bialas, J.: Potential impacts of gas hydrate exploitation on slope stability in the Danube deep-sea fan, Black Sea, Mar. Petrol. Geol., 92, 1056–1068, 2018.
Short summary
Safe carbon dioxide (CO2) storage is likely to be critical for mitigating some of the most severe effects of climate change. We present a simulation framework for modeling CO2 storage beneath the seafloor, where CO2 can form a solid. This can aid in permanent CO2 storage for long periods of time. Our models show what a commercial-scale CO2 injection would look like in a marine environment. We discuss what would need to be considered when designing a subsea CO2 injection.
Safe carbon dioxide (CO2) storage is likely to be critical for mitigating some of the most...