Articles | Volume 16, issue 23
https://doi.org/10.5194/gmd-16-6921-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-16-6921-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
AdaScape 1.0: a coupled modelling tool to investigate the links between tectonics, climate, and biodiversity
Esteban Acevedo-Trejos
CORRESPONDING AUTHOR
Earth Surface Process Modelling, GFZ German Research Centre for Geoscience, Potsdam, Germany
Jean Braun
Earth Surface Process Modelling, GFZ German Research Centre for Geoscience, Potsdam, Germany
Institute of Earth and Environmental Sciences, University of Potsdam, Potsdam, Germany
Katherine Kravitz
Earth Surface Process Modelling, GFZ German Research Centre for Geoscience, Potsdam, Germany
N. Alexia Raharinirina
Department of Mathematics and Computer Science, Free University of Berlin, Berlin, Germany
Zuse Institute Berlin, Berlin, Germany
Benoît Bovy
Earth Surface Process Modelling, GFZ German Research Centre for Geoscience, Potsdam, Germany
Related authors
Benjamin Post, Esteban Acevedo-Trejos, Andrew D. Barton, and Agostino Merico
Geosci. Model Dev., 17, 1175–1195, https://doi.org/10.5194/gmd-17-1175-2024, https://doi.org/10.5194/gmd-17-1175-2024, 2024
Short summary
Short summary
Creating computational models of how phytoplankton grows in the ocean is a technical challenge. We developed a new tool set (Xarray-simlab-ODE) for building such models using the programming language Python. We demonstrate the tool set in a library of plankton models (Phydra). Our goal was to allow scientists to develop models quickly, while also allowing the model structures to be changed easily. This allows us to test many different structures of our models to find the most appropriate one.
Amanda Lily Wild, Jean Braun, Alexander C. Whittaker, and Sebastien Castelltort
Earth Surf. Dynam., 13, 875–887, https://doi.org/10.5194/esurf-13-875-2025, https://doi.org/10.5194/esurf-13-875-2025, 2025
Short summary
Short summary
Sediments deposited within river channels form the stratigraphic record, which has been used to interpret tectonic events, basin subsidence, and changes in precipitation long after ancient mountain chains have eroded away. Our work combines methods for estimating gravel fining with a landscape evolution model in order to analyze the grain size preserved within the stratigraphic record with greater complexity (e.g. considering topography and channel dynamics) than past approaches.
Amanda Lily Wild, Jean Braun, Alexander C. Whittaker, Marine Prieur, and Sebastien Castelltort
Earth Surf. Dynam., 13, 889–905, https://doi.org/10.5194/esurf-13-889-2025, https://doi.org/10.5194/esurf-13-889-2025, 2025
Short summary
Short summary
Sediments deposited within river channels form the stratigraphic record, which has been used to interpret tectonic events, basin subsidence, and changes in precipitation long after ancient mountain chains have eroded away. Our work combines methods for estimating gravel fining with a Landscape Evolution Model in order to analyze the grain size preserved within the stratigraphic record with greater complexity (e.g. considering topography and channel dynamics) than past approaches.
Amanda Lily Wild, Jean Braun, Alexander C. Whittaker, and Sebastien Castelltort
Earth Surf. Dynam., 13, 907–922, https://doi.org/10.5194/esurf-13-907-2025, https://doi.org/10.5194/esurf-13-907-2025, 2025
Short summary
Short summary
Sediments deposited within river channels form the stratigraphic record, which has been used to interpret tectonic events, basin subsidence, and changes in precipitation long after ancient mountain chains have eroded away. Our work combines methods for estimating gravel fining with a landscape evolution model in order to analyze the grain size preserved within the stratigraphic record with greater complexity (e.g. considering topography and channel dynamics) than past approaches.
Caroline Fenske, Jean Braun, François Guillocheau, and Cécile Robin
Earth Surf. Dynam., 13, 119–146, https://doi.org/10.5194/esurf-13-119-2025, https://doi.org/10.5194/esurf-13-119-2025, 2025
Short summary
Short summary
We have developed a new numerical model to represent the formation of duricrusts, which are hard mineral layers found in soils and at the surface of the Earth. We assume that the formation mechanism implies variations in the height of the water table and that the hardening rate is proportional to precipitation. The model allows us to quantify the potential feedbacks they generate on the surface topography and the thickness of the regolith/soil layer.
Ruohong Jiao, Shengze Cai, and Jean Braun
Geochronology, 6, 227–245, https://doi.org/10.5194/gchron-6-227-2024, https://doi.org/10.5194/gchron-6-227-2024, 2024
Short summary
Short summary
We demonstrate a machine learning method to estimate the temperature changes in the Earth's crust over time. The method respects physical laws and conditions imposed by users. By using observed rock cooling ages as constraints, the method can be used to estimate the tectonic and landscape evolution of the Earth. We show the applications of the method using a synthetic rock uplift model in 1D and an evolution model of a real mountain range in 3D.
Chuanqi He, Ci-Jian Yang, Jens M. Turowski, Richard F. Ott, Jean Braun, Hui Tang, Shadi Ghantous, Xiaoping Yuan, and Gaia Stucky de Quay
Earth Syst. Sci. Data, 16, 1151–1166, https://doi.org/10.5194/essd-16-1151-2024, https://doi.org/10.5194/essd-16-1151-2024, 2024
Short summary
Short summary
The shape of drainage basins and rivers holds significant implications for landscape evolution processes and dynamics. We used a global 90 m resolution topography to obtain ~0.7 million drainage basins with sizes over 50 km2. Our dataset contains the spatial distribution of drainage systems and their morphological parameters, supporting fields such as geomorphology, climatology, biology, ecology, hydrology, and natural hazards.
Benjamin Post, Esteban Acevedo-Trejos, Andrew D. Barton, and Agostino Merico
Geosci. Model Dev., 17, 1175–1195, https://doi.org/10.5194/gmd-17-1175-2024, https://doi.org/10.5194/gmd-17-1175-2024, 2024
Short summary
Short summary
Creating computational models of how phytoplankton grows in the ocean is a technical challenge. We developed a new tool set (Xarray-simlab-ODE) for building such models using the programming language Python. We demonstrate the tool set in a library of plankton models (Phydra). Our goal was to allow scientists to develop models quickly, while also allowing the model structures to be changed easily. This allows us to test many different structures of our models to find the most appropriate one.
Boris Gailleton, Luca C. Malatesta, Guillaume Cordonnier, and Jean Braun
Geosci. Model Dev., 17, 71–90, https://doi.org/10.5194/gmd-17-71-2024, https://doi.org/10.5194/gmd-17-71-2024, 2024
Short summary
Short summary
This contribution presents a new method to numerically explore the evolution of mountain ranges and surrounding areas. The method helps in monitoring with details on the timing and travel path of material eroded from the mountain ranges. It is particularly well suited to studies juxtaposing different domains – lakes or multiple rock types, for example – and enables the combination of different processes.
Ngai-Ham Chan, Moritz Langer, Bennet Juhls, Tabea Rettelbach, Paul Overduin, Kimberly Huppert, and Jean Braun
Earth Surf. Dynam., 11, 259–285, https://doi.org/10.5194/esurf-11-259-2023, https://doi.org/10.5194/esurf-11-259-2023, 2023
Short summary
Short summary
Arctic river deltas influence how nutrients and soil organic carbon, carried by sediments from the Arctic landscape, are retained or released into the Arctic Ocean. Under climate change, the deltas themselves and their ecosystems are becoming more vulnerable. We build upon previous models to reproduce for the first time an important feature ubiquitous to Arctic deltas and simulate its future under climate warming. This can impact the future of Arctic deltas and the carbon release they moderate.
Jean Braun
Earth Surf. Dynam., 10, 301–327, https://doi.org/10.5194/esurf-10-301-2022, https://doi.org/10.5194/esurf-10-301-2022, 2022
Short summary
Short summary
By comparing two models for the transport of sediment, we find that they share a similar steady-state solution that adequately predicts the shape of most depositional systems made of a fan and an alluvial plain. The length of the fan is controlled by the size of the mountain drainage area feeding the sedimentary system and its slope by the incoming sedimentary flux. We show that the models differ in their transient behavior to external forcing and are characterized by different response times.
Cited articles
Abrams, P.: Modelling the adaptive dynamics of traits involved in inter- and intraspecific interactions: An assessment of three methods, Ecol. Lett., 4, 166–175, https://doi.org/10.1046/j.1461-0248.2001.00199.x, 2001. a
Acevedo-Trejos, E. and Bovy, B.: fastscape-lem/adascape: First release (v1.0.0), Zenodo [code], https://doi.org/10.5281/zenodo.7794374, 2023. a
Antonelli, A., Kissling, W. D., Flantua, S. G. A., Bermúdez, M. A., Mulch, A., Muellner-Riehl, A. N., Kreft, H., Linder, H. P., Badgley, C., Fjeldså, J., Fritz, S. A., Rahbek, C., Herman, F., Hooghiemstra, H., and Hoorn, C.: Geological and climatic influences on mountain biodiversity, Nat. Geosci., 11, 718–725, https://doi.org/10.1038/s41561-018-0236-z, 2018. a, b, c
Badgley, C., Smiley, T. M., Terry, R., Davis, E. B., DeSantis, L. R. G., Fox, D. L., Hopkins, S. S. B., Jezkova, T., Matocq, M. D., Matzke, N., McGuire, J. L., Mulch, A., Riddle, B. R., Roth, V. L., Samuels, J. X., Strömberg, C. A. E., and Yanites, B. J.: Biodiversity and Topographic Complexity: Modern and Geohistorical Perspectives, Trends Ecol. Evol., 32, 211–226, https://doi.org/10.1016/j.tree.2016.12.010, 2017. a
Böhnert, T., Luebert, F., Ritter, B., Merklinger, F. F., Stoll, A., Schneider, J. V., Quandt, D., Weigend, M.: Origin and diversification of Cristaria (Malvaceae) parallel Andean orogeny and onset of hyperaridity in the Atacama Desert, Glob. Planet. Change, 181, 102992, https://doi.org/10.1016/j.gloplacha.2019.102992, 2019. a
Bolnick, D. I.: Intraspecific competition favours niche width expansion in Drosophila melanogaster, Nature, 410, 463–466, https://doi.org/10.1038/35068555, 2001. a
Boschman, L. M. and Condamine, F. L.: Mountain radiations are not only rapid and recent: Ancient diversification of South American frog and lizard families related to Paleogene Andean orogeny and Cenozoic climate variations, Glob. Planet. Change, 208, 103704, https://doi.org/10.1016/j.gloplacha.2021.103704, 2022. a
Bovy, B.: fastscape-lem/fastscape: Release v0.1.0beta3 (0.1.0beta3), Zenodo [code], https://doi.org/10.5281/zenodo.4435110, 2021. a, b, c, d
Bovy, B., McBain, G. D., Gailleton, B. and Lange, R.: benbovy/xarray-simlab: 0.5.0 (0.5.0), Zenodo [code], https://doi.org/10.5281/zenodo.4469813, 2021. a
Brännström, Å., Johansson, J., Loeuille, N., Kristensen, N., Troost, T. A., Lambers, R. H. R., and Dieckmann, U.: Modelling the ecology and evolution of communities: A review of past achievements, current efforts, and future promises, Evol. Ecol. Res., 14, 601–625, 2012. a
Braun, J. and Deal, E.: Implicit algorithm for threshold stream power incision model, J. Geophys. Res.-Earth Surf., 128, 1–32, https://doi.org/10.1029/2023JF007140, 2023. a
Braun, J. and Willett, S. D.: A very efficient O(n), implicit and parallel method to solve the stream power equation governing fluvial incision and landscape evolution, Geomorphology, 180–181, 170–179, https://doi.org/10.1016/j.geomorph.2012.10.008, 2013. a, b, c
Bromham, L.: An introduction to molecular evolution and phylogenetics, Second Edition, Oxford University Press, Oxford, UK, 536 pp., ISBN 9780198736363, 2016. a
Brown, J. H. and Maurer, B.: Macroecology: the division of food and space among species on continents, Science, 243, 1145–1150, https://doi.org/10.1126/science.243.4895.1145, 1989. a
Cabral, J. S., Valente, L., and Hartig, F.: Mechanistic simulation models in macroecology and biogeography: state-of-art and prospects, Ecography, 40, 267–280, https://doi.org/10.1111/ecog.02480, 2017. a
Calsbeek, R. and Cox, R. M.: Experimentally assessing the relative importance of predation and competition as agents of selection, Nature, 465, 613–616, https://doi.org/10.1038/nature09020, 2010. a
Cassemiro, F. A. S., Albert, J. S., Antonelli, A., Menegotto, A., Wüest, R. O., Cerezer, F., Coelho, M. T. P., Reis, R. E., Tan, M., Tagliacollo, V., Bailly, D., da Silva, V. F. B., Frota, A., da Graça, W. J., Ré, R., Ramos, T., Oliveira, A. G., Dias, M. S., Colwell, R. K., Rangel, T. F., and Graham, C. H.: Landscape dynamics and diversification of the megadiverse South American freshwater fish fauna, P. Natl. Acad. Sci. USA, 120, e2211974120, https://doi.org/10.1073/pnas.2211974120, 2023. a
Chesson, P.: Mechanisms of maintenance of species diversity, Annu. Rev. Ecol. Syst., 31, 343–358, https://doi.org/10.1146/annurev.ecolsys.31.1.343, 2000. a
Condamine, F. L., Rolland, J., and Morlon, H.: Macroevolutionary perspectives to environmental change, Ecol. Lett., 16, 72–85, https://doi.org/10.1111/ele.12062, 2013. a
Connolly, S. R., Keith, S. A., Colwell, R. K., and Rahbek, C.: Process, mechanism, and modeling in macroecology, Trends Ecol. Evol., 32, 835–844, https://doi.org/10.1016/j.tree.2017.08.011, 2017. a
Couvreur, T. L. P., Dauby, G., Blach-Overgaard, A., Deblauwe, V., Dessein, S., Droissart, V., Hardy, O. J., Harris, D. J., Janssens, S. B., Ley, A. C., Mackinder, B. A., Sonké, B., Sosef, M. S. M., Stévart, T., Svenning, J., Wieringa, J. J., Faye, A. Missoup, A. D., Tolley, K. A., Nicolas, V., Ntie, S., Fluteau, F., Robin, C., Guillocheau, F., Barboni, D., and Sepulchre, P.: Tectonics, climate and the diversification of the tropical African terrestrial flora and fauna, Biol. Rev., 96, 16–51, https://doi.org/10.1111/brv.12644, 2021. a
Deal, E., Braun, J., and Botter, G.: Understanding the role of rainfall and hydrology in determining fluvial erosion efficiency, J. Geophys. Res.-Earth Surf., 123, 744–778, https://doi.org/10.1002/2017JF004393, 2018. a
DeAngelis, D. L. and Mooij, W. M.: Individual-based modeling of ecological and evolutionary processes, Annu. Rev. Ecol. Evol. Syst., 36, 147–168, https://doi.org/10.1146/annurev.ecolsys.36.102003.152644, 2005. a, b
Dieckmann, U., Doebeli, M., Metz, J. A. J., and Tautz, D.: Adaptive speciation, Cambridge University Press, Cambridge, UK, https://doi.org/10.1017/CBO9781139342179, 2004. a, b, c
Dieckmann, U., Brännström, Å., HilleRisLambers, R., and Ito, H. C.: The adaptive dynamics of community structure, in Mathematics for Ecology and Environmental Sciences, Springer, Berlin, Germany, 145–177, https://doi.org/10.1007/978-3-540-34428-5_8, 2007. a
Ding, W. N., Ree, R. H., Spicer, R. A., and Xing, Y. W.: Ancient orogenic and monsoon-driven assembly of the world's richest temperate alpine flora, Science, 369, 578–581, https://doi.org/10.1126/science.abb4484, 2020. a
Fjeldså, J., Bowie, R. C. K., and Rahbek, C.: The role of mountain ranges in the diversification of birds, Annu. Rev. Ecol. Evol. Syst., 43, 249–265, https://doi.org/10.1146/annurev-ecolsys-102710-145113, 2012. a
Fritsch, M., Lischke, H., and Meyer, K. M.: Scaling methods in ecological modelling, Methods Ecol. Evol., 11, 1368–1378, https://doi.org/10.1111/2041-210X.13466, 2020. a, b
Fussmann, G. F., Loreau, M., and Abrams, P. A.: Eco-evolutionary dynamics of communities and ecosystems, Funct. Ecol., 21, 465–477, https://doi.org/10.1111/j.1365-2435.2007.01275.x, 2007. a, b
Geritz, S. S. A. H., Kisdi, É., Meszéna, G., and Metz, J. A. J.: Evolutionarily singular strategies and the adaptive growth and branching of the evolutionary tree, Evol. Ecol., 12, 35–57, https://doi.org/10.1023/A:1006554906681, 1998. a, b, c
Gotelli, N. J., Anderson, M. J., Arita, H. T., Chao, A., Colwell, R. K., Connolly, S. R., Currie, D. J., Dunn, R. R., Graves, G. R., Green, J. L., Grytnes, J., Jiang, Y., Jetz, W., Lyons, S. K., McCain, C. M., Magurran, A. E., Rahbek, C., Rangel, T. F., Soberón, J., Webb, C. O., and Willig, M. R.: Patterns and causes of species richness: A general simulation model for macroecology, Ecol. Lett., 12, 873–886, https://doi.org/10.1111/j.1461-0248.2009.01353.x, 2009. a
Govaert, L., Fronhofer, E. A., Lion, S., Eizaguirre, C., Bonte, D., Egas, M., Hendry, A. P., De Brito Martins, A., Melián, C. J., Raeymaekers, J. A. M., Ratikainen, I. I., Saether, B., Schweitzer, J. A., and Matthews, B.: Eco-evolutionary feedbacks – Theoretical models and perspectives, Funct. Ecol., 33, 13–30, https://doi.org/10.1111/1365-2435.13241, 2019. a, b
Grainger, T. N., Rudman, S. M., Schmidt, P., and Levine, J. M.: Competitive history shapes rapid evolution in a seasonal climate, P. Natl. Acad. Sci. USA, 118, e2015772118, https://doi.org/10.1073/pnas.2015772118, 2021. a
Grant, P. R. and Grant, B. R.: Evolution of character displacement in Darwin’s finches, Science, 313, 224–226, https://doi.org/10.1126/science.1128374, 2006. a
Grimm, V., Revilla, E., Berger, U., Jeltsch, F., Mooij, W. M., Railsback, S. F., Thulke, H., Weiner, J., Wiegand, T., and DeAngelis, D. L.: Pattern-oriented modeling of agent-based complex systems: Lessons from ecology, Science, 310, 987–991, https://doi.org/10.1126/science.1116681, 2005. a, b, c
Hagen, O., Flück, B., Fopp, F., Cabral, J. S., Hartig, F., Pontarp, M., Rangel, T. F., and Pellissier, L.: gen3sis: A general engine for eco-evolutionary simulations of the processes that shape Earth's biodiversity, PLoS Biol., 19, e3001340, https://doi.org/10.1371/journal.pbio.3001340, 2021a. a, b, c, d, e
Hagen, O., Skeels, A., Onstein, R. E., Jetz, W., and Pellissier, L.: Earth history events shaped the evolution of uneven biodiversity across tropical moist forests, P. Natl. Acad. Sci. USA, 118, e2026347118, https://doi.org/10.1073/pnas.2026347118, 2021b. a
Hagen, O.: Coupling eco-evolutionary mechanisms with deep-time environmental dynamics to understand biodiversity patterns, Ecography, 2023, 1–16, https://doi.org/10.1111/ecog.06132, 2022. a, b, c
Haller, B. C., Mazzucco, R., and Dieckmann, U.: Evolutionary branching in complex landscapes, Am. Nat., 182, 127–141, https://doi.org/10.1086/671907, 2013. a
Hoorn, C., Wesselingh, F. P., ter Steege, H., Bermudez, M. A., Mora, A., Sevink, J., Sanmartín, I., Sanchez-Meseguer, A., Anderson, C. L., Figueiredo, J. P., Jaramillo, C., Riff, D., Negri, F. R., Hooghiemstra, H., Lundberg, J., Stadler, T., Särkinen, T., and Antonelli, A.: Amazonia through time: andean uplift, climate change, landscape evolution, and biodiversity, Science, 330, 927–931, https://doi.org/10.1126/science.1194585, 2010. a
Klausmeier, C. A., Kremer, C. T., and Koffel, T.: Trait-based ecological and eco-evolutionary theory, in Theoretical Ecology: concepts and applications, edited by: McCann, K. S., and Gellner, G., Oxford University Press, Oxford, UK, https://doi.org/10.1093/oso/9780198824282.003.0011, 2020. a, b, c, d
Lague, D.: The stream power river incision model: Evidence, theory and beyond, Earth Surf. Process. Landforms, 39, 38–61, https://doi.org/10.1002/esp.3462, 2014. a, b, c
Lenton, T. M., Schellnhuber, H. J., and Szathmáry, E.: Climbing the co-evolution ladder, Nature, 431, 913, https://doi.org/10.1038/431913a, 2004. a
Levin, S. A.: Ecosystems and the biosphere as complex adaptive systems, Ecosystems, 1, 431–436, https://doi.org/10.1007/s100219900037, 1998. a, b
Loreau, M., Jarne, P., and Martiny, J. B. H.: Opportunities to advance the synthesis of ecology and evolution, Ecol. Lett., 1–5, https://doi.org/10.1111/ele.14175, 2023. a, b
Lynch, M. Evolution of the mutation rate, Trends Genet., 2, 345–352, https://doi.org/10.1016/j.tig.2010.05.003, 2010. a
Martínez, C., Jaramillo, C., Correa-Metrío, A., Crepet, W., Moreno, J. E., Aliaga, A., Moreno, F., Ibañez-Mejia, M., and Bush, M. B.: Neogene precipitation, vegetation, and elevation history of the central andean plateau, Sci. Adv., 6, 1–10, https://doi.org/10.1126/sciadv.aaz4724, 2020. a
McGill, B. J. The what, how, and why of doing macroecology, Glob. Ecol. Biogeogr., 28, 6–17, https://doi.org/10.1111/geb.12855, 2019. a
McGill, B. J. and Brown, J. S.: Evolutionary game theory and adaptive dynamics of continuous traits, Annu. Rev. Ecol. Evol. Syst., 38, 403–435, https://doi.org/10.1146/annurev.ecolsys.36.091704.175517, 2007. a, b
McGill, B. J., Enquist, B. J., Weiher, E., and Westoby, M.: Rebuilding community ecology from functional traits, Trends Ecol. Evol., 21, 178–185, https://doi.org/10.1016/j.tree.2006.02.002, 2006. a
Metz, J. A. J., Geritz, S. A H., Meszéna, G., Jacobs, F. J. A., and van Heerwaarden, J. S. Adaptive Dynamics : A Geometrical Study of the Consequences of Nearly Faithful Reproduction, in: Stochastic and spatial structures of dynamical systems, edited by: van Strien, S. J. and Verduyn Lunel, S. M., Amsterdam, KNAW Verhandelingen, Afd. Natuurkunde, Eerste reeks, vol 45, the Netherlands, 183–231, 1996. a, b, c
Minder, J. R., Mote, P. W., and Lundquist, J. D.: Surface temperature lapse rates over complex terrain: Lessons from the Cascade mountains, J. Geophys. Res.-Atmos., 115, 1–13, https://doi.org/10.1029/2009JD013493, 2010. a
Muneepeerakul, R., Weitz, J. S., Levin, S. A., Rinaldo, A., and Rodríguez-Iturbe, I.: A neutral metapopulation model of biodiversity in river networks, J. Theor. Biol., 245, 351–363, https://doi.org/10.1016/j.jtbi.2006.10.005, 2007. a
Parmesan, C.: Ecological and evolutionary responses to recent climate change, Annu. Rev. Ecol. Evol. Syst., 37, 637–669, https://doi.org/10.1146/annurev.ecolsys.37.091305.110100, 2006. a
Pérez-Escobar, O. A., Zizka, A., Bermúdez, M. A., Meseguer, A. S., Condamine, F. L., Hoorn, C., Hooghiemstra, H., Pu, Y., Bogarín, D., Boschman, L. M., Pennington, R. T., Antonelli, A., and Chomicki, G.: The Andes through time: evolution and distribution of Andean floras, Trends Plant Sci., 27, 364–378, https://doi.org/10.1016/j.tplants.2021.09.010, 2022. a
Pfennig, K. S. and Pfennig, D. W.: Character displacement: ecological and reproductive responses to a common evolutionary problem, Q. Rev. Biol., 84, 253–276, https://doi.org/10.1086/605079, 2009. a
Pontarp, M. and Wiens, J. J.: The origin of species richness patterns along environmental gradients: uniting explanations based on time, diversification rate and carrying capacity, J. Biogeogr., 44, 722–735, https://doi.org/10.1111/jbi.12896, 2017. a, b
Pontarp, M., Ripa, J., and Lundberg, P.: The biogeography of adaptive radiations and the geographic overlap of sister species, Am. Nat., 186, 565–581, https://doi.org/10.1086/683260, 2015. a
Rahbek, C., Borregaard, M. K., Antonelli, A., Colwell, R. K., Holt, B. G., Nogues-Bravo, D., Rasmussen, C. M. Ø., Richardson, K., Rosing, M. T., Whittaker, R. J., and Fjeldså, J.: Building mountain biodiversity: Geological and evolutionary processes, Science, 365, 1114–1119, https://doi.org/10.1126/science.aax0151, 2019a. a, b
Rahbek, C., Borregaard, M. K., Colwell, R. K., Dalsgaard, B., Holt, B. G., Morueta-Holme, N., Nogues-Bravo, D., Whittaker, R. J., and Fjeldså, J.: Humboldt's enigma: What causes global patterns of mountain biodiversity?, Science, 365, 1108–1113, https://doi.org/10.1126/science.aax0149, 2019b. a
Rangel, T. F., Edwards, N. R., Holden, P. B., Diniz-Filho, J. A. F., Gosling, W. D., Coelho, M. T. P., Cassemiro, F. A. S., Rahbek, C., and Colwell, R. K.: Modeling the ecology and evolution of biodiversity: Biogeographical cradles, museums, and graves, Science, 361, eaar5452, https://doi.org/10.1126/science.aar5452, 2018. a, b, c, d
Rossi, M. W., Whipple, K. X., and Vivoni, E. R.: Precipitation and evapotranspiration controls on daily runoff variability in the contiguous United States and Puerto Rico, J. Geophys. Res.-Earth Surf., 121, 128–145, https://doi.org/10.1002/2015JF003446, 2016. a
Scheffer, M., Baveco, J. M., DeAngelis, D. L., Rose, K. A., and van Nes, E. H.: Super-individuals a simple solution for modelling large populations on an individual basis, Ecol. Modell., 80, 161–170, https://doi.org/10.1016/0304-3800(94)00055-M, 1995. a
Schoener, T. W.: The newest synthesis: Understanding the interplay of evolutionary and ecological dynamics, Science, 331, 426–429, https://doi.org/10.1126/science.1193954, 2011. a, b
Smith, R. B. and Barstad, I.: A linear theory of orographic precipitation, J. Atmos. Sci., 61, 1377–1391, https://doi.org/10.1175/1520-0469(2004)061<1377:ALTOOP>2.0.CO;2, 2004. a, b, c, d
Spicer, R. A.: Tibet, the Himalaya, Asian monsoons and biodiversity - In what ways are they related?, Plant Divers., 39, 233–244, https://doi.org/10.1016/j.pld.2017.09.001, 2017. a
Stokes, M. F. and Perron, J. T.: Modeling the evolution of aquatic organisms in dynamic river basins, J. Geophys. Res.-Earth Surf., 125, 1–19, https://doi.org/10.1029/2020JF005652, 2020. a, b
Tilman, D.: Resource competition and community structure, Princeton University Press, Princeton, New Jersey, United States of America, ISBN 9780691083025, 1982. a
Viles, H.: Biogeomorphology: Past, present and future, Geomorphology, 366, 106809, https://doi.org/10.1016/j.geomorph.2019.06.022, 2020. a, b
Violle, C., Reich, P. B., Pacala, S. W., Enquist, B. J., and Kattge, J.: The emergence and promise of functional biogeography, P. Natl. Acad. Sci. USA, 111, 13690–13696, https://doi.org/10.1073/pnas.1415442111, 2014. a
von Luxburg, U.: A tutorial on spectral clustering, Stat. Comput., 17, 395–416, https://doi.org/10.1007/s11222-007-9033-z, 2007. a
Webb, C. T., Hoeting, J. A., Ames, G. M., Pyne, M. I., and LeRoy Poff, N.: A structured and dynamic framework to advance traits-based theory and prediction in ecology, Ecol. Lett., 13, 267–283, https://doi.org/10.1111/j.1461-0248.2010.01444.x, 2010. a
Whipple, K. X.: Bedrock rivers and the geomorphology of active orogens, Annu. Rev. Earth Planet. Sci., 32, 151–185, https://doi.org/10.1146/annurev.earth.32.101802.120356, 2004. a, b, c
Wiens, J. J. and Donoghue, M. J.: Historical biogeography, ecology and species richness, Trends Ecol. Evol., 19, 639–644, https://doi.org/10.1016/j.tree.2004.09.011, 2004. a
Yuan, X. P., Braun, J., Guerit, L., Simon, B., Bovy, B., Rouby, D., Robin, C., and Jiao, R.: Linking continental erosion to marine sediment transport and deposition: A new implicit and O(N) method for inverse analysis, Earth Planet. Sci. Lett., 524, 115728, https://doi.org/10.1016/j.epsl.2019.115728, 2019. a, b
Short summary
The interplay of tectonics and climate influences the evolution of life and the patterns of biodiversity we observe on earth's surface. Here we present an adaptive speciation component coupled with a landscape evolution model that captures the essential earth-surface, ecological, and evolutionary processes that lead to the diversification of taxa. We can illustrate with our tool how life and landforms co-evolve to produce distinct biodiversity patterns on geological timescales.
The interplay of tectonics and climate influences the evolution of life and the patterns of...