Articles | Volume 16, issue 8
https://doi.org/10.5194/gmd-16-2181-2023
https://doi.org/10.5194/gmd-16-2181-2023
Development and technical paper
 | 
21 Apr 2023
Development and technical paper |  | 21 Apr 2023

Improving trajectory calculations by FLEXPART 10.4+ using single-image super-resolution

Rüdiger Brecht, Lucie Bakels, Alex Bihlo, and Andreas Stohl

Related authors

LARA: a Lagrangian Reanalysis based on ERA5 spanning from 1940 to 2023
Lucie Bakels, Michael Blaschek, Marina Dütsch, Andreas Plach, Vincent Lechner, Georg Brack, Leopold Haimberger, and Andreas Stohl
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-26,https://doi.org/10.5194/essd-2025-26, 2025
Preprint under review for ESSD
Short summary
A thousand inversions to determine European SF6 emissions from 2005 to 2021
Martin Vojta, Andreas Plach, Rona L. Thompson, Pallav Purohit, Kieran Stanley, Simon O’Doherty, Dickon Young, Joe Pitt, Xin Lan, and Andreas Stohl
EGUsphere, https://doi.org/10.5194/egusphere-2025-1095,https://doi.org/10.5194/egusphere-2025-1095, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Efficient use of a Lagrangian Particle Dispersion Model for atmospheric inversions using satellite observations of column mixing ratios
Rona Louise Thompson, Nalini Krishnankutty, Ignacio Pisso, Philipp Schneider, Kerstin Stebel, Motoki Sasakawa, Andreas Stohl, and Stephen Platt
EGUsphere, https://doi.org/10.5194/egusphere-2025-147,https://doi.org/10.5194/egusphere-2025-147, 2025
Short summary
The atmospheric settling of commercially sold microplastics
Alina Sylvia Waltraud Reininger, Daria Tatsii, Taraprasad Bhowmick, Gholamhossein Bagheri, and Andreas Stohl
EGUsphere, https://doi.org/10.5194/egusphere-2025-605,https://doi.org/10.5194/egusphere-2025-605, 2025
Short summary
Measurement Report: Changes in ammonia emissions since the 18th century in south-eastern Europe inferred from an Elbrus (Caucasus, Russia) ice-core record
Michel Legrand, Mstislav Vorobyev, Daria Bokuchava, Stanislav Kutuzov, Andreas Plach, Andreas Stohl, Alexandra Khairedinova, Vladimir Mikhalenko, Maria Vinogradova, Sabine Eckhardt, and Susanne Preunkert
Atmos. Chem. Phys., 25, 1385–1399, https://doi.org/10.5194/acp-25-1385-2025,https://doi.org/10.5194/acp-25-1385-2025, 2025
Short summary

Related subject area

Atmospheric sciences
The Multi-Compartment Hg Modeling and Analysis Project (MCHgMAP): mercury modeling to support international environmental policy
Ashu Dastoor, Hélène Angot, Johannes Bieser, Flora Brocza, Brock Edwards, Aryeh Feinberg, Xinbin Feng, Benjamin Geyman, Charikleia Gournia, Yipeng He, Ian M. Hedgecock, Ilia Ilyin, Jane Kirk, Che-Jen Lin, Igor Lehnherr, Robert Mason, David McLagan, Marilena Muntean, Peter Rafaj, Eric M. Roy, Andrei Ryjkov, Noelle E. Selin, Francesco De Simone, Anne L. Soerensen, Frits Steenhuisen, Oleg Travnikov, Shuxiao Wang, Xun Wang, Simon Wilson, Rosa Wu, Qingru Wu, Yanxu Zhang, Jun Zhou, Wei Zhu, and Scott Zolkos
Geosci. Model Dev., 18, 2747–2860, https://doi.org/10.5194/gmd-18-2747-2025,https://doi.org/10.5194/gmd-18-2747-2025, 2025
Short summary
Similarity-based analysis of atmospheric organic compounds for machine learning applications
Hilda Sandström and Patrick Rinke
Geosci. Model Dev., 18, 2701–2724, https://doi.org/10.5194/gmd-18-2701-2025,https://doi.org/10.5194/gmd-18-2701-2025, 2025
Short summary
Porting the Meso-NH atmospheric model on different GPU architectures for the next generation of supercomputers (version MESONH-v55-OpenACC)
Juan Escobar, Philippe Wautelet, Joris Pianezze, Florian Pantillon, Thibaut Dauhut, Christelle Barthe, and Jean-Pierre Chaboureau
Geosci. Model Dev., 18, 2679–2700, https://doi.org/10.5194/gmd-18-2679-2025,https://doi.org/10.5194/gmd-18-2679-2025, 2025
Short summary
Estimation of aerosol and cloud radiative heating rate in the tropical stratosphere using a radiative kernel method
Jie Gao, Yi Huang, Jonathon S. Wright, Ke Li, Tao Geng, and Qiurun Yu
Geosci. Model Dev., 18, 2569–2586, https://doi.org/10.5194/gmd-18-2569-2025,https://doi.org/10.5194/gmd-18-2569-2025, 2025
Short summary
Evaluation of dust emission and land surface schemes in predicting a mega Asian dust storm over South Korea using WRF-Chem
Ji Won Yoon, Seungyeon Lee, Ebony Lee, and Seon Ki Park
Geosci. Model Dev., 18, 2303–2328, https://doi.org/10.5194/gmd-18-2303-2025,https://doi.org/10.5194/gmd-18-2303-2025, 2025
Short summary

Cited articles

Bihlo, A.: A generative adversarial network approach to (ensemble) weather prediction, Neural Netw., 139, 1–16, 2021. a
Bihlo, A. and Popovych, R. O.: Physics-informed neural networks for the shallow-water equations on the sphere, J. Comput. Phys., 456, 111024, https://doi.org/10.1016/j.jcp.2022.111024, 2022. a
Brecht, R. and Bihlo, A.: Computing the ensemble spread from deterministic weather predictions using conditional generative adversarial networks, arXiv, arXiv:2205.09182, 2022. a
Brecht, R., Bakels, L., Bihlo, A., and Stohl, A.: Improving trajectory calculations using SISR, Zenodo [code], https://doi.org/10.5281/zenodo.7350568, 2022. a, b
Chen, H., He, X., Qing, L., Wu, Y., Ren, C., Sheriff, R. E., and Zhu, C.: Real-world single image super-resolution: A brief review, Inf. Fusion, 79, 124–145, 2022. a
Download
Short summary
We use neural-network-based single-image super-resolution to improve the upscaling of meteorological wind fields to be used for particle dispersion models. This deep-learning-based methodology improves the standard linear interpolation typically used in particle dispersion models. The improvement of wind fields leads to substantial improvement in the computed trajectories of the particles.
Share