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Abstract. The interplay between tectonics and climate is
known to impact the evolution and distribution of life forms,
leading to present-day patterns of biodiversity. Numerical
models that integrate the co-evolution of life and landforms
are ideal tools to investigate the causal links between these
earth system components. Here, we present a tool that cou-
ples an ecological-evolutionary model with a landscape evo-
lution model (LEM). The former is based on the adaptive
speciation of functional traits, where these traits can mediate
ecological competition for resources, and includes dispersal
and mutation processes. The latter is a computationally effi-
cient LEM (FastScape) that predicts topographic relief based
on the stream power law, hillslope diffusion, and orographic
precipitation equations. We integrate these two models to il-
lustrate the coupled behaviour between tectonic uplift and
eco-evolutionary processes. Particularly, we investigate how
changes in tectonic uplift rate and eco-evolutionary parame-
ters (i.e. competition, dispersal, and mutation) influence spe-
ciation and thus the temporal and spatial patterns of biodiver-
sity.

1 Introduction

Tectonic, climate, and evolutionary processes share an in-
trinsic co-evolutionary history (Lenton, 2004), which leaves
salient patterns in the evolution and spatial distribution of life
forms we observe today. For example, high biodiversity ob-
served in mountain regions suggests a link between tectonics,
climate, and the evolution of life forms (Fjeldsa et al., 2012;

Rahbek et al., 2019b, a). The Andean uplift led to increased
topographic complexity and changes in climate (Hoorn et al.,
2010), which prompted and sustained biodiversity in plants
(Bohnert et al., 2019; Martinez et al., 2020; Pérez-Escobar
et al., 2022), frogs and lizards (Boschman and Condamine,
2022), as well as fishes (Cassemiro et al., 2023). Similarly,
a link between topographic complexity, associated climate
changes, and high biodiversity have been proposed in highly
diverse regions such as the Tibet-Himalaya—Hengduan re-
gion (Spicer, 2017; Ding et al., 2020) and tropical Africa
(Couvreur et al., 2021). However, we do not fully under-
stand how tectonics and climate influence macroecological
and macroevolutionary processes on large spatial and tem-
poral scales. This requires a combination of approaches from
multiple disciplines across the bio- and geosciences (An-
tonelli et al., 2018).

Understanding the large-scale temporal and spatial vari-
ation of life forms has been one of the central themes in
various fields of ecology and evolution, such as macroe-
cology (Brown and Maurer, 1989; McGill, 2019), histori-
cal biogeography (Wiens and Donoghue, 2004), macroevo-
Iution (Condamine et al., 2013), and more recently func-
tional biogeography (Violle et al., 2014). Given the chal-
lenge of studying systems at such broad scales, these fields
have utilised the use of simulation models to link ecolog-
ical and evolutionary processes in a spatially explicit con-
text (Grimm et al., 2005; Gotelli et al., 2009; Connolly et
al., 2017; Cabral et al., 2017). Currently, these types of mod-
els are known as “population-based spatially explicit Mecha-
nistic Eco-Evolutionary Models”, or MEEMs (Hagen, 2022),
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and prominent examples include Rangel et al. (2018) and Ha-
gen et al. (2021a). In these models, the main emphasis is on
how species interact and evolve, in a grid-based environment,
where environmental fields (e.g. topography, temperature,
and precipitation) are representations of past or present fea-
tures computed a priori. These landscape representations are
provided by other models, such as global palaco-elevation re-
constructions (e.g. as in Hagen et al., 2021a) or after reanal-
ysis of the output of other models (e.g. as in Rangel et al.,
2018). These MEEM tools offer flexibility in the inputs and
detail treatment of the ecological and evolutionary processes;
however, they provide little control over the mechanisms that
generate climate and landforms.

Simulating landforms requires considering tectonics, cli-
mate, and erosional processes, where particularly the latter
can be mediated by organisms (Viles, 2020). Similarly, as
in large-scale ecology, we can also investigate the processes
leading to the formation of a particular topography using
landscape evolution models (LEM) (Tucker and Hancock,
2010). But despite much progress in the field of biogeomor-
phology, there is a need for a new generation of LEMs, to
function as a type of “multipurpose modelling toolkit” as
suggested by Viles (2020), that will integrate landscape as
well as ecological and evolutionary processes at large spa-
tial and temporal scales (Badgley et al., 2017; Antonelli et
al., 2018; Rahbek et al., 2019a). Nevertheless, such a toolkit
should be simple enough to maintain generality while captur-
ing the relevant processes in macroecology, macroevolution,
and geomorphology.

Here we present AdaScape, a coupled speciation and
landscape evolution model conceived as a simple eco-
evolutionary component built into an established LEM
framework known as FastScape (Bovy, 2021). The mod-
elling framework is implemented in the programming lan-
guage Python and provides spatially explicit environmental
fields, e.g. topography and rainfall, while the AdaScape com-
ponent contains routines to compute the adaptive speciation
of individuals within the environment, which builds on the
adaptive dynamics theoretical framework (Metz et al., 1996;
Geritz et al., 1998; Dieckmann et al., 2004, 2007; McGill
and Brown, 2007; Brannstrom et al., 2012). Organisms in
such eco-evolutionary models are characterised by their traits
and a fitness function that relates their trait values to local
environmental conditions (McGill et al., 2006; Webb et al.,
2010); thus, the traits are not simply an input or a parameter
of the model but a dynamic variable predicted by the model
(Klausmeier et al., 2020). Below we describe in detail Ada-
Scape and briefly FastScape, and provide a simple example
to showcase the main features of the coupled modelling tool.

2 Model description

AdaScape is built on the simple eco-evolutionary model pro-
posed by Irwin (2012), which describes the trait evolution of
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a group of individuals with processes related to environmen-
tal selection, mutation, and dispersal (Fig. 1). We extend this
model to include (a) competition of a limiting resource influ-
enced by individual traits, and (b) more than one trait, which
are related to environmental fields such as elevation and rain-
fall via simple linear function. The latter are environmental
fields provided by a landscape evolution model (Fig. 1 and
Sect. 2.5). Below we describe in detail the evolutionary and
ecological components included in AdaScape as well as the
taxon definition we use to reconstruct phylogenies and the
basic elements needed to predict landscape evolution as in-
cluded in FastScape.

2.1 Evolutionary components

Individuals i are characterised by a vector of trait values
u; of length corresponding to the number of traits k, that
is, wj = (Wi 1,ui2,...,u;,)7. Environmental fitness (Fig. 1)
is given by a multivariate Gaussian function f;, which re-
duces the fitness gain of the individual as its trait vector
moves away from the optimal trait value vector u((z;), where
uo(z;) = (uo,1(zi), 0.2(zi), - - -, 0.k (z;))T for a given local
environmental condition z; as

1
fi(u;) =exp <_§(ui —uo(z)T-T7" - (u; — uO(Zi))> Y]

where X is the k x k matrix of parameters driving the fitness
changes. Each diagonal element, o, 4, on the matrix ¥ pa-
rameterises the fitness changes independently generated by
the trait u; 4 for all ¢ =1,...,k. We assume that these di-
agonal elements are equal to oy for all traits (Table 1). The
parameter of determines the strength of the selection of an
individual’s trait value against its optimum and is hereafter
referred to as the environmental fitness variability. Each off-
diagonal elements of X, denoted o, ,, parameterises the fit-
ness change jointly generated by the pair of traits at position
q and r of the trait vector u;, forall ¢, =1, ..., k such that
q # r. We define oy , = poy 40y, for all g # r to model the
interdependent effect that traits #; ; and u; , have on fitness.
The parameter p, thus, is set to zero here to simulate inde-
pendent effects of all traits (Table 1).

The optimal trait value of the gth trait is given by a trait—
environment relationship. Following Doebeli and Dieck-
mann (2003), we set this relationship to be linear:

2

where «; is a free parameter determining the slope of the re-
lationship (Table 1) and Z; is the normalised environmental
conditions experience by individual ;. We use a normalised
environmental field as these fields can change during the sim-
ulation. To facilitate the parameterisation, the ranges for an
environmental field must be set up before the execution of
the eco-evolutionary model. Therefore, one can use the max-
imum Zm,x and minimum zpy,;, ranges that each environmen-
tal field can reach during a simulation or the known ranges

1 1
MO,q(Zi):O‘z'(Zi(Zi)__>+§’VC]:L--wka (2)
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Figure 1. Illustration of the main ecological and evolutionary processes included in AdaScape for two traits (i.e. k = 2) representing the
adaptation of the population to topographic elevation and to rainfall, respectively. The eco-evolutionary model is a modified version of the one
proposed by Irwin (2012). Selection is one of the crucial eco-evolutionary processes included, which is here determined by the environmental
fitness or how suitable the trait values of an individual u; = (u; 1,u; 2)T compare with the optimal trait value ug(z;) = (ug,1,u0,2)T for
a given local environmental condition, z;. The other main selection process is trait-mediated competition, which determines how many
individuals with similar trait values to the focal individual i are competing for the same local resource. We also include mutation and
dispersal as stochastic processes that depend, respectively, on the trait (u; 4, Vg = 1,..., k) and location l; ¢ = (/; x,/; y) of the individual i
and the parameters that control the variability or width of the trait value (om) and location (o) the offspring will inherit or to which they will
be dispersed.

for a particular taxon or clade. The full expression for Z; (z;) The nature of the mutation process is more complicated

is given by than the simplification given here and can be defined in its
broadest sense as a heritable change in the genome, which
Zi(zi) = % — Zmin 3) can be measured as the number of base pair substitutions

Zmax — Zmin

Mutation is the second evolutionary process we consider
(Fig. 1), which is described as an intergenerational stochas-
tic variation of the trait values. The mutation process is thus
modelled as a stochastic process occurring at probability pp,
at every generation time. This process is typically simulated
using a simple Monte Carlo sampling algorithm. The algo-
rithm draws a random number from a uniform distribution
U(0, 1) and compares it with a mutation probability py, (Ta-
ble 1). If the drawn number is less than pp,, then the descen-
dant of the individual i can mutate. Now a mutation is char-
acterised by a new trait value taken from the Gaussian dis-
tribution NV (u i,q»Om) centred at the ancestor trait value u; 4
and with a mutation variability oy, (Table 1).

https://doi.org/10.5194/gmd-16-6921-2023

per generation and is positively related to the genome size
of the organism (Lynch, 2010). Changes in the genotype
could lead to phenotypic variation that may be positively
or negatively influenced by natural selection, and there-
fore mutations could be silent, advantageous, or deleteri-
ous (Bromham, 2016). Our model simplifies this genetic—
phenotypic complexity by assuming that a change in the
genotype (via mutation) directly corresponds to a change in
the phenotype (trait), the latter of which is subject to selec-
tion and transmitted by uniparentally inherited markers (in
the absence of sexual selection) as in Irwin (2012).

The third evolutionary process we consider is dispersal
(Fig. 1), where the new location of an individual i is ran-
domly sampled around the position of each individual /; ,

Geosci. Model Dev., 16, 6921-6941, 2023



6924

E. Acevedo-Trejos et al.: AdaScape

Table 1. Description of parameters in the adaptive speciation model, together with a selection of parameters we vary to reconstruct the
topography and rainfall patterns. We use the default values for all other parameters in the landscape evolution and orographic precipitation

model. Num. ind.: Number of Individuals.

Description Symbol and unit ~ Values

Environmental fitness variability of (trait) 0.2

Mutation probability Pm () 0.005

Mutation variability o (trait) [0.005, 0.05, 0.5]

Dispersal variability o4 (km) [1, 10, 100]

Trait competition variability oy, (trait) [0.2, 2]

Radius of local neighbourhood r (km) 20

Local carrying capacity K (num. ind.) [25, 50]

Correlation coefficient among traits o) 0.0

Slope optimal trait — environmental field o (trait) 0.95

Taxon threshold T () 0.075

Uplift rate U (myr™1) [0,3x 1074 1x1073,3x 1073]
Erodability coefficient ke(m' =24 yr=1)  [8.4x1077,2.8x 1079, 8.4 x 107°]
Transport coefficient kq (m2 yr_]) [0, 0.01]

Precipitation base Py (myr— 1) 22

Wind speed wg (m sfl) 15

Wind direction wq () 0

and /; y, along the x and y axes using separated Gaussian
distribution A/ (li e, 04), where e is a place holder for x or y.
Individuals’ dispersal ability is influenced by their dispersal
variability oq (Table 1), which is considered here as a free
parameter. In other words, dispersal describes the random
movement of individuals and their traits through the land-
scape, where the new location of individuals at # 4 1 depends
on the location of individuals at time ¢ and og.

2.2 Ecological component

The main ecological interaction we consider in AdaScape
is via a trait-mediated competition (Fig. 1). In the origi-
nal model of Irwin (2012) all the individuals n, in the lo-
cal neighbourhood were assumed to compete for a local re-
source. The latter can sustain a given number of individuals,
or local carrying capacity K (Table 1). The extent of the local
neighbourhood is defined by a radius » (Table 1) and is cen-
tred at each individual location. We modify this assumption
by accounting not only for all individuals in the local neigh-
bourhood but specifically for those individuals with similar
trait values to the centred individual i. For this, we introduce
a term to account for the effective number of individuals ner,;
similarly to Doebeli and Dieckmann (2003). The expression
accounting for the trait-mediated competition is given by

AZG, j)
Meffi = ) exp (—”2—2]> “
jGDi,r Uu

where D; , is the local neighbourhood of radius r of individ-
ual i, A, (i, j) is the trait distance between individual i and
its neighbour j, and o, is trait-distance variability or width
(Table 1). The local neighbourhood is the area around each
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individual centred at its location /; 4 and with an extent de-
termined by r and can be thought of as the area where local
competition for resources take place. The parameter o,, dic-
tates the strength of the competition among individuals with
similar trait values. Hence, if o, > 1, all individuals in the
local neighbourhood, regardless of their trait values, are as-
sumed to compete for the same resource. However, if o, < 1,
only those individuals with similar trait values to the focus
individual i are counted and thus assumed to compete for
the same resource. In other words, the similarity in trait val-
ues is determined by how small o, is. Hereafter we consider
two contrasting cases of this process that we define without
(0, = 2) and with (o, = 0.2) trait-mediated competition.

2.3 Implementation details of the eco-evolutionary
model

The model is implemented as an individual-based, spatially
explicit model in Python. A simulation is initialised with a
given number of individuals allocated randomly or at a par-
ticular range in a continuous 2D space. The traits for each
individual are drawn from a uniform distribution, where the
minimum and maximum range is between 0 and 1. In all sim-
ulations hereafter we start with a monomorphic population,
i.e. all individuals descend from the same ancestor and share
similar trait values. After initialisation, the fitness for each
individual is evaluated following Eq. (1). Then we compute
the number of offspring nos; for each individual i following
Irwin (2012) using

K

i ®)

Noff,i =
eff,i
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where the % is the density-dependent reproductive factor.
After the number of offspring has been determined, the new
individuals are generated, mutated, and dispersed. The two
latter are implemented as stochastic processes as explained
in the previous section. This model thus assumes that a gen-
eration is completed after all individuals have been updated;
therefore, generations do not overlap.

2.4 Taxon definition

We define a taxon as a group of individuals sharing simi-
lar trait values and common ancestry (sensu Pontarp et al.,
2012). We implement this by using a spectral clustering al-
gorithm (von Luxburg, 2007), which examines individuals
per ancestor group and assigns them to new taxon groups
based on the clustering of their trait values at each time
step. To each of these clusters we assigned a new taxon ID
eN=1{0,1,2,3,...,00}, and this taxon ID at time ¢ will be-
come the ancestor ID at time ¢ 4 1. For example, if one as-
sumes that all individuals share a common ancestor and all of
them have very similar trait values (a monomorphic popula-
tion), then branching does not occur and all individuals will
be assigned to a single taxon ID (e.g. equal to 1 if the ances-
tor ID is equal to 0). Conversely, if the clustering algorithm
found two distinct trait clusters, then branching occurs and
the individuals are clustered into two new taxon groups with
different IDs (e.g. 1 and 2 if the ancestor ID is equal to 0);
with this we are avoiding polytomies by considering only bi-
nary splits. At the next time step and after the calculation of
the eco-evolutionary processes (see details above), the pre-
vious taxon ID becomes the ancestor ID, and we apply the
spectral clustering algorithm again using the new ancestor
group. In our simulations, we restricted the division of taxa
to a maximum of two to avoid the excessive occurrence of
branching. Additionally, to add more interpretability to our
taxa clusters, we assume that the similarity between a pair
of individuals is O when their trait distance is greater than a
threshold 7 (Table 1). This means that smaller values of t
instruct the algorithm to prioritise the grouping of the cor-
responding individuals but ignore the trait-distant informa-
tion between all individuals that do not satisfy the threshold
criteria. The choice of taxon threshold 7, thus, depends on
a trade-off between high-similarity grouping and valuation
of trait-distance information, and here we chose a quite low
taxon threshold to prioritise the grouping of highly similar in-
dividuals. This allows us to reconstruct lineages of the extant
and extinct taxon to their last common ancestor and compute
various phylogenetic metrics on synthetic phylogenetic trees.
In Fig. 2 we illustrate how this algorithm works starting with
a monomorphic population of individuals at time #y, which
then diversifies into two taxa at time #; and then further di-
verges into three taxa at time #,.

This taxon definition is primarily based on the divergence
of individuals’ traits since they are the main dynamic vari-
ables affecting selection, mutation, and competition. How-
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ever, the spectral clustering algorithm can be modified to
accommodate other variables (e.g. geographical location of
individuals or time since the last branching point). Fur-
thermore, the taxon definition is independent of the eco-
evolutionary processes of the model; thus, changing the
taxon definition would not affect the model behaviour.

2.5 Landscape evolution component

The environment where organisms adapt is defined here at a
landscape scale and can consider common landforms such as
mountains, plateaus, stream valleys, basins, and floodplains,
among others. These landforms and their evolution can be re-
produced using a landscape evolution model (LEM), which
in essence describes the changes in topography / by the com-
petition of processes that shape earth’s surface, such as uplift
and erosion, (Whipple, 2004; Tucker and Hancock, 2010) as
dh U-I1+H 6
= +H, (6)
where the first term U is the uplift rate (myr~'; Table 1),
the second term [ is the river incision or stream power law
(SPL) (Lague, 2014), and the last term accounts for hillslope
processes. The river incision is the main erosional process of
landforms and in simple terms describes how a flow of water
cuts through bedrock and can be given by

I =ki-v®-A. 8P, @)

where k; is the constant of erodability (m' =2 yr~!; Table 1),
v is precipitation rate (scaled by a reference rate), A is the
drainage area (m?), and S is the slope of the terrain. The lat-
ter two enter the SPL as power functions with, respectively,
exponents a and b. As the rivers cut through the valleys they
create slopes that are thus subject to processes such as soil
creep, landslides, and debris flows. Hence, the last term in
Eq. (6) describes the transport of such material from hilltops
to lowlands, also known as hillslope processes, which is de-
termined by a constant transport coefficient or diffusivity kq
(m? yr_l; Table 1) and the curvature of the terrain (m m~2)
as

H=kq-V*-h. ®)

Modelling fluvial incision by a stream power equation re-
quires finding the numerical solution of a partial differen-
tial equation with linear and nonlinear slopes, which posed
stability, accuracy, and speed constraints (Tucker and Han-
cock, 2010). However, one can overcome these issues by
using FastScape (Braun and Willett, 2013), which is an ef-
ficient algorithm to compute the discharge at each node in
an orderly manner following the steepest descent of the wa-
ter flow to the base level in the landscape. This algorithm
has been implemented in the FastScape framework (Bovy,
2021) together with various other processes affecting land-
forms, such as orographic precipitation (Smith and Barstad,

Geosci. Model Dev., 16, 6921-6941, 2023
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Figure 2. Taxon definition implemented in AdaScape by using a spectral clustering algorithm. The algorithm groups individuals according
to their common ancestry and similarity of trait values. In the three subplots we show the distribution of individuals in trait space along the
axes trait 1 and trait 2 at three time steps: tq, #1, and ;. Below the subplots we show the phylogenetic reconstruction of the identified taxa,
starting from the last common ancestor with a taxon ID equal to O all the way to taxa 4—6 at time #>.

2004), sediment transport, and deposition by rivers (Yuan
et al., 2019) among many other tectonic, climatic, and ero-
sional processes. While elevation is the main output of the
LEM, this environmental field could be used as a proxy
for temperature. This would require further assumptions, for
example, that temperature decreases with elevation around
6.5°Ckm™! (Minder et al., 2010) and a given baseline tem-
perature at sea level, which could be constant or change over
time and taken from climatic palaeo-reconstructions.

In particular, orographic precipitation is a crucial environ-
mental process that affects the availability of water for biota
and influences the surface processes briefly mentioned be-
fore. FastScape computes rainfall fields using the linear oro-
graphic precipitation model proposed by Smith and Barstad
(2004), which takes into account the topography, direction,
and speed of the wind to predict the spatial distribution
of rainfall by solving the advection equations that integrate
cloud water density and rain/snow density using a Fourier
transformation into the two horizontal directions (Smith and
Barstad, 2004). (Explaining the details of all the processes
included in FastScape go beyond the scope of this paper,
and therefore we refer the reader to the documentation of
the framework and related publications, e.g. (Whipple, 2004;
Smith and Barstad, 2004; Tucker and Hancock, 2010; Braun
and Willett, 2013; Lague, 2014; Yuan et al., 2019; Bovy,
2021).)

We use the SPL with hillslope processes and orographic
precipitation to demonstrate how the distribution and evolu-
tion of taxa respond to dynamic changes in the topography
and precipitation. To model precipitation and landscape evo-
lution, we select values of the uplift rate U, the constant of
erodability kg, the transport coefficient kg4, a background pre-

Geosci. Model Dev., 16, 6921-6941, 2023

cipitation rate Py, wind speed wg, and wind direction wg. A
description of the parameters and the values used in the ex-
amples below can be found in Table 1.

Lastly, to connect the eco-evo model with LEM, the local
environmental condition z; is equal to the elevation & or the
orographic precipitation v fields as provided by FastScape at
the position of the individual i at every time step. These envi-
ronmental fields form the basis to compute the optimal trait
value (Eq. 2) to which each individual compares to quantify
its fitness (Eq. 1).

3 Examples

3.1 Evolutionary branching along a linear
environmental gradient

Our first example considers the evolution of one trait rep-
resenting the adaptation of individuals to topographic eleva-
tion, which is simply termed as “trait elevation” here. The
simple eco-evolutionary model produces patterns of evolu-
tionary branching under fewer than 500 time steps along
a continuous environmental gradient. Whereas evolutionary
branching is referred to here as the split of a population with
an average trait value into two populations with a progressive
widening gap between their average trait values, the emer-
gence of evolutionary branching along a continuous envi-
ronmental gradient is a well-known phenomenon captured in
eco-evolutionary models that build on the adaptive dynamics
theoretical framework (Metz et al., 1996; Geritz et al., 1998;
Dieckmann et al., 2004; Klausmeier et al., 2020) and is ex-
emplified by the seminal work of Doebeli and Dieckmann
(2003).

https://doi.org/10.5194/gmd-16-6921-2023



E. Acevedo-Trejos et al.: AdaScape

Without competition

6927

With competition

_ 500 - 250
T
£ 400-IZI E T k200
5 ‘
Z 300 . L 150
o >
€ 200 - 1 L1100
© -
T e ¢
£ 100 - 1 “} 50
2
< 9 : : , : : Lo
1.0 —
[l [[P] e [M=——= |1
£ 0.8 = —
- ' - -
8 0.6- 1 1 — 1
2 —-— |2
[7] i _ i = i
w 04 = S
E —
£ 0.2 1 _ 1 1
0.0 : : : : : : : :
0 200 400 0 100 200 0 200 400 0 100 200
Time [-] X Time [-] X

A

0 100 200 300

Time [-]

400  5000.0

0.5
Trait elevation

0 100 200 300 400  5000.0

0.5
Time [-] Trait elevation

Figure 3. Example simulations along a 2D gradient showing the effects trait-mediated competition has without (a—e) and with (f=j) evo-
lutionary branching patterns. Panels (a) and (f) show the temporal changes in the number of individuals. Panels (c¢) and (h) show the trait
distribution over time in a 2D histogram, where the darker colour marks a higher number of individuals with a given trait value at a particular
time. Panels (b) and (g) show the spatial distribution of individuals in the 2D environment at the last time step, where the blue colour reflects
lower trait values and the yellow colour reflects higher trait values. The coloured dots represent individuals with their corresponding trait
values. Panels (d) and (i) show the distribution of trait values along the x coordinate at the last time step. In panels (e) and (j) we reconstruct
the phylogenetic tree for, respectively, the simulations without and with trait-mediated competition. At each extant branch in the phylogenetic

tree, we plotted the trait distribution of that particular taxon.

In Fig. 3 we show two such results for a case without trait-
mediated competition (o, = 2; Fig. 3a, b, ¢, d, and e) and
with trait-mediated competition (o, = 0.2; Fig. 3f, g, h, i,
and j) in a simple 2D environment, where the environmental
gradient (e.g. elevation) linearly increases along the x coordi-
nate. The other parameters for these simulations are of = 0.2,
Um = 0.005, o, = 0.05, and o4 = 30. We set the local carry-
ing capacity K to 50 for the case without trait-mediated com-
petition and K = 35 for the case with trait-mediated compe-
tition. This parameterisation leads to a roughly equal satura-
tion in the total number of individuals in the two scenarios
(Fig. 3a and f) in contrast to an equal K that would predict
higher individual abundances in the case of trait-mediated
competition. Changes in total abundance (via changes in car-
rying capacity) are known to affect the number of taxa in this
types of eco-evolutionary model that use a similar taxon def-
inition (Pontarp and Wiens, 2017). Therefore, to minimise
density-dependent effects on taxon richness we assure that
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both cases reach similar total abundances (* 400 individu-
als; Fig. 3a and f) by reducing local carrying capacity (but
see Appendix A for a sensitivity analysis of the effects of
selected parameters on the maximum abundance of individ-
uals).

Both simulations show branching, but when competition
among individuals with similar trait values is strengthened,
further branching is promoted (cf. Fig. 3¢ and h). Figure 3b
and g show the spatial distribution and Figure 3d and i show
the trait distribution of the extant taxa without and with trait-
mediated competition. The phylogenetic reconstruction us-
ing our proposed taxon definition (Fig. 3e and j) resembles
the pattern of population trait values over time both in terms
of the number of branches and the trait distributions of each
branch (Fig. 3c, d, h, and i). Howeyver, this method would also
separate taxa even if branches on a population level could not
be distinguished (i.e. when organisms occupy all trait space).
Furthermore, the taxon definition method (Sect. 2.4) can cre-
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ate phylogenies when organisms are described by more than
one trait.

3.2 Biodiversity patterns in static vs. dynamic
landscapes

Our second example considers the evolution of two traits rep-
resenting the adaptation of species to topographic elevation
and to orographic precipitation, termed here as “trait eleva-
tion” and “trait precipitation”, respectively. This experiment
shows how different biodiversity patterns can emerge from
the interaction of eco-evolutionary and earth surface pro-
cesses using AdaScape. For this we consider two contrasting
environmental histories that produce the same final moun-
tain belt: (a) a static landscape where the topography and
precipitation do not change over time (i.e. no uplift or ero-
sional processes) and (b) a dynamic landscape where both
topography and orographic precipitation change as a func-
tion of uplift over time. In Fig. 4 we show the predicted to-
pography and precipitation for these two model setups in an
idealised landscape of 100 by 100 km and for a total simu-
lation time of about 10 Myr with time steps of 10kyr. The
resulting landform consists of a mountain belt with a main
drainage divide in the middle of the model domain (Fig. 4a,
b, c, d, e, and f), which reaches a maximum height of ~ 5 km.
This high topography creates an orographic barrier to the
wind that moves in a south-to-north direction, thus produc-
ing the typical high precipitation on the windward slope of
the mountain belt and a rain shadow with drier conditions
on the leeward slope of the mountain belt (Fig. 4h, i, j, k, 1,
and m). The simulations for static and dynamic landscapes
reach equivalent mean, maximum, and minimum values of
elevation and precipitation (Fig. 4g and n).

We parameterise two eco-evolutionary models: one with-
out (o, = 2; Eq. 4) and another with (o, = 0.2; Eq. 4) trait-
mediated competition, which we then run in the static and
dynamic landscapes (Fig. 4). We start all simulations with a
monomorphic population of around 100 individuals (Fig. 5a,
d, g, and j) where all individuals have similar trait values
set to 0.25 for the trait associated with elevation (Fig. 5b,
e, h, and k) and 0.75 for the trait associated with precipita-
tion (Fig. 5c, 1, i, and 1). This represents an initial population
composed of individuals adapted to lowlands and high pre-
cipitation. To avoid large differences in the fitness values of
the initial populations, we set the individuals to start at spe-
cific locations either in the southern portion or at random lo-
cations in the landscape for the static or dynamic landscape
conditions, respectively. We assume that the relationship be-
tween the optimal trait value and the environmental field is
positive for both traits (i.e. a; = 0.95; Eq. 2). The traits are
considered to be independent (p = 0; Eq. 1) and the value
for the environmental fitness variability is set as a strong se-
lection for traits around the optimal trait values (of = 0.2;
Eq. 1). Mutation probability pp, is set to 0.005 and mutation
variability oy, to 0.05, which introduces a small intergenera-
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tional trait variability. We parameterise dispersal variability,
o4, to 10 km. Local carrying capacity, K (Eq. 5), is param-
eterised to 50 (without trait-mediated competition) and 25
(with trait-mediated competition) individuals where the ra-
dius of the local neighbourhood r is set to 20 km.

For the coupled execution of the eco-evolutionary model
into the LEM we have to assume that one generation time is
equal to one time step of LEM. This, of course, can lead to
unrealistic generation times that exceed the average lifespan
of organisms. Therefore, careful consideration of the param-
eters is required when AdaScape is coupled with FastScape
since one generation would then represent the temporal ag-
gregation of numerous real generations. (See Sect. 5 for a
discussion on the scaling limitations.)

These two contrasting environmental conditions lead to
distinct temporal patterns for simulations without and with
trait-mediated competition. As the simulation progresses, the
number of individuals increases until reaching similar total
abundances of around 350 individuals (Fig. 5a, d, g, and j)
and different diversification patterns emerge (Fig. 5b, c, e, f,
h, i, k, and 1), in particular, between a static (Fig. 5b, c, h, i)
and dynamic (Fig. Se, f, k, 1) landscape. Under a static land-
scape, the evolutionary branching occurs sooner than under
dynamic landscape conditions, because in the latter the in-
dividuals first are selected for narrow environmental ranges,
which then extend towards the end of the simulation. The en-
vironmental conditions progressively increase during the first
2 Myr of the simulation (Fig. 4), which leads to the narrowly
observed trait variability. Between 2 and 6 Myr the environ-
mental gradients extend into broader precipitation and eleva-
tion ranges (Fig. 4) and consequently lead to an increase in
trait variability. After 6 Myr the environmental fields reach
their maximum extent (Fig. 4), with little trait variability un-
til the end of the simulation (Fig. 5).

The reconstructed phylogenetic history for the taxa at the
end of the simulation summarises the emergent diversity pat-
terns of the four example simulations (Fig. 6). We observed
that simulations without trait-mediated competition lead to
lower taxon richness (i.e. three and six taxa for static and dy-
namic landscapes, respectively) compared with simulations
with trait-mediated competition (i.e. 25 and 22 for static and
dynamic landscapes, respectively). We can distinguish a di-
vision between those clades from mostly wet-adapted taxa in
the south and mostly dry-adapted taxa in the north (cf. red
and blue coloured lineages in Fig. 6). Such a division be-
tween the northern and the southern clades under dynamic
landscape conditions (cf. Fig. 6¢ and d) seems to coincide
with the increase in the range of the environmental gradients
(Fig. 4g and n). This suggests a relationship between the rate
of change in environmental conditions and the response in
the build-up of biodiversity.
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Figure 4. Spatial and temporal patterns of environmental fields under static and dynamic landscape conditions. We consider two main
environmental fields: elevation (a—g) and precipitation (h-n). For each one, we consider two types of environmental histories: one for a
static landscape where conditions are constant (a—c, h—j, and dashed black lines in g and n) and another for a dynamic landscape for which
conditions vary throughout the simulation (d—f, k-m, and solid grey curves in g and n). The thick grey curves mark the mean and the
thinner grey curves are the minimum and maximum of each environmental field. To produce these environmental conditions we consider the
following parameterisation of our landscape evolution model (Table 1): U =0m ylr_1 (static) or 0.001 m yr_1 (dynamic), kg =0 ml—24 yr_1
(static) or 2.8 x 1076 m!—2a yr71 (dynamic), kg =0 m? yr71 (static) or 0.01 m? yrf1 (dynamic). Relevant values are a = 0.4, b =1, Py =

22myr~ !, wg=15ms™!, and wq = 0°.

3.3 Effects of uplift, mutation, and dispersal variability
on biodiversity

To investigate how the build-up of biodiversity is influenced
by the rate of change in environmental conditions and eco-
evolutionary processes, we varied three parameters, namely
uplift rate, dispersal variability, and mutation variability (Ta-
ble 1). In Figs. 7 and 8, we quantified how these changes af-
fect the number of lineages through time (LTT), in particular
when taxon biodiversity reaches its maximum. For the two
competition cases, we tested three different values of uplift,
dispersal, and mutation centred around the parameterisation
used in the example in Sect. 3.2 (Figs. 5 and 6; Table 1). For
each parameter set, we repeated the simulation 10 times for
a total of 60 simulations. In Fig. 7, we normalised each LTT
by the maximum number of lineages reached on each simu-
lation.

We observed that as the mountain is uplifted faster, the
maximum number of lineages is reached earlier (Fig. 7a
and b). Conversely, the peak in the number of lineages is de-
layed as the rate of uplift slows (Fig. 7a and b). Changes in
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uplift rate similarly affect simulations with and without trait-
mediated competition (cf. Fig. 7a and b, respectively). How-
ever, in absolute terms, the simulations with trait-mediated
competition lead to a higher number of lineages (Fig. 8),
while the overall patterns remain similar to the normalised
values (Fig. 7).

The eco-evolutionary processes also show differences in
the timing with respect to the values tested and between cases
of competition. On the one hand, a low dispersal variability
leads to a slower build-up of diversity compared with inter-
mediate and higher values (Fig. 7c and d). However, as time
progresses the intermediate and high dispersal cases tend to
reach their maximum earlier, while the simulations with low
dispersal values continue to increase (Fig. 7c and d). This is
reflected in the highest number of lineages, in absolute terms,
reached for the low dispersal with trait-mediated competition
cases (Fig. 8c and d). On the other hand, increasing muta-
tion variability causes a faster build-up of diversity, while the
contrary occurs when the values of mutation variability de-
crease (Fig. 7e and f). In absolute terms, an increase in muta-
tion variability tends to increase the number of lineages, with

Geosci. Model Dev., 16, 6921-6941, 2023
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Figure 5. Temporal dynamics of the eco-evolutionary model without (a—f) and with (g-1) trait-mediated competition and each for a static
(a—c and g—i) and dynamic (d—f and j-1) landscape. Panels (a), (d), (g), and (j) show the number of individuals over time. Panels (b) and (c),
(e) and (f), (h) and (i), and (k) and () present the trait distribution over time. We use 2D histograms for presenting the temporal distributions
of traits (b, ¢, e, f, h, i, k, ), where the darker colouration highlights the higher frequency of individuals with a particular trait value.

the highest values predicted with trait-mediated competition
cases (Fig. 8e and f).

4 Comparison with similar modelling approaches

Our eco-evolutionary implementation is built on the model
proposed by Irwin (2012), who showed how a phylogeo-
graphic structure (i.e. an historical geographic distribution of
clades) emerges along an environmental gradient as selec-
tion, dispersal, mutation, and population size vary. Irwin’s
model is similar to earlier eco-evolutionary models, such
as that of Doebeli and Dieckmann (2003), which described
adaptive speciation patterns (or evolutionary branching of a
trait) along environmental gradients. Doebeli and Dieckmann
(2003) showed the range of parameters where branching is
facilitated and the importance of ecological processes. Par-
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ticularly, they demonstrated that when competition strength
is smaller than the selection strength, branching is promoted
(Doebeli and Dieckmann, 2003). Albeit in Irwin’s original
model, competition for resources was not considered, we
show here that including such ecological process facilitates
speciation (Figs. 2 and 6). Both works also show how an
increase in dispersal leads to well-mixed and spatially un-
structured populations (Doebeli and Dieckmann, 2003; Ir-
win, 2012), which will thus dampen the number of lineages
— a pattern we also identified with our model (Figs. 7 and 8).

Contemporary to Irwin’s work, Pontarp et al. (2012) pro-
posed an eco-evolutionary model also inspired by Doebeli
and Dieckmann (2003) but using a different fitness generat-
ing function and reconstructing taxa and phylogenies based
on the similarity of trait values and shared common ancestry.
The latter has helped Pontarp et al. (2012) to extend the tradi-
tional application of these types of eco-evolutionary models
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Figure 6. Phylogenetic reconstruction of the extant taxa at the end of the simulation. The subplots represent our four examples without (a, ¢)
or with (b, d) trait-mediated competition and under environmental conditions of a static (a, b) or dynamic (c, d) landscape (cf. Fig. 4). The
red and blue circles in the tips of the phylogenetic trees highlight the upper half (north) and lower half (south) average location of the taxa
along the y coordinate. We similarly marked the branches with the same colour coding to better distinguish the relationships between the
north dry-adapted (red) and south wet-adapted (blue) clades. The density plots on the right of each tree show the trait distribution for each

taxa and for traits associated with elevation and precipitation.

from population to community. They have used this model to
show how (a) phylogenetic structure emerges in communities
competing for resources (Pontarp et al., 2012), (b) mode of
speciation (from sympatric to allopatric) can change continu-
ously (even during a single radiation event) depending on lo-
cal to regional conditions and dispersal capacity of organisms
(Pontarp et al., 2015), and (c) richness patterns along gradi-
ents depend on the carrying capacity, diversification rates,
and time for speciation (Pontarp and Wiens, 2017). We have
adopted a similar approach to that of Pontarp and colleagues
to define taxa, which allows us to broaden the applicability
of the model and reconstruct idealised phylogenies that can
be compared with time-calibrated phylogenies.

Another characteristic of the works of Irwin (2012) and
Pontarp et al. (2012) is that they divide the environmental
gradient into discrete habitats, while Doebeli and Dieckmann
(2003) use a spatially continuous and linear environmental
gradient. Haller et al. (2013), building on the work of Doebeli
and Dieckmann (2003), tested the effects that various spa-
tially complex environments (i.e. linear gradients, nonlinear
gradients, and spatially continuous patches) have on branch-
ing. They found that an intermediate level of environmental
heterogeneity promotes branching, and they suggested using
metrics of their realised environments to compare with obser-
vations in real landscapes. In addition, Doebeli and Dieck-
mann (2003) demonstrated, early on, the impact of the re-
lationship between the slope of the environmental gradient
with dispersal by revealing that evolutionary branching is fa-
cilitated at intermediate environmental gradients once disper-

https://doi.org/10.5194/gmd-16-6921-2023

sal is below a critical level. Here by coupling our adaptive
speciation model to a landscape evolution model, we not only
produce a more realistic landscape but also show the impact
of considering an environmental gradient that changes over
time (i.e. a dynamic landscape).

A recent tool named the gen3sis engine can simulate
ecological and evolutionary processes in palaco-geographies
that are changed at discrete time-steps (Hagen et al., 2021a).
This tool was used to investigate the effects that plate tec-
tonics and palaeo-climate reconstructions have on macroe-
cological patterns of diversity, such as the latitudinal diver-
sity gradient (Hagen et al., 2021a), and pantropical diver-
sity disparity (Hagen et al., 2021b). This engine offers a
great wealth of outcomes (e.g. species distributions, phy-
logeny, and ecological traits) that can seamlessly be com-
pared with empirical observations. Other similar models that
mainly focused on the ecological and evolutionary aspects
have been proposed earlier (Rangel et al., 2018) in what
is known as “population-based spatially explicit mechanis-
tic eco-evolutionary models” (MEEMs) (Hagen, 2022). Our
model differs from MEEMs in that we follow an individual-
based (IBM) or agent-based (ABM) modelling approach,
which in comparison to population-based models offers
greater flexibility into the processes considered and how the
organisms interact among themselves and with the environ-
ment (Levin, 1998; Railsback, 2001; DeAngelis and Mooij,
20005; Grimm et al., 2005). IBMs thus account for low-level
variability that can be scaled up to higher hierarchical lev-
els, producing emergent properties that cannot be predicted
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Figure 7. Normalised lineages through time (nLTT) plots summarising numerical experiments where we investigate the effects of uplift
rate (a, b), dispersal variability (¢, d), and mutation variability (e, f). The results for each treatment are the mean (solid curves) and standard
deviation (shaded areas) of 10 replicates with different random seeds. To facilitate the comparisons among treatments, we normalised the
number of lineages to the maximum number that each single replicate reached. We also doubled the simulation time to 20 Myr but kept time
step 10 kyr (cf. Fig. 6) to ensure that both the landscape (in the case of different uplift rates) and number of taxa would reach equilibrium.

by the properties of individuals or their interactions with the
environment alone (Levin, 1998; Railsback, 2001; DeAnge-
lis and Mooij, 20005; Grimm et al., 2005). Nevertheless, ac-
counting for individual-level variability, particularly as ob-
served in nature, can be impractical and computationally de-
manding. Hence, population-based models, such as MEEMs,
are a more computationally efficient option (Hagen, 2022). In
addition, MEEMs, such as those in Rangel et al. (2018) and
Hagen et al. (2021a), do not compute the landscape dynamics
but instead use a priori calculated environmental fields. This
approach allows them a more flexible and efficient way to
upscale the computations. However, this comes at the cost of
not controlling the relevant processes that lead to the building
of a landform or climate as in our coupled eco-evolutionary
and landscape evolution model.

Recent efforts to couple eco-evolutionary models with an
LEM, such as BioSlant (Stokes and Perron, 2020), present
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a more promising venue to explore the link between tecton-
ics, climate, and biodiversity. However, Stokes and Perron
(2020) implemented a different eco-evolutionary model that
captures mainly allopatric speciation. Their model is based
on an earlier version of a neutral metapopulation model
(Muneepeerakul et al., 2007) where speciation is not linked
to functional traits and the organisms only move along river
networks. Hence, a species or taxon in this type of model is a
static definition. Since mobility is limited to river networks,
the main application is to investigate the effects of river reor-
ganisation on biodiversity. Our approach circumvents these
limitations through the continuous interplay between organ-
isms’ traits and their environment.
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Figure 8. Number lineages through time (LTT) plots summarising numerical experiments where we investigated the effects of uplift
rate (a, b), dispersal variability (¢, d), and mutation variability (e-f). The results for each treatment are the mean (solid curves) and standard
deviation (shaded areas) of 10 replicates with different random seeds. Results are based on the same observations in Fig. 7.

5 Limitations of our modelling approach

Any model at its best is a surrogate of nature that we can
use to test our understanding of a system. We decided to
build on established theoretical frameworks to study the cou-
pled eco-evolutionary dynamics (Metz et al., 1996; Geritz et
al., 1998; Dieckmann et al., 2004; McGill and Brown, 2007,
Klausmeier et al., 2020) and landscape evolution (Whipple,
2004; Tucker and Hancock, 2010; Lague, 2014). As these
theoretical frameworks have had many applications over the
past decades with more detailed descriptions of processes as
we have shown here, we use only their essential processes
to illustrate how bio- and geo-components of the earth sys-
tem can be coupled into a single modelling framework while
keeping the number of parameters and processes to a mini-
mum. While it is appealing to integrate ecological and evo-
lutional processes into a landscape evolution model, sev-
eral caveats related to the scaling of such processes need
to be taken into consideration. Three types of scaling prob-
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lems are recognised in ecological models, namely pre-model
(i.e. (dis)aggregation of values used as input of models),
in-model (i.e. procedures related to the simplification of a
model), and post-model (i.e. scaling procedures applied to
the output of models) issues (Fritsch et al., 2020). Here we
focus on the pre-model and in-model scaling issues, partic-
ularly those related to maintaining computational efficiency
while keeping the ability to detect emergent speciation pat-
terns (Fritsch et al., 2020).

Coupling these types of models comes at the expense of
increased computational cost. To prevent this, we developed
our simple eco-evolutionary model on a very efficient al-
gorithm to solve the stream power law (Braun and Willett,
2013) and its implementation using xarray-simlab infras-
tructure (Bovy et al., 2021). This implementation, known as
FastScape, provides a series of libraries to efficiently com-
pute and parallelise simulations (Bovy, 2021). Hence, our
model executes on the order of minutes with computational
costs exponentially increasing as the number of time steps
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Figure 9. Average computation time for a single AdaScape run. We
measured the average time variation between seven runs set up with-
out trait-mediated competition as shown in examples (cf. Figs. 5 and
6). We then manipulated the local carrying capacity and the length
of the time steps in the model. For all simulations, the spatial extent
consists of an area of 100 by 100 km, which is divided in a regular
grid of 100 by 100 points. The simulations are executed for 10 Myr
with variable time steps in a 176-core (Intel Xeon 2.10 GHz) Linux
cluster.

and the maximum number of individuals (local carrying ca-
pacity) increases (Fig. 9). For all simulations, the spatial ex-
tent consists of an area of 100 by 100 km, which is divided
in a regular grid of 100 by 100 points. The simulations were
executed for 10 Myr with variable time steps, as explained in
Fig. 9. Although we run these simulations in a 176-core (In-
tel Xeon 2.10 GHz) Linux cluster, the execution of FastScape
and AdaScape do not require any high-performance comput-
ing facilities and can be executed on any modern desktop or
laptop computer where Python can be installed with similar
performance as shown in Fig. 9.

When AdaScape is coupled with FastScape, the time be-
tween generations is defined as the time step of the LEM
(i.e. 10kyr for the example simulations shown in Sect. 3.2).
Therefore, a generation in AdaScape would represent the
temporal aggregation of numerous real generations. In this
context, a scaling of the eco-evolutionary parameters related
to mutation (pp, om) and dispersal (o4) must be considered.
The simplest way is to scale the mutation and dispersal pa-
rameters by the square root of the number of real generations
in an LEM time step. Therefore, the parameter p used in a
given simulation with a time step At should be scaled for
comparison with measured values p’ by the following rela-
tionship: p’ ~ p - /tg/At, where tg is the average lifespan
of a generation, p is one of the mutation or dispersal parame-
ters, and p’ is the new scaled parameter. Caveats of this scal-
ing are that the parameter value is not directly constrained
by observations and that, obviously, this parameter should
not be too large in a simulation to avoid, for example, that
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dispersal exceed the length of the simulated area or that all
individuals mutate and vary the trait value broadly in a sin-
gle time step. Particularly, the latter goes back to the assump-
tions of earlier formulations of adaptive dynamics stating that
the range of validity of these types of eco-evolutionary mod-
els remains intact as long as mutation processes were rare
and the trait variability with respect to their ancestor was
small, to assure that evolutionary dynamics were slower than
changes in population densities (Abrams, 2001; Klausmeier
et al., 2020).

In addition, keeping a tractable number of individuals dur-
ing the simulations can be a challenge. Further develop-
ments can use scaling-up procedures, for example, the so-
called super-individuals approach (Scheffer et al., 1995), to
be able to represent even higher abundances of individuals.
This would require limiting the number of individuals to a
predefined maximum and minimum number, where each of
these super individuals accounts for the properties of several
others.

6 Competition as a driver of diversity

Competition for resources is an important ecological process
(Tilman, 1982; Chesson, 2000) that can lead to the diver-
gence of traits and consequently promote biodiversity (Pfen-
nig and Pfennig, 2009). Examples of both interspecific (e.g.
Grant and Grant, 2006; Grainger et al., 2021) and intraspe-
cific (e.g. Bolnick, 2001; Calsbeek and Cox, 2010) compe-
tition are known to leave an imprint on the traits under se-
lection. Therefore, ecological processes have the potential to
alter the outcome of evolution. Increasing interest in the past
decades has been in documenting cases where ecological dy-
namics and evolutionary dynamics show reciprocal interac-
tions (Fussmann et al., 2007; Schoener, 2011; Govaert et al.,
2019), thus leading to a recurring call to integrate the distinct
disciplines of ecology and evolution, as recently pointed out
by Loreau et al. (2023). This becomes particularly relevant
knowing that both ecological and evolutionary dynamics can
operate at the same pace (Fussmann et al., 2007; Schoener,
2011; Govaert et al., 2019) and can be influenced by rapid
changes in the environment, for example, as the climate
changes (Parmesan, 2006; Loreau et al., 2023); hence, the
difficulty in understanding the tangled relationships between
the biotic and abiotic environment with the ecological and
evolutionary responses of organisms. Our model, although
aiming at capturing the essential eco-evolutionary processes,
simplifies much of the organism—organism and organism-—
environment feedback. Nevertheless, the results support the
general view that competition is an important process that
promotes the build-up of taxon diversity.
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7 Conclusions

There is a great appeal for numerical tools that look to in-
tegrate various components of the earth system such as tec-
tonics, climate, and biodiversity, although such tools are not
common (Antonelli et al., 2018). Some of the existing tools
focus on the eco-evolutionary components, leaving behind
earth’s surface processes and climate, while others do not
factor in eco-evolutionary dynamics and trait-environment
relationships. Here we introduce our coupling of a simple
eco-evolutionary model into a very efficient landscape evo-
lution model, FastScape, which offers great potential to ex-
plore the links between the three main components of the
earth system into a single modelling framework and at man-
ageable computational costs. This allows us, as we show
here, to perform a large number of simulations and con-
sider ensemble properties rather than those emerging from
single simulations, the details of which can be highly depen-
dent on the initial conditions or the stochastic nature of the
evolution equations representing mutation and dispersal. At
the moment, AdaScape mainly considers the effect that the
environment has on the biota; however, feedback between
these components can be further investigated. For example,
organisms such as plants are known to affect the hydrolog-
ical cycle by dampening the discharge variability of rivers
(Rossi et al., 2016). Plants can thus impact the erosional ef-
ficiency of rivers where erosional thresholds exist (Deal et
al., 2018; Braun and Deal, 2023). This would require us to
investigate and test relationships between organismal traits
with erosional processes in the landscape, which offer a po-
tential venue to further integrate various components of the
earth system into a single modelling framework.

Appendix A: Sensitivity on the maximum number of
individuals to changes in selected parameters

Due to stochastic and nonlinear relationships of the pro-
cesses, as well as our definition of the local neighbourhood
in the eco-evolutionary model, it is difficult to know a pri-
ori how the different processes will interact to produce a
maximum number of individuals. Therefore, we performed
a sensitivity analysis on the maximum number of individuals
Nmax to changes in the parameters oy, 0, and oq in relation
to changes in radius r and local carrying capacity K. We then
tested 10 values for the ranges of or = [0.2, 2], 0,=[0.2, 2],
and oq = [10, 100] in relation to changes in 10 values in the
range of K =[25, 75] and r = [25, 75]. We performed 100
simulations for each pair-wise set of parameters for a total of
700 simulations (Fig. Al). We observed that the maximum
number of individuals will be reached as r decreases and K
increases; also, the maximum number of individuals when K
increases and o, and o4 decrease or when of increases. Sim-
ilarly, the highest Ny, is reached when o, and o4 decrease
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or when of increases, in combination with a decrease in the
radius of the local neighbourhood r.
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Figure Al. The maximum number of individuals (Nmax) reached during a simulation given a set of parameters. The model results are
calculated using the Sect. 3.1 setup for a linear environmental gradient. The default parameter values are r = 30, K =50, o5 = 0.2, 0, =2,
and og = 30.
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Appendix B: Trait-mediated competition, optimal
trait—-environment relationship, and environmental
heterogeneity

The effects of competition in our model depend on the re-
lationship between the environmental field and optimal trait,
as well as on the heterogeneity in the environment. To bet-
ter illustrate this, in Fig. B1 we performed a model run as
in Sect 3.1 for the case with competition (o), where we set
the environment—optimal trait relationship («) from the de-
fault value 0.95 to O, the latter meaning that there is no re-
lationship between the trait and the environmental field. We
then ran this model setup under an environment with a lin-
ear environmental gradient (as in Fig. 3) and under no envi-
ronmental gradient, i.e. a constant environmental field cen-
tred at a middle elevation. We observed no build-up of taxon
diversity when there was no environment—optimal trait re-
lationship (o = 0) without (Fig. Bla, b, c, and d) and with
(Fig. Ble, f, g, and h) a linear environmental gradient, and
when « > 0 with a linear environmental gradient (Fig. B1i,
J» k, and 1). Trait-mediated competition thus only promotes
diversity when a trait environmental relationship exists and
when the simulation occurs in a heterogeneous environment
(as in Fig. 3f, g, h, 1, and j).
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Figure B1. Effects of the environment—optimal trait relationship () and competition on the build-up of taxon diversity. The numerical experi-
ments show the results of simulations with (1) no environmental gradient (same elevation throughout the landscape) and no environment—trait
relationship « (a—d), (2) a linear environmental gradient (as in Fig. 3) and no environment-trait relationship (e=h), and (3) no environmen-
tal gradient and a positive environment—trait relationship (o« = 0.95). The other parameter values are set as in Fig. 3 for the case with the

trait-mediated competition.
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