Articles | Volume 16, issue 23
https://doi.org/10.5194/gmd-16-7203-2023
https://doi.org/10.5194/gmd-16-7203-2023
Model description paper
 | 
12 Dec 2023
Model description paper |  | 12 Dec 2023

The statistical emulators of GGCMI phase 2: responses of year-to-year variation of crop yield to CO2, temperature, water, and nitrogen perturbations

Weihang Liu, Tao Ye, Christoph Müller, Jonas Jägermeyr, James A. Franke, Haynes Stephens, and Shuo Chen

Related authors

CLRD-GLPS: A Long-term Seasonal Dataset of Ruminant Livestock Distribution in China's Grazing Production Systems (2000–2021) Using Stacking-based Interpretable Machine Learning
Ning Zhan, Tao Ye, Mario Herrero, Jian Peng, Weihang Liu, and Heng Ma
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-263,https://doi.org/10.5194/essd-2025-263, 2025
Manuscript not accepted for further review
Short summary
Spatiotemporal variation of growth-stage specific concurrent climate extremes and their yield impacts for rice in southern China
Ran Sun, Tao Ye, Yiqing Liu, Weihang Liu, and Shuo Chen
EGUsphere, https://doi.org/10.5194/egusphere-2025-1393,https://doi.org/10.5194/egusphere-2025-1393, 2025
Short summary
Long-term Ruminant Livestock Distribution Datasets in Grazing Livestock Production Systems in China from 2000 to 2021 (CLRD-GLPS)
Ning Zhan, Tao Ye, Mario Herrero, Jian Peng, Weihang Liu, and Heng Ma
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-534,https://doi.org/10.5194/essd-2024-534, 2024
Manuscript not accepted for further review
Short summary
Spatiotemporal variation of growth-stage specific compound climate extremes for rice in South China: Evidence from concurrent and consecutive compound events
Ran Sun, Tao Ye, Yiqing Liu, Weihang Liu, and Shuo Chen
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2024-8,https://doi.org/10.5194/esd-2024-8, 2024
Manuscript not accepted for further review
Short summary

Cited articles

Blanc, É.: Statistical emulators of maize, rice, soybean and wheat yields from global gridded crop models, Agr. For. Meteorol., 236, 145–161, https://doi.org/10.1016/j.agrformet.2016.12.022, 2017. 
Blanc, É.: Statistical emulators of irrigated crop yields and irrigation water requirements, Agr. For. Meteorol., 284, 107828, https://doi.org/10.1016/j.agrformet.2019.107828, 2020. 
Blanc, E. and Sultan, B.: Emulating maize yields from global gridded crop models using statistical estimates, Agr. Forest Meteorol., 214–215, 134–147, https://doi.org/10.1016/j.agrformet.2015.08.256, 2015. 
Campbell, B. M., Vermeulen, S. J., Girvetz, E., Loboguerrero, A. M., and Ramirez-Villegas, J.: Reducing risks to food security from climate change, Glob. Food Secur.-AGR., 11, 34–43, https://doi.org/10.1016/j.gfs.2016.06.002, 2016. 
Chen, S., Liu, W., Feng, P., Ye, T., Ma, Y., and Zhang, Z.: Improving Spatial Disaggregation of Crop Yield by Incorporating Machine Learning with Multisource Data: A Case Study of Chinese Maize Yield, Remote Sens.-Basel, 14, 2340, https://doi.org/10.3390/rs14102340, 2022. 
Download
Short summary
We develop a machine-learning-based crop model emulator with the inputs and outputs of multiple global gridded crop model ensemble simulations to capture the year-to-year variation of crop yield under future climate change. The emulator can reproduce the year-to-year variation of simulated yield given by the crop models under CO2, temperature, water, and nitrogen perturbations. Developing this emulator can provide a tool to project future climate change impact in a simple way.
Share