Articles | Volume 16, issue 8
https://doi.org/10.5194/gmd-16-2181-2023
https://doi.org/10.5194/gmd-16-2181-2023
Development and technical paper
 | 
21 Apr 2023
Development and technical paper |  | 21 Apr 2023

Improving trajectory calculations by FLEXPART 10.4+ using single-image super-resolution

Rüdiger Brecht, Lucie Bakels, Alex Bihlo, and Andreas Stohl

Download

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • CEC1: 'Comment on egusphere-2022-441', Juan Antonio Añel, 23 Aug 2022
    • AC1: 'Reply on CEC1', Rüdiger Brecht, 01 Sep 2022
    • AC2: 'Reply on CEC1', Rüdiger Brecht, 13 Sep 2022
      • CEC2: 'Reply on AC2', Juan Antonio Añel, 13 Sep 2022
        • AC3: 'Reply on CEC2', Rüdiger Brecht, 11 Oct 2022
          • CEC3: 'Reply on AC3', Juan Antonio Añel, 11 Oct 2022
            • CC1: 'Reply on CEC3', Andreas Stohl, 11 Oct 2022
              • CEC4: 'Reply on CC1', Juan Antonio Añel, 25 Oct 2022
                • AC4: 'Reply on CEC4', Rüdiger Brecht, 24 Nov 2022
                • AC5: 'Reply on CEC4', Rüdiger Brecht, 24 Nov 2022
                • AC6: 'Reply on CEC4', Rüdiger Brecht, 24 Nov 2022
  • RC1: 'Comment on egusphere-2022-441', Anonymous Referee #1, 12 Sep 2022
    • AC7: 'Reply on RC1', Rüdiger Brecht, 22 Dec 2022
  • RC2: 'Comment on egusphere-2022-441', Anonymous Referee #2, 14 Nov 2022
    • AC8: 'Reply on RC2', Rüdiger Brecht, 22 Dec 2022

Peer review completion

AR: Author's response | RR: Referee report | ED: Editor decision | EF: Editorial file upload
AR by Rüdiger Brecht on behalf of the Authors (22 Dec 2022)  Author's response   Author's tracked changes   Manuscript 
ED: Referee Nomination & Report Request started (04 Jan 2023) by Christopher Horvat
RR by Anonymous Referee #1 (03 Feb 2023)
ED: Reconsider after major revisions (08 Feb 2023) by Christopher Horvat
AR by Rüdiger Brecht on behalf of the Authors (01 Mar 2023)  Author's response   Author's tracked changes   Manuscript 
ED: Publish as is (13 Mar 2023) by Christopher Horvat
AR by Rüdiger Brecht on behalf of the Authors (14 Mar 2023)
Download
Short summary
We use neural-network-based single-image super-resolution to improve the upscaling of meteorological wind fields to be used for particle dispersion models. This deep-learning-based methodology improves the standard linear interpolation typically used in particle dispersion models. The improvement of wind fields leads to substantial improvement in the computed trajectories of the particles.