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Abstract. Lagrangian trajectory or particle dispersion mod-
els as well as semi-Lagrangian advection schemes require
meteorological data such as wind, temperature and geopo-
tential at the exact spatiotemporal locations of the particles
that move independently from a regular grid. Traditionally,
these high-resolution data have been obtained by interpolat-
ing the meteorological parameters from the gridded data of
a meteorological model or reanalysis, e.g., using linear in-
terpolation in space and time. However, interpolation is a
large source of error for these models. Reducing them re-
quires meteorological input fields with high space and time
resolution, which may not always be available and can cause
severe data storage and transfer problems. Here, we interpret
this problem as a single-image super-resolution task. That
is, we interpret meteorological fields available at their na-
tive resolution as low-resolution images and train deep neural
networks to upscale them to a higher resolution, thereby pro-
viding more accurate data for Lagrangian models. We train
various versions of the state-of-the-art enhanced deep resid-
ual networks for super-resolution (EDSR) on low-resolution
ERAS reanalysis data with the goal to upscale these data to
an arbitrary spatial resolution. We show that the resulting
upscaled wind fields have root-mean-squared errors half the
size of the winds obtained with linear spatial interpolation
at acceptable computational inference costs. In a test setup
using the Lagrangian particle dispersion model FLEXPART
and reduced-resolution wind fields, we find that absolute hor-
izontal transport deviations of calculated trajectories from
“true” trajectories calculated with un-degraded 0.5° x 0.5°
winds are reduced by at least 49.5 % (21.8 %) after 48 h rela-
tive to trajectories using linear interpolation of the wind data

when training on 2° x 2° to 1° x 1° (4° x 4° to 2° x 2°) res-
olution data.

1 Introduction

Recent years have seen a considerable increase in interest in
the application of machine learning to virtually all areas of
the natural sciences, with meteorology being no exception.
Machine learning, and specifically deep learning, which is
concerned with training deep artificial neural networks, holds
great promise for problems for which a very large number of
data are available (LeCun et al., 2015). This is the case for
meteorology, where numerical weather prediction and obser-
vations generate a large number of data. Breakthroughs in the
availability of affordable graphics processing units and sub-
stantial improvements in training algorithms for deep neu-
ral networks have equally contributed to making deep learn-
ing a promising new tool for applications in computer vi-
sion (Krizhevsky et al., 2012), speech generation (Oord et al.,
2016), text translation and generation (Vaswani et al., 2017),
and reinforcement learning (Silver et al., 2017). Applications
of deep learning to meteorology so far include weather now-
casting (Shi et al., 2015), weather forecasting (Rasp et al.,
2020; Weyn et al., 2019), ensemble forecasting (Bihlo, 2021;
Brecht and Bihlo, 2022; Scher and Messori, 2018), subgrid-
scale parameterization (Gentine et al., 2018) and downscal-
ing (Mouatadid et al., 2017).

In recent years image super-resolution by neural networks
has made considerable progress. The main application is to
scale a low-resolution image to an image with a higher reso-
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lution, which is referred to as single-image super-resolution
(SISR), although similar techniques are also used to upscale
both the spatial resolution and the frame rates for videos
as well. Before the advent of efficiently trainable convolu-
tional neural networks (i.e., neural networks whose layers
are convolutions, which put the input images through a set
of filters, each of which activates certain features from the
input), the super-resolution problem for images was solved
using interpolation-based methods, such as in the paper of Li
and Orchard (2001). These interpolation methods are still the
state of the art for Lagrangian models.

SISR is a topic of substantial interest in computer vision,
with applications in computational photography, surveil-
lance, medical imaging and remote sensing (Chen et al.,
2022). A variety of architectures have been proposed in
this regard, essentially all of which use a convolutional
neural network architecture, following the seminal contri-
bution of Krizhevsky et al. (2012), which kindled the ex-
plosive interest in modern deep learning. Among these
SISR architectures, some important milestones are the super-
resolution convolutional neural network (SRCNN) (Dong
et al., 2014), a standard convolutional neural network; the
very deep super-resolution (VDSR) (Kim et al., 2016), a
convolutional neural network based on the popular Visual
Geometry Group (VGG) architecture (a standard deep con-
volutional neural network architecture with multiple lay-
ers); a super-resolution generative adversarial network (SR-
GAN) (Ledig et al., 2017), a generative adversarial network;
and EDSR (Lim et al., 2017), based on a convolutional resid-
ual network architecture. For a recent review on SISR provid-
ing an overview over the aforementioned architectures and
others, the reader may wish to consult Yang et al. (2019).

While deep learning has been used extensively over the
past several years in meteorology for a variety of use cases,
there have only been a few applications of deep learning
to meteorological interpolation that go beyond downscaling.
This is surprising, as many tasks in numerical meteorology
routinely involve interpolation, such as the time stepping
in numerical models using the semi-Lagrangian method re-
quiring trajectory origin interpolation (Durran, 2010) or La-
grangian particle models (Stohl et al., 2005).

Semi-Lagrangian advection schemes in numerical weather
prediction models rely on simple interpolation methods for
the wind components (Durran, 2010). For instance, the semi-
Lagrangian scheme in the Integrated Forecast System model
of the European Centre for Medium Range Weather Fore-
casts (ECMWF) uses a linear interpolation scheme. In trajec-
tory models and Lagrangian particle dispersion models, simi-
larly simple interpolation methods are used. Higher-order in-
terpolation schemes such as bicubic interpolation can reduce
the wind component interpolation errors compared to linear
interpolation (Stohl et al., 1995). However, error reductions
for higher-order schemes are less than 30 %, while compu-
tational costs increase by about 1 order of magnitude (Stohl
et al., 1995). Therefore, many trajectory and Lagrangian par-
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ticle dispersion models still use linear interpolation, e.g.,
FLEXPART (Pisso et al., 2019), LAGRANTO (Sprenger and
Wernli, 2015) or MPTRAC (Hoffmann et al., 2022).

The purpose of this paper is to implement variable-scale
super-resolution based on deep convolutional neural net-
works to demonstrate their potential for Lagrangian models.
Here, we make use of the self-similarity of meteorological
fields, such that a neural network can be repeatedly applied to
interpolate a velocity field to higher resolutions. The paper’s
further organization is as follows. Section 2 describes the nu-
merical setup and the data being used in this work. In Sect. 3
we present the results of our study, illustrating substantial im-
provements in both the quality of upscaled wind fields using
the EDSR model in comparison to standard linear interpo-
lation, as well as the quality of trajectory calculations using
the Lagrangian particle dispersion model FLEXPART (Pisso
etal., 2019). A summary of this paper and thoughts for future
research can be found in Sect. 4.

2 Methods

The aim of this study is to train a neural network which can
then be used to interpolate meteorological velocity fields. For
the training and evaluation we consider that meteorological
fields are characterized by self-similarity over a range of spa-
tiotemporal scales. This means that the structure of the field
from one resolution to a higher one is similar. This makes
it possible to train the neural network model to increase the
resolution from a downsampled velocity field to a higher res-
olution and then apply the model repeatedly to obtain even
higher resolutions. Below we introduce the data used to train
the neural network, describe the details of the neural network
model and how we train the model. Moreover, we explain
how we used the interpolated fields to run a simulation with
FLEXPART.

2.1 Neural network architecture

The neural network is designed to take a (n,n) matrix as an
input and predict a (2n, 2n) matrix as output. Doing this re-
peatedly allows one to increase the size of the meteorological
fields arbitrarily. We use the enhanced deep residual network
for single-image super-resolution (EDSR) architecture (Lim
et al., 2017) with additional channel attention, which gives
higher importance to specific channels over others. The main
building block of this architecture is a simplified version of a
standard convolutional residual network block without batch
normalization (Fig. 1b). This residual block consists of two
convolutional layers, each of which uses a filter size of 3 in
the present work, with the first convolutional layer being fol-
lowed with a standard rectified linear unit activation function.
After the second convolutional layer, a scaling of the out-
put feature maps is performed, where we use the same con-
stant residual scaling factor of 0.1 as proposed in the original
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work of Lim et al. (2017). The final operation of each resid-
ual block is given via channel attention (Fig. 1¢). The overall
architecture of this channel attention module follows Choi
et al. (2020). The purpose of attention mechanisms in a con-
volutional neural network is to enable it to focus on the most
important regions of the neural network’s perceptive field.
Channel attention re-weights each respective feature map
from a convolutional layer following a learnable-scale trans-
formation. The last building block of our architecture is the
upsampling module (Fig. 1d). This module consists of a con-
volutional layer with a total of 64 x upscale_factor2
feature maps, followed by a depth-to-space transformation
called PixelShuffle (Shi et al., 2016), which re-distributes
feature maps into an upscale_factor times larger spa-
tial field. In this work, upscale_factor =2.

The main residual network blocks are repeated eight times,
with an extra skip connection being added before the first
convolutional layer in the network and before the upsample
module. The upsampled image passes all convolutions in our
architecture, with the exception of the convolutional layer in
the upsample module using a total of 64 filters.

We have experimented with a variety of other architec-
tures, including a conditional convolutional generative ad-
versarial network called pix2pix (Isola et al., 2017) and
the super-resolution GAN (Ledig et al., 2017) but have found
the EDSR network giving the lowest interpolation error and
having the shortest training time. Hence we only report the
results from the EDSR model below.

2.2 Training data

To train our neural networks, we use data from the ECMWF
ERAS reanalysis (Hersbach et al., 2020). These global data
are available hourly at a spatial resolution of 0.5° x 0.5° in
latitude—longitude coordinates and with a total of 138 vertical
levels (level indexes increase upward, contrary to ECMWF).
We use a total of 296 h (from 1 to 12 January 2000) for train-
ing and test our model for 24 h in each season (on 15 January,
15 April, 15 July, 15 October 2000). Each hourly horizontal
layer data point corresponds to a total of 138 layers, yielding
a total of roughly 15000 sample fields.

The low-resolution data are obtained from the high-
resolution ERAS data by simply sampling every first, second
and fourth degree. Note that our approach of subsampling is
driven by our goal to use the neural network as an interpo-
lation algorithm, as required by kinematic trajectory calcu-
lations. From a dynamical point of view this is not the ideal
approach, since averaged winds would give a dynamically
more consistent representation of the flow. However, the goal
here is not to provide the dynamically most consistent wind
field but rather to obtain the best locally interpolated wind.
Furthermore, averaging wind data would reduce the interpo-
lation distance, since averaged winds would always be valid
for locations very close to the location we want to interpo-
late to. For subsampling every first degree, for instance, we
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would need to interpolate only over one-quarter of a degree
instead of half a degree, thus providing a much less rigorous
test against the true wind. Finally, averaging winds is also not
ideal for our purpose because the comparison of “true” winds
and reconstructed winds would reflect the effect of both av-
eraging and interpolating rather than interpolation alone.

In this work we focus solely on the spatial upscaling prob-
lem. The temporal upscaling problem will be considered
elsewhere; see further discussions in the conclusions. We
also only interpolate the horizontal wind components and in-
terpolate only horizontally.

2.3 Neural network training

For each horizontal velocity component (x and v) we train a
separate neural network to interpolate a field from degraded
resolution data to double its resolution data. Then, (if neces-
sary) the trained neural network is applied multiple times to
interpolate 0.5° resolution data. We train three sets of neural
networks:

modell to interpolate a field from degraded 1° x 1° reso-
lution data to 0.5° x 0.5° resolution data;

model2 to interpolate a field from degraded 2° x 2° reso-
lution data to 1° x 1° resolution data;

model4 to interpolate a field from degraded 4° x 4° reso-
lution data to 2° x 2° resolution data.

For the evaluation we only use models 2 and 4 since those
are the only models that allow us to apply to resolution not
seen during training. Model 1 is trained using the highest-
resolution data, and we cannot therefore use it to upscale to
a higher resolution as we do not have the associated data for
comparison.

We found that the wind field structure is different at higher
and lower levels in the atmosphere, and it is thus beneficial
to train separate neural networks for these two regions of the
atmosphere. Thus, one neural network is trained for the lower
atmospheric levels (up to level 50, approximately below the
tropopause), and another one is trained for the higher levels
(51 to 138). Each neural network is trained on the data of 294
hourly wind fields with 50 and 88 vertical levels. This results
in 14700 or 25 578 training samples, respectively.

The model was implemented wusing Tensor-
Flow 2.8 and is made available in a repository
(https://doi.org/10.5281/zenodo.7350568; Brecht et al.,
2022). We trained the model on a dual NVIDIA RTX 8000
machine, with each training step taking approximately
100 ms for the u and v field. Total training took roughly
2.5h for each field.

2.4 Interpolation error metrics

To evaluate the accuracy of the interpolation and trajectory
simulation, we use the root mean square error (RMSE) and
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Figure 1. The overall layout of the neural network model (a) consists of an upsampling block (d) and residual blocks (b), which again
contain a channel attention module (c). Here, @ means adding the layers and ® means multiplying them. The dotted line indicates that the

residual block (b) is repeated multiple times.

the structural similarity index measure (SSIM) as perfor-
mance measures. The RMSE is defined as

RMSE; = \/ (Zinterpolated - Zreference)zv (D

where z € {u, v}, with the bar denoting spatial averaging. The
reference solution is given by the original 0.5° x 0.5° ERAS
data, assumed to represent the truth. The smaller the RMSE
value, the better the interpolated results coincide with the
original reference solution.

The SSIM is a measure of the perceived similarity of two
images a, b and is defined as

Cpapp 4+ C1)(2oap + C2)

SSIM(a, b) = :
(42 + pj +CD(0Z + 0 +C2)

@)

with , and uj denoting the means of the two images a and
b (computed with an 11 x 11 Gaussian filter with a width
of 1.5), 0, and o, denoting their standard deviations, and
o4p being their co-variance. The constants C; and C; are
defined as C; = (K1L)? and C» = (K»L)2, with K; = 0.01
and K, =0.03 and L = 1. The closer the SSIM value is to
1, the more similar the two images are. See Wang et al.
(2004) for further details. In the following, a = Zinterpolated
and b = Zreference, With each of them being interpreted as a
gray-scale image.

2.5 Trajectory calculations

To test the impact of the neural-network-interpolated wind
fields on trajectory calculations, we used the Lagrangian par-
ticle dispersion model FLEXPART (Pisso et al., 2019; Stohl
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et al., 2005). The calculations are conducted using a stripped
down version 10.4 of FLEXPART. We switched off all tur-
bulence and convection parameterizations and used FLEX-
PART as a simple trajectory model. Ideally, the neural net-
work interpolation should be implemented directly in FLEX-
PART. However, as the neural network and FLEXPART run
on different computing architectures (graphics vs. central
processing unit), directly implementing the neural network
interpolation into FLEXPART is beyond the scope of this
exploratory study. Instead, we replaced the gridded ERAS
wind data with the gridded upsampled testing data produced
by the neural network. Using gridded upsampled testing data
does not make full use of the neural network capabilities,
since the neural network only produces values at a fixed res-
olution of 0.5° x 0.5° latitude/longitude, while we still use
linear interpolation of the wind data to the exact particle po-
sition when computing their trajectories. However, the neu-
ral network could in principle also determine the wind com-
ponents almost exactly at the particle positions upon repeat-
edly using the trained SISR model to increase the resolution
enough to obtain the wind values at the respective particle
positions. FLEXPART also needs other data than the wind
data, for which we use linear interpolation of the ERAS5 data.
For temporal and vertical interpolation, we also used linear
interpolation, as is standard in FLEXPART.

We started multiple simulations with 10 million trajec-
tories on a global regular grid with 138 vertical levels and
traced the particles for 48 h. This simulation was repeated in
each season for the following cases:
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— the original ERAS data at 0.5° x 0.5° resolution, serv-
ing as the ground-truth reference case;

— a data set for which the winds were interpolated from
degraded 1° x 1° and from 2° x 2° resolution data, us-
ing linear interpolation as is standard in FLEXPART;

— a data set for which the winds were interpolated from
degraded 1° x 1° (using the neural network model?2
trained to interpolate 2° x 2° to 1° x 1°) and from
2° x 2° resolution data (using the neural network
model4 trained to interpolate 4° x 4° to 2° x 2°) and
then interpolated to the particle position using linear in-
terpolation in FLEXPART.

2.6 Trajectory error metrics

As in previous studies (Kuo et al., 1985; Stohl et al., 1995),
we compared the trajectory positions for trajectories calcu-
lated with the interpolated data to those calculated with the
reference data set, using the absolute horizontal transport de-
viation (AHTD), defined as

1 N
AHTD(®) = - 3 DI(Xy, Y 1), (G, 3, 1] 3)
n=1

where N is the total number of trajectories and
D[(X,, Yy, 1), (X, yn,t)] is the great circle distance
of trajectory points with longitude/latitude coordinates
(X5, Yy, t) for the reference trajectories and (x;, y,,t) for
the trajectories using interpolated winds at time ¢, for the
trajectory pair n starting at the same point. AHTD values are
evaluated hourly along the trajectories, up to 48 h.

3 Results

In this section, we first compare the neural-network-
interpolated data to the linearly interpolated data. Then,
we compare the accuracy of the trajectories computed with
FLEXPART using the interpolated fields of the neural net-
work to the linearly interpolated fields.

3.1 Interpolation

We investigate the self-similarity of the spatial scales by in-
terpolating the fields multiple times using the same model
trained to upscale the wind fields from lower resolutions. For
the interpolation we use linear and neural network interpola-
tion. First, we compare the fields which are interpolated from
1° x 1°t0 0.5° x 0.5° resolution data. Then, we proceed with
applying the neural network interpolation multiple times to
generate an arbitrary resolution.

In Fig. 2 we show the interpolation results for three dif-
ferent neural networks and for the linear interpolation. Here,
each neural network is used to interpolate each resolution,
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starting with the resolution the model is trained on. The inter-
polation error reduces with the resolution. We see that each
neural network almost always has better metrics (i.e., lower
RMSE and higher SSIM values) than the corresponding lin-
ear interpolation. This is true both for the resolution the neu-
ral network has been trained for as well as for higher resolu-
tions.

3.1.1 One-time upscaling

We first consider the neural network mode12 (trained to in-
terpolate 2° x 2° to 1° x 1° resolution data). For the evalua-
tion we interpolate a field from degraded 1° x 1° resolution
data to 0.5° x 0.5° resolution data. Note that we have trained
the model separately for levels 0-50 and 51-137 (counting
from the ground) and evaluate the correspondingly trained
model.

In Fig. 3 we show the RMSE for the interpolated field
for level 10 (corresponding approximately to an altitude
of 245m above ground level) and for one particular time
(14 January at 10:00 UTC) as an example. Figure 3 also
shows an enlarged region focusing on a cold front south of
Australia, where we clearly see that the largest RMSE errors
for both linear and neural network interpolation occur along
the cold front. The winds in the boundary layer show a large
wind shear between the southwesterly winds to the southeast
of the cold front and the northwesterly winds to the northeast
of the cold front. This causes large interpolation errors in the
frontal zone. However, these large errors are substantially re-
duced by the neural network interpolation compared to the
linear interpolation. This also means that the largest interpo-
lation errors, in particular, are avoided by the neural network
compared to the linear interpolation (see Fig. 4). This find-
ing also holds for other conditions, as can be seen by the
general error reduction in other regions on the globe (Fig. 3)
and the smaller but still significant error reductions in cases
with generally smaller interpolation errors (Fig. 4).

More example figures for the different months (January,
April, July and October) can be found in the (Zenodo) repos-
itory. We note that the results are similar for the different
months, as shown in Table 1, where we computed the RMSE
and SSIM for a whole day in the months of January, April,
July and October and for all levels. The neural network inter-
polation has less than half the RMSE of the linear interpola-
tion and achieves a higher SSIM value.

We note that the interpolation time on our hardware for
one field for a given level and time for the linear interpolation
is about 10 times faster compared to the same interpolation
using the neural network.

3.1.2 Multiple time upscaling
To demonstrate that the neural network can be used to inter-

polate a field to arbitrary resolution, we consider the neural
network mode14 ( trained to interpolate 4° x 4° to 2° x 2°

Geosci. Model Dev., 16, 2181-2192, 2023
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Figure 2. RMSE (a) and mean SSIM (b) of the validation data set (14 January 2000) for linear and neural network interpolation evaluated
at different resolutions. Here, we do not interpolate the fields multiple times (as explained in Sect. 3.1.2) but rather once for each resolution
starting from the resolution the model is trained on. The solid lines are computed for the u velocity and the dashed lines for the v velocity.

Table 1. RMSE and mean SSIM of the validation data set for lin-
ear and neural network interpolation using mode12. Considering
the RMSE, the neural network interpolation is at least 49 % more
accurate compared to the linear interpolation.

Table 2. RMSE and mean SSIM of the validation data set for lin-
ear and neural network interpolation, using mode14. Considering
the RMSE, the neural network interpolation is at least 19 % more
accurate compared to the linear interpolation.

RMSE | Linear ‘ Neural network

u v ‘ u v
January 0.469 0398 | 0.214 0.181
April 0.393 0.36 | 0.206 0.182
July 0.447 0444 | 0.222 0.193
October  0.589 0.532 | 0.216 0.191
SSIM 1 Linear ‘ Neural network

u v ‘ u v
January 0976 0970 | 0.988 0.987
April 0.976 0968 | 0.988 0.986
July 0.975 0.968 | 0.988 0.986
October  0.975 0969 | 0.988 0.987

resolution data). We apply the network to interpolate 2° x 2°
to 1° x 1° and apply it another time to interpolate 1° x 1° to
0.5° x 0.5° resolution data. In Fig. 5 we evaluate the RMSE
of an interpolated field in January at level 10 (around 245 m)
and compare it to the RMSE of the linear interpolation.

For each method the RMSE is higher compared to the one-
time upscaling, since we start with a lower resolution and less
information. Nevertheless, the RMSE of the neural network
interpolation is again lower compared to the linear interpo-
lation, albeit the relative error reduction is smaller than with
one-time upscaling (see Table 2). This also holds for other
samples in different seasons which we omitted showing here.
When evaluating the RMSE for a day in January, April, July

Geosci. Model Dev., 16, 2181-2192, 2023

RMSE | Linear ‘ Neural network

u v ‘ u v
January 1.107 0938 | 0.787 0.708
April 0.96 0.863 | 0.777 0.677
July 1.095 1.031 0.84 0.77
October 1.289 1.155 | 0.796 0.744
SSIM 1 Linear ‘ Neural network

u v ‘ u v
January 0.864 0.824 | 0.892 0.849
April 0.860 0.808 | 0.882 0.837
July 0.856 0.809 | 0.881 0.835
October  0.862 0.820 | 0.890 0.845

and October for all levels (Table 2), we observe that the neu-
ral network interpolation is 19 % more accurate than the lin-
ear interpolation. Here, we are limited to the resolution of the
reference data. Thus, we can only demonstrate the interpola-
tion for two times. Coarser data do not have enough small
scales represented, and it is therefore not meaningful to train
the network on coarser data and upscale the data more times.

3.2 Trajectory accuracy
In the previous sections, we showed that our neural-network-

interpolated wind velocity fields are more similar to the origi-
nal 0.5° x 0.5° resolution data than their linearly interpolated
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Figure 3. Differences between the v = (u, v) fields on the 14 January 2000 at 10:00 UTC for level 10 (around 245 m) and the truth ERAS
data, for linear interpolation (a, ¢, ) and for the interpolation by the mode12 neural network (b, d, f). The data are interpolated from
degraded 1° x 1° resolution data. The top row (a, b) shows the error on the globe and the panels below show an enlarged section of the top

panels.

equivalents. However, this does not necessarily mean that
trajectories advanced using the neural-network-interpolated
fields are more accurate. Trajectories are not always equally
sensitive to wind interpolation errors, and it is therefore im-
portant to show that the individual trajectories that are ad-
vanced using neural-network-interpolated wind fields are in-
deed more similar to trajectories that are advanced using the
original “ground-truth” wind fields.

https://doi.org/10.5194/gmd-16-2181-2023

Figure 6 shows that trajectories that are advanced using
neural-network-interpolated wind fields are closer to trajec-
tories that are advanced using the original ground-truth wind
fields compared to trajectories using linearly interpolated
wind fields. Here, we show the results of the horizontal trans-
port deviation (Eq. 3) and standard deviations of particles ad-
vanced for 48 h, using FLEXPART, after being initially glob-
ally distributed. Both the average horizontal transport devia-
tion from the original ground-truth trajectories as well as its

Geosci. Model Dev., 16, 2181-2192, 2023
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Figure 4. Comparison of the error frequencies for linear and neural
network interpolation (mode12) for 14 January 2000 (over all 137

vertical levels and over 24 h). Here, we normalized the error and
split the error frequencies into 20 bins of different intensities.

standard deviation are smaller for the neural network than the
linear interpolation. The absolute deviations after 48 h are on
average ~ 53.5% (1° x 1° resolution) and ~ 29.4 % (2° x 2°
resolution) smaller for all seasons when using the neural net-
work. Moreover, the standard deviation of the neural network
is consistently smaller, no matter the season (on average
~36.1 % and ~ 17.9 % smaller for the 1° x 1° and 2° x 2°
resolution, respectively). The improvement in the neural net-
work over the linear interpolation is smaller with multiple-
time upscaling from 2° x 2° resolution than with one-time
upscaling from 1° x 1° resolution, since the latter has smaller
wind interpolation errors (see Fig. 2). The reduced standard
deviation we see in the neural-network-interpolated trajecto-
ries as compared to the linearly interpolated ones is likely
a result of the lower frequency of extreme deviations found
in the neural-network-interpolated wind fields as compared
to the linearly interpolated ones (see Fig. 4). Thus, trajec-
tories using the neural network interpolation are not only
more accurate on average than trajectories using linear in-
terpolation, but large trajectory errors are avoided more ef-
ficiently as well. This is important for avoiding misinterpre-
tation when trajectories are used to interpret source—receptor
relationships, e.g., for air pollutants or greenhouse gases.

We have also checked how well the quasi-conserved mete-
orological property of potential vorticity is conserved along
the trajectories by computing absolute and relative transport
conservation errors along trajectories in the stratosphere. We
excluded particles affected by convection or boundary layer
turbulence by selecting trajectories within the stratosphere
that never traveled through space where the relative humid-
ity exceeded 90 %. A full explanation of the method we used
can be found in Stohl and Seibert (1998). The absolute and
relative transport conservation errors in potential vorticity
showed insignificant differences between the different trajec-
tory data sets.

Note that we have not changed vertical and time interpola-
tion of the winds and that we have not changed the interpola-
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tion of the vertical wind. Furthermore, we have not made full
use of the neural network horizontal interpolation of the hor-
izontal winds, as interpolation below 0.5° x 0.5° resolution
was still done using linear interpolation. We therefore con-
sider substantial further error reductions possible, if neural
network interpolation both in space and time is fully imple-
mented directly in the trajectory model. This way neural net-
work interpolation could make semi-Lagrangian advection
schemes much more accurate.

4 Conclusions

In this paper we have considered the problem of increas-
ing the spatial resolution of meteorological fields using tech-
niques of machine learning, namely using methods originally
proposed for the problem of single-image super-resolution.
Higher-resolution meteorological fields are relevant for a va-
riety of meteorological and engineering applications, such
as particle dispersion modeling, semi-Lagrangian advection
schemes, down-scaling and weather nowcasting.

What sets the present work apart from a pure computer
vision problem is that meteorological fields are character-
ized by self-similarity over a variety of spatiotemporal scales.
This gives rise to the possibility of training a neural network
to learn to increase the resolution from a downsampled mete-
orological field to the original native resolution of that field,
and then to repeatedly apply the same model to further in-
crease the resolution of that field beyond the native resolu-
tion. We have shown in this paper that this is indeed possible.
Wind interpolation errors are at least 49 % and 19 % smaller
than errors using linear interpolation, with one-time upscal-
ing and with multiple-time upscaling, respectively. Here, we
note that the multiple-time upscaling has a lower improve-
ment than the one-time upscaling because we use differ-
ent neural networks based on the available resolution. This
means that the neural network trained on lower-resolution
data has less information and is less accurate than the neu-
ral network trained on the higher-resolution data. We have
also shown that corresponding absolute horizontal transport
deviations for trajectories calculated using these wind fields
are 52 % (from degraded 1° x 1° resolution data) and 24 %
(from degraded 2° x 2° resolution data) smaller than with
winds based on linear interpolation. This is a substantial re-
duction, given that we have not changed vertical and time
interpolation and that we have not at all changed the inter-
polation of the vertical wind. Furthermore, we have not even
made full use of the neural network interpolation, as interpo-
lation below 0.5° x 0.5° resolution was still done using linear
interpolation.

While in the present work we have exclusively focused on
the spatial interpolation improvement problem, similar tech-
niques as presented here are applicable to the temporal inter-
polation case as well. Here, the problem can be interpreted
as increasing the frame rate in a given video clip, with the
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Figure 5. RMSE of v = (u, v) field at level 10 when compared to the truth ERAS data. The date of the field is the 14 January 2000 at
10:00 UTC. Linear interpolation (a, ¢, e) and the interpolation by the neural network model4 (b, d, f). The data are interpolated from
degraded 2° x 2° resolution data. The top row (a, b) shows the error on the globe and the panels below show an enlarged section of the top

panels.

native resolution given by the temporal resolution as made
available by numerical weather prediction centers. We are
presently working on this problem as well, and the results
will be presented in future work. Subsequently, spatial and
temporal resolution improvements can be combined to pro-
vide a seamless way to increase the overall resolution of me-
teorological fields for a variety of spatiotemporal interpola-
tion problems.

https://doi.org/10.5194/gmd-16-2181-2023

Lastly, we should like to stress that meteorological fields
are quite different from conventional photographic images
as typically considered for super-resolution tasks. Namely,
meteorological fields follow largely a well-defined system
of partial differential equations, which we have not consid-
ered when increasing the spatial resolution of the given data
sets. This means that potentially important meteorological
constraints such as energy, mass and potential vorticity con-
servation may be violated by obtained upscaled data sets, as
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Figure 6. Absolute horizontal transport deviations (Eq. 3) and standard deviations of 10 million particles advanced with FLEXPART, using
two different degraded resolution data (as described in Sect. 3.1) and two interpolation methods, as compared to the same particles advanced
using the original full resolution data. The top panels show the results for the degraded 1° x 1° resolution data (neural network interpolation
using mode12), and the bottom panels those of the degraded 2° x 2° resolution data (neural network interpolation using mode14). Orange
lines show the AHTD (left panels) and standard deviation (right panels) of particles advanced using the neural network, and purple lines
show these for the linearly interpolated data. Results for different seasons are shown with different line styles.

is also the case for other interpolation methods. Incorporat-
ing these meteorological constraints would be critical if these
fields were used in conjunction with numerical solvers, and
correspondingly the proposed methodology would have to
be modified to account for these constraints. This will con-
stitute an important area of future research, with a potential
avenue being provided through so-called physics-informed
neural networks. See, e.g., the studies by Raissi et al. (2019)
and Bihlo and Popovych (2022) for an application of this
methodology to solving the shallow-water equations on the
sphere. Physics-informed neural networks allow one to take
into account both data and the differential equations under-
lying these data, which would enable one to train a neural-
network-based interpolation method that is also consistent
with the governing equations of hydro-thermodynamics. In-
cluding consistency with these differential equations will be
another potential avenue of research in the near future.

Code and data availability. The code to train the neural
network and data to reproduce the plots are available at
https://doi.org/10.5281/zenodo.7350568 (Brecht et al., 2022).
ERAS re-analysis data (Hersbach et al., 2020) were downloaded
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from the Copernicus Climate Change Service (C3S) Climate Data
Store. The results contain modified Copernicus Climate Change
Service information. We used flex_extract to download the ERAS
re-analysis data, see Tipka et al. (2020). The documentation can be
found here https://www.flexpart.eu/flex_extract/ecmwf_data.html
(Philipp et al., 2020).
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