Articles | Volume 16, issue 4
https://doi.org/10.5194/gmd-16-1231-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/gmd-16-1231-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Simulating marine neodymium isotope distributions using Nd v1.0 coupled to the ocean component of the FAMOUS–MOSES1 climate model: sensitivities to reversible scavenging efficiency and benthic source distributions
School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, UK
Ruza F. Ivanovic
School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, UK
Lauren J. Gregoire
School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, UK
Julia Tindall
School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, UK
Tina van de Flierdt
Department of Earth Science and Engineering, Imperial College London, London, SW7 2AZ, UK
Yves Plancherel
Department of Earth Science and Engineering, Imperial College London, London, SW7 2AZ, UK
Frerk Pöppelmeier
Climate and Environmental Physics, Physics Institute, University of Bern, 3012 Bern,
Switzerland
Kazuyo Tachikawa
Aix Marseille Univ., CNRS, IRD, INRAE, Coll France, CEREGE,
Aix-en-Provence, 13545, France
Paul J. Valdes
School of Geographical Sciences, University of Bristol, Bristol, BS8 1RL, UK
Related authors
Suzanne Robinson, Ruza Ivanovic, Lauren Gregoire, Lachlan Astfalck, Tina van de Flierdt, Yves Plancherel, Frerk Pöppelmeier, and Kazuyo Tachikawa
EGUsphere, https://doi.org/10.5194/egusphere-2022-937, https://doi.org/10.5194/egusphere-2022-937, 2022
Preprint archived
Short summary
Short summary
The neodymium (Nd) isotope (εNd) scheme in the ocean model of FAMOUS is used to explore a benthic Nd flux to seawater. Our results demonstrate that sluggish modern Pacific waters are sensitive to benthic flux alterations, whereas the well-ventilated North Atlantic displays a much weaker response. In closing, there are distinct regional differences in how seawater acquires its εNd signal, in part relating to the complex interactions of Nd addition and water advection.
Laura Endres, Carlos Pérez-Mejías, Ruza Ivanovic, Lauren Gregoire, Anna L. C. Hughes, Hai Cheng, and Heather Stoll
EGUsphere, https://doi.org/10.5194/egusphere-2025-3911, https://doi.org/10.5194/egusphere-2025-3911, 2025
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
Short summary
Stable isotope data of a precisely dated stalagmite from northwestern Iberia indicate gradual North Atlantic meltwater input during the last glacial maximum, followed by abrupt surges early in the last deglaciation. The first abrupt surge was followed by cooling about 850 years later – unlike later events – which reveals that the Atlantic circulation’s sensitivity to meltwater is variable and related to the evolving background climate boundary conditions.
Takashi Obase, Laurie Menviel, Ayako Abe-Ouchi, Tristan Vadsaria, Ruza Ivanovic, Brooke Snoll, Sam Sherriff-Tadano, Paul J. Valdes, Lauren Gregoire, Marie-Luise Kapsch, Uwe Mikolajewicz, Nathaelle Bouttes, Didier Roche, Fanny Lhardy, Chengfei He, Bette Otto-Bliesner, Zhengyu Liu, and Wing-Le Chan
Clim. Past, 21, 1443–1463, https://doi.org/10.5194/cp-21-1443-2025, https://doi.org/10.5194/cp-21-1443-2025, 2025
Short summary
Short summary
This study analyses transient simulations of the last deglaciation performed by six climate models to understand the processes driving high-southern-latitude temperature changes. We find that atmospheric CO2 and AMOC (Atlantic Meridional Overturning Circulation) changes are the primary drivers of the warming and cooling during the middle stage of the deglaciation. The analysis highlights the model's sensitivity of CO2 and AMOC to meltwater and the meltwater history of temperature changes at high southern latitudes.
Arianna Olivelli, Rossella Arcucci, Mark Rehkämper, and Tina van de Flierdt
Earth Syst. Sci. Data, 17, 3679–3699, https://doi.org/10.5194/essd-17-3679-2025, https://doi.org/10.5194/essd-17-3679-2025, 2025
Short summary
Short summary
In this study, we use machine learning models to produce the first global maps of Pb concentrations and isotope compositions in the ocean. In line with observations, we find that (i) the surface Indian Ocean has the highest levels of pollution, (ii) pollution from previous decades is sinking in the North Atlantic and Pacific oceans, and (iii) waters carrying Pb pollution are spreading from the Southern Ocean throughout the Southern Hemisphere at intermediate depths.
Loïc Sablon, Pierre Maffre, Yves Goddéris, Paul J. Valdes, Justin Gérard, Jarno J. C. Huygh, Anne-Christine Da Silva, and Michel Crucifix
EGUsphere, https://doi.org/10.5194/egusphere-2025-1696, https://doi.org/10.5194/egusphere-2025-1696, 2025
Short summary
Short summary
We propose an innovative climate modelling framework that combines statistical methods with climate simulations to study Earth's environmental systems. The model captures how orbital changes and carbon dioxide levels influence climate atmospheric dynamics, offering a detailed and efficient way to explore long-term processes. This tool provides new opportunities to investigate Earth's climate history and its implications for future changes.
James W. Marschalek, Edward Gasson, Tina van de Flierdt, Claus-Dieter Hillenbrand, Martin J. Siegert, and Liam Holder
Geosci. Model Dev., 18, 1673–1708, https://doi.org/10.5194/gmd-18-1673-2025, https://doi.org/10.5194/gmd-18-1673-2025, 2025
Short summary
Short summary
Ice sheet models can help predict how Antarctica's ice sheets respond to environmental change, and such models benefit from comparison to geological data. Here, we use an ice sheet model output and other data to predict the erosion of debris and trace its transport to where it is deposited on the ocean floor. This allows the results of ice sheet modelling to be directly and quantitively compared to real-world data, helping to reduce uncertainty regarding Antarctic sea level contribution.
Elisa Ziegler, Nils Weitzel, Jean-Philippe Baudouin, Marie-Luise Kapsch, Uwe Mikolajewicz, Lauren Gregoire, Ruza Ivanovic, Paul J. Valdes, Christian Wirths, and Kira Rehfeld
Clim. Past, 21, 627–659, https://doi.org/10.5194/cp-21-627-2025, https://doi.org/10.5194/cp-21-627-2025, 2025
Short summary
Short summary
During the Last Deglaciation, global surface temperature rose by about 4–7 °C over several millennia. We show that changes in year-to-year up to century-to-century fluctuations of temperature and precipitation during the Deglaciation were mostly larger than during either the preceding or succeeding more stable periods in 15 climate model simulations. The analysis demonstrates how ice sheets, meltwater, and volcanism influence simulated variability to inform future simulation protocols.
Markus Adloff, Aurich Jeltsch-Thömmes, Frerk Pöppelmeier, Thomas F. Stocker, and Fortunat Joos
Clim. Past, 21, 571–592, https://doi.org/10.5194/cp-21-571-2025, https://doi.org/10.5194/cp-21-571-2025, 2025
Short summary
Short summary
We simulated how different processes affected the carbon cycle over the last eight glacial cycles. We found that the effects of interactive marine sediments enlarge the carbon fluxes that result from these processes, especially in the ocean, and alter various proxy signals. We provide an assessment of the directions of regional and global proxy changes that might be expected in response to different glacial–interglacial Earth system changes in the presence of interactive marine sediments.
Babette A.A. Hoogakker, Catherine Davis, Yi Wang, Stephanie Kusch, Katrina Nilsson-Kerr, Dalton S. Hardisty, Allison Jacobel, Dharma Reyes Macaya, Nicolaas Glock, Sha Ni, Julio Sepúlveda, Abby Ren, Alexandra Auderset, Anya V. Hess, Katrin J. Meissner, Jorge Cardich, Robert Anderson, Christine Barras, Chandranath Basak, Harold J. Bradbury, Inda Brinkmann, Alexis Castillo, Madelyn Cook, Kassandra Costa, Constance Choquel, Paula Diz, Jonas Donnenfield, Felix J. Elling, Zeynep Erdem, Helena L. Filipsson, Sebastián Garrido, Julia Gottschalk, Anjaly Govindankutty Menon, Jeroen Groeneveld, Christian Hallmann, Ingrid Hendy, Rick Hennekam, Wanyi Lu, Jean Lynch-Stieglitz, Lélia Matos, Alfredo Martínez-García, Giulia Molina, Práxedes Muñoz, Simone Moretti, Jennifer Morford, Sophie Nuber, Svetlana Radionovskaya, Morgan Reed Raven, Christopher J. Somes, Anja S. Studer, Kazuyo Tachikawa, Raúl Tapia, Martin Tetard, Tyler Vollmer, Xingchen Wang, Shuzhuang Wu, Yan Zhang, Xin-Yuan Zheng, and Yuxin Zhou
Biogeosciences, 22, 863–957, https://doi.org/10.5194/bg-22-863-2025, https://doi.org/10.5194/bg-22-863-2025, 2025
Short summary
Short summary
Paleo-oxygen proxies can extend current records, constrain pre-anthropogenic baselines, provide datasets necessary to test climate models under different boundary conditions, and ultimately understand how ocean oxygenation responds on longer timescales. Here we summarize current proxies used for the reconstruction of Cenozoic seawater oxygen levels. This includes an overview of the proxy's history, how it works, resources required, limitations, and future recommendations.
Violet L. Patterson, Lauren J. Gregoire, Ruza F. Ivanovic, Niall Gandy, Stephen Cornford, Jonathan Owen, Sam Sherriff-Tadano, and Robin S. Smith
EGUsphere, https://doi.org/10.5194/egusphere-2024-3896, https://doi.org/10.5194/egusphere-2024-3896, 2025
Short summary
Short summary
Simulations of the last two glacial periods are ran using a computer model in which the atmosphere and ice sheets interact. The model is able to produce ice sheet volumes, extents and dynamics in good agreement with data. Sensitivity analysis is undertaken and shows the Northern Hemisphere ice sheet size is particularly sensitive to the albedo of the ice in the model but the different ice sheets display different sensitivities to other processes.
Alison J. McLaren, Louise C. Sime, Simon Wilson, Jeff Ridley, Qinggang Gao, Merve Gorguner, Giorgia Line, Martin Werner, and Paul Valdes
EGUsphere, https://doi.org/10.5194/egusphere-2024-3824, https://doi.org/10.5194/egusphere-2024-3824, 2025
Short summary
Short summary
We describe a new development in a state-of-the-art computer atmosphere model, which follows the movement of the model’s water. This provides an efficient way to track all the model’s rain and snow back to the average location of the evaporative source as shown in a present-day simulation. The new scheme can be used in simulations of the future to predict how the sources of regional rain or snowfall may change due to human actions, providing useful information for water management purposes.
James F. O'Neill, Tamsin L. Edwards, Daniel F. Martin, Courtney Shafer, Stephen L. Cornford, Hélène L. Seroussi, Sophie Nowicki, Mira Adhikari, and Lauren J. Gregoire
The Cryosphere, 19, 541–563, https://doi.org/10.5194/tc-19-541-2025, https://doi.org/10.5194/tc-19-541-2025, 2025
Short summary
Short summary
We use an ice sheet model to simulate the Antarctic contribution to sea level over the 21st century under a range of future climates and varying how sensitive the ice sheet is to different processes. We find that ocean temperatures increase and more snow falls on the ice sheet under stronger warming scenarios. When the ice sheet is sensitive to ocean warming, ocean melt-driven loss exceeds snowfall-driven gains, meaning that the sea level contribution is greater with more climate warming.
Christopher L. Hancock, Michael P. Erb, Nicholas P. McKay, Sylvia G. Dee, and Ruza F. Ivanovic
Clim. Past, 20, 2663–2684, https://doi.org/10.5194/cp-20-2663-2024, https://doi.org/10.5194/cp-20-2663-2024, 2024
Short summary
Short summary
We reconstruct global hydroclimate anomalies for the past 21 000 years using a data assimilation methodology blending observations recorded in lake sediments with the climate dynamics simulated by climate models. The reconstruction resolves data–model disagreement in east Africa and North America, and we find that changing global temperatures and associated circulation patterns, as well as orbital forcing, are the dominant controls on global precipitation over this interval.
Yixuan Xie, Daniel J. Lunt, and Paul J. Valdes
Clim. Past, 20, 2561–2585, https://doi.org/10.5194/cp-20-2561-2024, https://doi.org/10.5194/cp-20-2561-2024, 2024
Short summary
Short summary
Desert dust plays a crucial role in the climate system; while it is relatively well studied for the present day, we still lack knowledge on how it was in the past and on its underlying mechanism in the multi-million-year timescale of Earth’s history. For the first time, we simulate dust emissions using the newly developed DUSTY1.0 model over the past 540 million years with a temporal resolution of ~5 million years. We find that palaeogeography is the primary control of these variations.
Violet L. Patterson, Lauren J. Gregoire, Ruza F. Ivanovic, Niall Gandy, Jonathan Owen, Robin S. Smith, Oliver G. Pollard, Lachlan C. Astfalck, and Paul J. Valdes
Clim. Past, 20, 2191–2218, https://doi.org/10.5194/cp-20-2191-2024, https://doi.org/10.5194/cp-20-2191-2024, 2024
Short summary
Short summary
Simulations of the last two glacial periods are run using a computer model in which the atmosphere and ice sheets interact. The results show that the initial conditions used in the simulations are the primary reason for the difference in simulated North American ice sheet volume between each period. Thus, the climate leading up to the glacial maxima and other factors, such as vegetation, are important contributors to the differences in the ice sheets at the Last and Penultimate glacial maxima.
Mohamed Ayache, Jean-Claude Dutay, Anne Mouchet, Kazuyo Tachikawa, Camille Risi, and Gilles Ramstein
Geosci. Model Dev., 17, 6627–6655, https://doi.org/10.5194/gmd-17-6627-2024, https://doi.org/10.5194/gmd-17-6627-2024, 2024
Short summary
Short summary
Water isotopes (δ18O, δD) are one of the most widely used proxies in ocean climate research. Previous studies using water isotope observations and modelling have highlighted the importance of understanding spatial and temporal isotopic variability for a quantitative interpretation of these tracers. Here we present the first results of a high-resolution regional dynamical model (at 1/12° horizontal resolution) developed for the Mediterranean Sea, one of the hotspots of ongoing climate change.
Sam Sherriff-Tadano, Ruza Ivanovic, Lauren Gregoire, Charlotte Lang, Niall Gandy, Jonathan Gregory, Tamsin L. Edwards, Oliver Pollard, and Robin S. Smith
Clim. Past, 20, 1489–1512, https://doi.org/10.5194/cp-20-1489-2024, https://doi.org/10.5194/cp-20-1489-2024, 2024
Short summary
Short summary
Ensemble simulations of the climate and ice sheets of the Last Glacial Maximum (LGM) are performed with a new coupled climate–ice sheet model. Results show a strong sensitivity of the North American ice sheet to the albedo scheme, while the Greenland ice sheet appeared more sensitive to basal sliding schemes. Our result implies a potential connection between the North American ice sheet at the LGM and the future Greenland ice sheet through the albedo scheme.
Markus Adloff, Frerk Pöppelmeier, Aurich Jeltsch-Thömmes, Thomas F. Stocker, and Fortunat Joos
Clim. Past, 20, 1233–1250, https://doi.org/10.5194/cp-20-1233-2024, https://doi.org/10.5194/cp-20-1233-2024, 2024
Short summary
Short summary
The Atlantic Meridional Overturning Circulation (AMOC) is an ocean current that transports heat into the North Atlantic. Over the ice age cycles, AMOC strength and its spatial pattern varied. We tested the role of heat forcing for these AMOC changes by simulating the temperature changes of the last eight glacial cycles. In our model, AMOC shifts between four distinct circulation modes caused by heat and salt redistributions that reproduce reconstructed long-term North Atlantic SST changes.
Lauren E. Burton, Alan M. Haywood, Julia C. Tindall, Aisling M. Dolan, Daniel J. Hill, Erin L. McClymont, Sze Ling Ho, and Heather L. Ford
Clim. Past, 20, 1177–1194, https://doi.org/10.5194/cp-20-1177-2024, https://doi.org/10.5194/cp-20-1177-2024, 2024
Short summary
Short summary
The Pliocene (~ 3 million years ago) is of interest because its warm climate is similar to projections of the future. We explore the role of atmospheric carbon dioxide in forcing sea surface temperature during the Pliocene by combining climate model outputs with palaeoclimate proxy data. We investigate whether this role changes seasonally and also use our data to suggest a new estimate of Pliocene climate sensitivity. More data are needed to further explore the results presented.
Julia E. Weiffenbach, Henk A. Dijkstra, Anna S. von der Heydt, Ayako Abe-Ouchi, Wing-Le Chan, Deepak Chandan, Ran Feng, Alan M. Haywood, Stephen J. Hunter, Xiangyu Li, Bette L. Otto-Bliesner, W. Richard Peltier, Christian Stepanek, Ning Tan, Julia C. Tindall, and Zhongshi Zhang
Clim. Past, 20, 1067–1086, https://doi.org/10.5194/cp-20-1067-2024, https://doi.org/10.5194/cp-20-1067-2024, 2024
Short summary
Short summary
Elevated atmospheric CO2 concentrations and a smaller Antarctic Ice Sheet during the mid-Pliocene (~ 3 million years ago) cause the Southern Ocean surface to become fresher and warmer, which affects the global ocean circulation. The CO2 concentration and the smaller Antarctic Ice Sheet both have a similar and approximately equal impact on the Southern Ocean. The conditions of the Southern Ocean in the mid-Pliocene could therefore be analogous to those in a future climate with smaller ice sheets.
Brooke Snoll, Ruza Ivanovic, Lauren Gregoire, Sam Sherriff-Tadano, Laurie Menviel, Takashi Obase, Ayako Abe-Ouchi, Nathaelle Bouttes, Chengfei He, Feng He, Marie Kapsch, Uwe Mikolajewicz, Juan Muglia, and Paul Valdes
Clim. Past, 20, 789–815, https://doi.org/10.5194/cp-20-789-2024, https://doi.org/10.5194/cp-20-789-2024, 2024
Short summary
Short summary
Geological records show rapid climate change throughout the recent deglaciation. The drivers of these changes are still misunderstood but are often attributed to shifts in the Atlantic Ocean circulation from meltwater input. A cumulative effort to understand these processes prompted numerous simulations of this period. We use these to explain the chain of events and our collective ability to simulate them. The results demonstrate the importance of the meltwater amount used in the simulation.
Shuaib Rasheed, Simon C. Warder, Yves Plancherel, and Matthew D. Piggott
Nat. Hazards Earth Syst. Sci., 24, 737–755, https://doi.org/10.5194/nhess-24-737-2024, https://doi.org/10.5194/nhess-24-737-2024, 2024
Short summary
Short summary
Here we use a high-resolution bathymetry dataset of the Maldives archipelago, as well as corresponding high numerical model resolution, to carry out a scenario-based tsunami hazard assessment for the entire Maldives archipelago to investigate the potential impact of plausible far-field tsunamis across the Indian Ocean at the island scale. The results indicate that several factors contribute to mitigating and amplifying tsunami waves at the island scale.
Oliver G. Pollard, Natasha L. M. Barlow, Lauren J. Gregoire, Natalya Gomez, Víctor Cartelle, Jeremy C. Ely, and Lachlan C. Astfalck
The Cryosphere, 17, 4751–4777, https://doi.org/10.5194/tc-17-4751-2023, https://doi.org/10.5194/tc-17-4751-2023, 2023
Short summary
Short summary
We use advanced statistical techniques and a simple ice-sheet model to produce an ensemble of plausible 3D shapes of the ice sheet that once stretched across northern Europe during the previous glacial maximum (140,000 years ago). This new reconstruction, equivalent in volume to 48 ± 8 m of global mean sea-level rise, will improve the interpretation of high sea levels recorded from the Last Interglacial period (120 000 years ago) that provide a useful perspective on the future.
Xin Ren, Daniel J. Lunt, Erica Hendy, Anna von der Heydt, Ayako Abe-Ouchi, Bette Otto-Bliesner, Charles J. R. Williams, Christian Stepanek, Chuncheng Guo, Deepak Chandan, Gerrit Lohmann, Julia C. Tindall, Linda E. Sohl, Mark A. Chandler, Masa Kageyama, Michiel L. J. Baatsen, Ning Tan, Qiong Zhang, Ran Feng, Stephen Hunter, Wing-Le Chan, W. Richard Peltier, Xiangyu Li, Youichi Kamae, Zhongshi Zhang, and Alan M. Haywood
Clim. Past, 19, 2053–2077, https://doi.org/10.5194/cp-19-2053-2023, https://doi.org/10.5194/cp-19-2053-2023, 2023
Short summary
Short summary
We investigate the Maritime Continent climate in the mid-Piacenzian warm period and find it is warmer and wetter and the sea surface salinity is lower compared with preindustrial period. Besides, the fresh and warm water transfer through the Maritime Continent was stronger. In order to avoid undue influence from closely related models in the multimodel results, we introduce a new metric, the multi-cluster mean, which could reveal spatial signals that are not captured by the multimodel mean.
Xiaofang Huang, Shiling Yang, Alan Haywood, Julia Tindall, Dabang Jiang, Yongda Wang, Minmin Sun, and Shihao Zhang
Clim. Past, 19, 731–745, https://doi.org/10.5194/cp-19-731-2023, https://doi.org/10.5194/cp-19-731-2023, 2023
Short summary
Short summary
The sensitivity of climate to the height changes of the East Antarctic ice sheet (EAIS) during the mid-Pliocene has been assessed using the HadCM3 model. The results show that the height reduction of the EAIS leads to a warmer and wetter East Antarctica. However, unintuitively, both the surface air temperature and the sea surface temperature decrease over the rest of the globe. These findings could provide insights into future changes caused by warming-induced decay of the Antarctic ice sheet.
Lauren E. Burton, Alan M. Haywood, Julia C. Tindall, Aisling M. Dolan, Daniel J. Hill, Ayako Abe-Ouchi, Wing-Le Chan, Deepak Chandan, Ran Feng, Stephen J. Hunter, Xiangyu Li, W. Richard Peltier, Ning Tan, Christian Stepanek, and Zhongshi Zhang
Clim. Past, 19, 747–764, https://doi.org/10.5194/cp-19-747-2023, https://doi.org/10.5194/cp-19-747-2023, 2023
Short summary
Short summary
Warm climates of the Pliocene (~ 3 million years ago) are similar to projections of the near future. We find elevated concentrations of atmospheric carbon dioxide to be the most important forcing for driving changes in Pliocene surface air temperature, sea surface temperature, and precipitation. However, changes caused by the nature of Pliocene ice sheets and orography are also important, affecting the extent to which we can use the Pliocene as an analogue for our warmer future.
Caitlyn R. Witkowski, Vittoria Lauretano, Alex Farnsworth, Shufeng Li, Shi-Hu Li, Jan Peter Mayser, B. David A. Naafs, Robert A. Spicer, Tao Su, He Tang, Zhe-Kun Zhou, Paul J. Valdes, and Richard D. Pancost
EGUsphere, https://doi.org/10.5194/egusphere-2023-373, https://doi.org/10.5194/egusphere-2023-373, 2023
Preprint archived
Short summary
Short summary
Untangling the complex tectonic evolution in the Tibetan region can help us understand its impacts on climate, the Asian monsoon system, and the development of major biodiversity hotspots. We show that this “missing link” site between high elevation Tibet and low elevation coastal China had a dynamic environment but no temperature change, meaning its been at its current-day elevation for the past 34 million years.
James W. Marschalek, Edward Gasson, Tina van de Flierdt, Claus-Dieter Hillenbrand, Martin J. Siegert, and Liam Holder
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-8, https://doi.org/10.5194/gmd-2023-8, 2023
Revised manuscript not accepted
Short summary
Short summary
Ice sheet models can help predict how Antarctica’s ice sheets respond to environmental change; such models benefit from comparison to geological data. Here, we use ice sheet model results, plus other data, to predict the erosion of Antarctic debris and trace its transport to where it is deposited on the ocean floor. This allows the results of ice sheet modelling to be directly and quantitively compared to real-world data, helping to reduce uncertainty regarding Antarctic sea level contribution.
Mohamed Ayache, Jean-Claude Dutay, Kazuyo Tachikawa, Thomas Arsouze, and Catherine Jeandel
Biogeosciences, 20, 205–227, https://doi.org/10.5194/bg-20-205-2023, https://doi.org/10.5194/bg-20-205-2023, 2023
Short summary
Short summary
The neodymium (Nd) is one of the most useful tracers to fingerprint water mass provenance. However, the use of Nd is hampered by the lack of adequate quantification of the external sources. Here, we present the first simulation of dissolved Nd concentration and Nd isotopic composition in the Mediterranean Sea using a high-resolution model. We aim to better understand how the various external sources affect the Nd cycle and particularly assess how it is impacted by atmospheric inputs.
Julia E. Weiffenbach, Michiel L. J. Baatsen, Henk A. Dijkstra, Anna S. von der Heydt, Ayako Abe-Ouchi, Esther C. Brady, Wing-Le Chan, Deepak Chandan, Mark A. Chandler, Camille Contoux, Ran Feng, Chuncheng Guo, Zixuan Han, Alan M. Haywood, Qiang Li, Xiangyu Li, Gerrit Lohmann, Daniel J. Lunt, Kerim H. Nisancioglu, Bette L. Otto-Bliesner, W. Richard Peltier, Gilles Ramstein, Linda E. Sohl, Christian Stepanek, Ning Tan, Julia C. Tindall, Charles J. R. Williams, Qiong Zhang, and Zhongshi Zhang
Clim. Past, 19, 61–85, https://doi.org/10.5194/cp-19-61-2023, https://doi.org/10.5194/cp-19-61-2023, 2023
Short summary
Short summary
We study the behavior of the Atlantic Meridional Overturning Circulation (AMOC) in the mid-Pliocene. The mid-Pliocene was about 3 million years ago and had a similar CO2 concentration to today. We show that the stronger AMOC during this period relates to changes in geography and that this has a significant influence on ocean temperatures and heat transported northwards by the Atlantic Ocean. Understanding the behavior of the mid-Pliocene AMOC can help us to learn more about our future climate.
Michael P. Erb, Nicholas P. McKay, Nathan Steiger, Sylvia Dee, Chris Hancock, Ruza F. Ivanovic, Lauren J. Gregoire, and Paul Valdes
Clim. Past, 18, 2599–2629, https://doi.org/10.5194/cp-18-2599-2022, https://doi.org/10.5194/cp-18-2599-2022, 2022
Short summary
Short summary
To look at climate over the past 12 000 years, we reconstruct spatial temperature using natural climate archives and information from model simulations. Our results show mild global mean warmth around 6000 years ago, which differs somewhat from past reconstructions. Undiagnosed seasonal biases in the data could explain some of the observed temperature change, but this still would not explain the large difference between many reconstructions and climate models over this period.
Benjamin J. Stoker, Martin Margold, John C. Gosse, Alan J. Hidy, Alistair J. Monteath, Joseph M. Young, Niall Gandy, Lauren J. Gregoire, Sophie L. Norris, and Duane Froese
The Cryosphere, 16, 4865–4886, https://doi.org/10.5194/tc-16-4865-2022, https://doi.org/10.5194/tc-16-4865-2022, 2022
Short summary
Short summary
The Laurentide Ice Sheet was the largest ice sheet to grow and disappear in the Northern Hemisphere during the last glaciation. In northwestern Canada, it covered the Mackenzie Valley, blocking the migration of fauna and early humans between North America and Beringia and altering the drainage systems. We reconstruct the timing of ice sheet retreat in this region and the implications for the migration of early humans into North America, the drainage of glacial lakes, and past sea level rise.
Suzanne Robinson, Ruza Ivanovic, Lauren Gregoire, Lachlan Astfalck, Tina van de Flierdt, Yves Plancherel, Frerk Pöppelmeier, and Kazuyo Tachikawa
EGUsphere, https://doi.org/10.5194/egusphere-2022-937, https://doi.org/10.5194/egusphere-2022-937, 2022
Preprint archived
Short summary
Short summary
The neodymium (Nd) isotope (εNd) scheme in the ocean model of FAMOUS is used to explore a benthic Nd flux to seawater. Our results demonstrate that sluggish modern Pacific waters are sensitive to benthic flux alterations, whereas the well-ventilated North Atlantic displays a much weaker response. In closing, there are distinct regional differences in how seawater acquires its εNd signal, in part relating to the complex interactions of Nd addition and water advection.
Clara T. Bolton, Emmeline Gray, Wolfgang Kuhnt, Ann E. Holbourn, Julia Lübbers, Katharine Grant, Kazuyo Tachikawa, Gianluca Marino, Eelco J. Rohling, Anta-Clarisse Sarr, and Nils Andersen
Clim. Past, 18, 713–738, https://doi.org/10.5194/cp-18-713-2022, https://doi.org/10.5194/cp-18-713-2022, 2022
Short summary
Short summary
The timing of the initiation and evolution of the South Asian monsoon in the geological past is a subject of debate. Here, we present a new age model spanning the late Miocene (9 to 5 million years ago) and high-resolution records of past open-ocean biological productivity from the equatorial Indian Ocean that we interpret to reflect monsoon wind strength. Our data show no long-term intensification; however, strong orbital periodicities suggest insolation forcing of monsoon wind strength.
Molly O. Patterson, Richard H. Levy, Denise K. Kulhanek, Tina van de Flierdt, Huw Horgan, Gavin B. Dunbar, Timothy R. Naish, Jeanine Ash, Alex Pyne, Darcy Mandeno, Paul Winberry, David M. Harwood, Fabio Florindo, Francisco J. Jimenez-Espejo, Andreas Läufer, Kyu-Cheul Yoo, Osamu Seki, Paolo Stocchi, Johann P. Klages, Jae Il Lee, Florence Colleoni, Yusuke Suganuma, Edward Gasson, Christian Ohneiser, José-Abel Flores, David Try, Rachel Kirkman, Daleen Koch, and the SWAIS 2C Science Team
Sci. Dril., 30, 101–112, https://doi.org/10.5194/sd-30-101-2022, https://doi.org/10.5194/sd-30-101-2022, 2022
Short summary
Short summary
How much of the West Antarctic Ice Sheet will melt and how quickly it will happen when average global temperatures exceed 2 °C is currently unknown. Given the far-reaching and international consequences of Antarctica’s future contribution to global sea level rise, the SWAIS 2C Project was developed in order to better forecast the size and timing of future changes.
Zixuan Han, Qiong Zhang, Qiang Li, Ran Feng, Alan M. Haywood, Julia C. Tindall, Stephen J. Hunter, Bette L. Otto-Bliesner, Esther C. Brady, Nan Rosenbloom, Zhongshi Zhang, Xiangyu Li, Chuncheng Guo, Kerim H. Nisancioglu, Christian Stepanek, Gerrit Lohmann, Linda E. Sohl, Mark A. Chandler, Ning Tan, Gilles Ramstein, Michiel L. J. Baatsen, Anna S. von der Heydt, Deepak Chandan, W. Richard Peltier, Charles J. R. Williams, Daniel J. Lunt, Jianbo Cheng, Qin Wen, and Natalie J. Burls
Clim. Past, 17, 2537–2558, https://doi.org/10.5194/cp-17-2537-2021, https://doi.org/10.5194/cp-17-2537-2021, 2021
Short summary
Short summary
Understanding the potential processes responsible for large-scale hydrological cycle changes in a warmer climate is of great importance. Our study implies that an imbalance in interhemispheric atmospheric energy during the mid-Pliocene could have led to changes in the dynamic effect, offsetting the thermodynamic effect and, hence, altering mid-Pliocene hydroclimate cycling. Moreover, a robust westward shift in the Pacific Walker circulation can moisten the northern Indian Ocean.
Arthur M. Oldeman, Michiel L. J. Baatsen, Anna S. von der Heydt, Henk A. Dijkstra, Julia C. Tindall, Ayako Abe-Ouchi, Alice R. Booth, Esther C. Brady, Wing-Le Chan, Deepak Chandan, Mark A. Chandler, Camille Contoux, Ran Feng, Chuncheng Guo, Alan M. Haywood, Stephen J. Hunter, Youichi Kamae, Qiang Li, Xiangyu Li, Gerrit Lohmann, Daniel J. Lunt, Kerim H. Nisancioglu, Bette L. Otto-Bliesner, W. Richard Peltier, Gabriel M. Pontes, Gilles Ramstein, Linda E. Sohl, Christian Stepanek, Ning Tan, Qiong Zhang, Zhongshi Zhang, Ilana Wainer, and Charles J. R. Williams
Clim. Past, 17, 2427–2450, https://doi.org/10.5194/cp-17-2427-2021, https://doi.org/10.5194/cp-17-2427-2021, 2021
Short summary
Short summary
In this work, we have studied the behaviour of El Niño events in the mid-Pliocene, a period of around 3 million years ago, using a collection of 17 climate models. It is an interesting period to study, as it saw similar atmospheric carbon dioxide levels to the present day. We find that the El Niño events were less strong in the mid-Pliocene simulations, when compared to pre-industrial climate. Our results could help to interpret El Niño behaviour in future climate projections.
Charles J. R. Williams, Alistair A. Sellar, Xin Ren, Alan M. Haywood, Peter Hopcroft, Stephen J. Hunter, William H. G. Roberts, Robin S. Smith, Emma J. Stone, Julia C. Tindall, and Daniel J. Lunt
Clim. Past, 17, 2139–2163, https://doi.org/10.5194/cp-17-2139-2021, https://doi.org/10.5194/cp-17-2139-2021, 2021
Short summary
Short summary
Computer simulations of the geological past are an important tool to improve our understanding of climate change. We present results from a simulation of the mid-Pliocene (approximately 3 million years ago) using the latest version of the UK’s climate model. The simulation reproduces temperatures as expected and shows some improvement relative to previous versions of the same model. The simulation is, however, arguably too warm when compared to other models and available observations.
Frerk Pöppelmeier, David J. Janssen, Samuel L. Jaccard, and Thomas F. Stocker
Biogeosciences, 18, 5447–5463, https://doi.org/10.5194/bg-18-5447-2021, https://doi.org/10.5194/bg-18-5447-2021, 2021
Short summary
Short summary
Chromium (Cr) is a redox-sensitive element that holds promise as a tracer of ocean oxygenation and biological activity. We here implemented the oxidation states Cr(III) and Cr(VI) in the Bern3D model to investigate the processes that shape the global Cr distribution. We find a Cr ocean residence time of 5–8 kyr and that the benthic source dominates the tracer budget. Further, regional model–data mismatches suggest strong Cr removal in oxygen minimum zones and a spatially variable benthic source.
Ellen Berntell, Qiong Zhang, Qiang Li, Alan M. Haywood, Julia C. Tindall, Stephen J. Hunter, Zhongshi Zhang, Xiangyu Li, Chuncheng Guo, Kerim H. Nisancioglu, Christian Stepanek, Gerrit Lohmann, Linda E. Sohl, Mark A. Chandler, Ning Tan, Camille Contoux, Gilles Ramstein, Michiel L. J. Baatsen, Anna S. von der Heydt, Deepak Chandan, William Richard Peltier, Ayako Abe-Ouchi, Wing-Le Chan, Youichi Kamae, Charles J. R. Williams, Daniel J. Lunt, Ran Feng, Bette L. Otto-Bliesner, and Esther C. Brady
Clim. Past, 17, 1777–1794, https://doi.org/10.5194/cp-17-1777-2021, https://doi.org/10.5194/cp-17-1777-2021, 2021
Short summary
Short summary
The mid-Pliocene Warm Period (~ 3.2 Ma) is often considered an analogue for near-future climate projections, and model results from the PlioMIP2 ensemble show an increase of rainfall over West Africa and the Sahara region compared to pre-industrial conditions. Though previous studies of future projections show a west–east drying–wetting contrast over the Sahel, these results indicate a uniform rainfall increase over the Sahel in warm climates characterized by increased greenhouse gas forcing.
Paul J. Valdes, Christopher R. Scotese, and Daniel J. Lunt
Clim. Past, 17, 1483–1506, https://doi.org/10.5194/cp-17-1483-2021, https://doi.org/10.5194/cp-17-1483-2021, 2021
Short summary
Short summary
Deep ocean temperatures are widely used as a proxy for global mean surface temperature in the past, but the underlying assumptions have not been tested. We use two unique sets of 109 climate model simulations for the last 545 million years to show that the relationship is valid for approximately the last 100 million years but breaks down for older time periods when the continents (and hence ocean circulation) are in very different positions.
Daniel J. Lunt, Deepak Chandan, Alan M. Haywood, George M. Lunt, Jonathan C. Rougier, Ulrich Salzmann, Gavin A. Schmidt, and Paul J. Valdes
Geosci. Model Dev., 14, 4307–4317, https://doi.org/10.5194/gmd-14-4307-2021, https://doi.org/10.5194/gmd-14-4307-2021, 2021
Short summary
Short summary
Often in science we carry out experiments with computers in which several factors are explored, for example, in the field of climate science, how the factors of greenhouse gases, ice, and vegetation affect temperature. We can explore the relative importance of these factors by
swapping in and outdifferent values of these factors, and can also carry out experiments with many different combinations of these factors. This paper discusses how best to analyse the results from such experiments.
Masa Kageyama, Sandy P. Harrison, Marie-L. Kapsch, Marcus Lofverstrom, Juan M. Lora, Uwe Mikolajewicz, Sam Sherriff-Tadano, Tristan Vadsaria, Ayako Abe-Ouchi, Nathaelle Bouttes, Deepak Chandan, Lauren J. Gregoire, Ruza F. Ivanovic, Kenji Izumi, Allegra N. LeGrande, Fanny Lhardy, Gerrit Lohmann, Polina A. Morozova, Rumi Ohgaito, André Paul, W. Richard Peltier, Christopher J. Poulsen, Aurélien Quiquet, Didier M. Roche, Xiaoxu Shi, Jessica E. Tierney, Paul J. Valdes, Evgeny Volodin, and Jiang Zhu
Clim. Past, 17, 1065–1089, https://doi.org/10.5194/cp-17-1065-2021, https://doi.org/10.5194/cp-17-1065-2021, 2021
Short summary
Short summary
The Last Glacial Maximum (LGM; ~21 000 years ago) is a major focus for evaluating how well climate models simulate climate changes as large as those expected in the future. Here, we compare the latest climate model (CMIP6-PMIP4) to the previous one (CMIP5-PMIP3) and to reconstructions. Large-scale climate features (e.g. land–sea contrast, polar amplification) are well captured by all models, while regional changes (e.g. winter extratropical cooling, precipitations) are still poorly represented.
Frerk Pöppelmeier, Jeemijn Scheen, Aurich Jeltsch-Thömmes, and Thomas F. Stocker
Clim. Past, 17, 615–632, https://doi.org/10.5194/cp-17-615-2021, https://doi.org/10.5194/cp-17-615-2021, 2021
Short summary
Short summary
The stability of the Atlantic Meridional Overturning Circulation (AMOC) critically depends on its mean state. We simulate the response of the AMOC to North Atlantic freshwater perturbations under different glacial boundary conditions. We find that a closed Bering Strait greatly increases the AMOC's sensitivity to freshwater hosing. Further, the shift from mono- to bistability strongly depends on the chosen boundary conditions, with weaker circulation states exhibiting more abrupt transitions.
Zhongshi Zhang, Xiangyu Li, Chuncheng Guo, Odd Helge Otterå, Kerim H. Nisancioglu, Ning Tan, Camille Contoux, Gilles Ramstein, Ran Feng, Bette L. Otto-Bliesner, Esther Brady, Deepak Chandan, W. Richard Peltier, Michiel L. J. Baatsen, Anna S. von der Heydt, Julia E. Weiffenbach, Christian Stepanek, Gerrit Lohmann, Qiong Zhang, Qiang Li, Mark A. Chandler, Linda E. Sohl, Alan M. Haywood, Stephen J. Hunter, Julia C. Tindall, Charles Williams, Daniel J. Lunt, Wing-Le Chan, and Ayako Abe-Ouchi
Clim. Past, 17, 529–543, https://doi.org/10.5194/cp-17-529-2021, https://doi.org/10.5194/cp-17-529-2021, 2021
Short summary
Short summary
The Atlantic Meridional Overturning Circulation (AMOC) is an important topic in the Pliocene Model Intercomparison Project. Previous studies have suggested a much stronger AMOC during the Pliocene than today. However, our current multi-model intercomparison shows large model spreads and model–data discrepancies, which can not support the previous hypothesis. Our study shows good consistency with future projections of the AMOC.
Shuaib Rasheed, Simon C. Warder, Yves Plancherel, and Matthew D. Piggott
Ocean Sci., 17, 319–334, https://doi.org/10.5194/os-17-319-2021, https://doi.org/10.5194/os-17-319-2021, 2021
Short summary
Short summary
Environmental issues arising due to coastal modification and future sea level scenarios are a major environmental hazard facing the Maldives today. Here, we carry out high-resolution tidal modelling of a Maldivian atoll for the first time and show that coastal modification in the island scale is capable of driving large-scale change in the wider atoll basin in a short time, comparable to that of long-term sea level rise scenarios and on par with observations.
Daniel J. Lunt, Fran Bragg, Wing-Le Chan, David K. Hutchinson, Jean-Baptiste Ladant, Polina Morozova, Igor Niezgodzki, Sebastian Steinig, Zhongshi Zhang, Jiang Zhu, Ayako Abe-Ouchi, Eleni Anagnostou, Agatha M. de Boer, Helen K. Coxall, Yannick Donnadieu, Gavin Foster, Gordon N. Inglis, Gregor Knorr, Petra M. Langebroek, Caroline H. Lear, Gerrit Lohmann, Christopher J. Poulsen, Pierre Sepulchre, Jessica E. Tierney, Paul J. Valdes, Evgeny M. Volodin, Tom Dunkley Jones, Christopher J. Hollis, Matthew Huber, and Bette L. Otto-Bliesner
Clim. Past, 17, 203–227, https://doi.org/10.5194/cp-17-203-2021, https://doi.org/10.5194/cp-17-203-2021, 2021
Short summary
Short summary
This paper presents the first modelling results from the Deep-Time Model Intercomparison Project (DeepMIP), in which we focus on the early Eocene climatic optimum (EECO, 50 million years ago). We show that, in contrast to previous work, at least three models (CESM, GFDL, and NorESM) produce climate states that are consistent with proxy indicators of global mean temperature and polar amplification, and they achieve this at a CO2 concentration that is consistent with the CO2 proxy record.
Irene Malmierca-Vallet, Louise C. Sime, Paul J. Valdes, and Julia C. Tindall
Clim. Past, 16, 2485–2508, https://doi.org/10.5194/cp-16-2485-2020, https://doi.org/10.5194/cp-16-2485-2020, 2020
Abdul Malik, Peer J. Nowack, Joanna D. Haigh, Long Cao, Luqman Atique, and Yves Plancherel
Atmos. Chem. Phys., 20, 15461–15485, https://doi.org/10.5194/acp-20-15461-2020, https://doi.org/10.5194/acp-20-15461-2020, 2020
Short summary
Short summary
Solar geoengineering has been introduced to mitigate human-caused global warming by reflecting sunlight back into space. This research investigates the impact of solar geoengineering on the tropical Pacific climate. We find that solar geoengineering can compensate some of the greenhouse-induced changes in the tropical Pacific but not all. In particular, solar geoengineering will result in significant changes in rainfall, sea surface temperatures, and increased frequency of extreme ENSO events.
Wesley de Nooijer, Qiong Zhang, Qiang Li, Qiang Zhang, Xiangyu Li, Zhongshi Zhang, Chuncheng Guo, Kerim H. Nisancioglu, Alan M. Haywood, Julia C. Tindall, Stephen J. Hunter, Harry J. Dowsett, Christian Stepanek, Gerrit Lohmann, Bette L. Otto-Bliesner, Ran Feng, Linda E. Sohl, Mark A. Chandler, Ning Tan, Camille Contoux, Gilles Ramstein, Michiel L. J. Baatsen, Anna S. von der Heydt, Deepak Chandan, W. Richard Peltier, Ayako Abe-Ouchi, Wing-Le Chan, Youichi Kamae, and Chris M. Brierley
Clim. Past, 16, 2325–2341, https://doi.org/10.5194/cp-16-2325-2020, https://doi.org/10.5194/cp-16-2325-2020, 2020
Short summary
Short summary
The simulations for the past climate can inform us about the performance of climate models in different climate scenarios. Here, we analyse Arctic warming in an ensemble of 16 simulations of the mid-Pliocene Warm Period (mPWP), when the CO2 level was comparable to today. The results highlight the importance of slow feedbacks in the model simulations and imply that we must be careful when using simulations of the mPWP as an analogue for future climate change.
Andy R. Emery, David M. Hodgson, Natasha L. M. Barlow, Jonathan L. Carrivick, Carol J. Cotterill, Janet C. Richardson, Ruza F. Ivanovic, and Claire L. Mellett
Earth Surf. Dynam., 8, 869–891, https://doi.org/10.5194/esurf-8-869-2020, https://doi.org/10.5194/esurf-8-869-2020, 2020
Short summary
Short summary
During the last ice age, sea level was lower, and the North Sea was land. The margin of a large ice sheet was at Dogger Bank in the North Sea. This ice sheet formed large rivers. After the ice sheet retreated down from the high point of Dogger Bank, the rivers had no water supply and dried out. Increased precipitation during the 15 000 years of land exposure at Dogger Bank formed a new drainage network. This study shows how glaciation and climate changes can control how drainage networks evolve.
Cited articles
Abbott, A. N.: A benthic flux from calcareous sediments results in
non-conservative neodymium behavior during lateral transport: A study from
the Tasman Sea, Geology, 47, 363–366, https://doi.org/10.1130/g45904.1,
2019.
Abbott, A. N., Haley, B. A., and McManus, J.: Bottoms up: Sedimentary
control of the deep North Pacific Ocean's εNd signature, Geology, 43,
1035–1038, https://doi.org/10.1130/G37114.1, 2015a.
Abbott, A. N., Haley, B. A., McManus, J., and Reimers, C. E.: The
sedimentary flux of dissolved rare earth elements to the ocean, Geochim.
Cosmochim. Ac., 154, 186–200, https://doi.org/10.1016/j.gca.2015.01.010,
2015b.
Abbott, A. N., Löhr, S., and Trethewy, M.: Are clay minerals the primary
control on the oceanic rare earth element budget?, Front. Mar. Sci., 6,
2296–7745, https://doi.org/10.3389/fmars.2019.00504, 2019.
Anderson, S. P.: Glaciers show direct linkage between erosion rate and
chemical weathering fluxes, Geomorphology, 67, 147–157,
https://doi.org/10.1016/j.geomorph.2004.07.010, 2005.
Arsouze, T., Dutay, J.-C. C., Lacan, F., and Jeandel, C.: Modeling the
neodymium isotopic composition with a global ocean circulation model, Chem.
Geol., 239, 165–177, https://doi.org/10.1016/j.chemgeo.2006.12.006, 2007.
Arsouze, T., Dutay, J.-C., Lacan, F., and Jeandel, C.: Reconstructing the Nd oceanic cycle using a coupled dynamical – biogeochemical model, Biogeosciences, 6, 2829–2846, https://doi.org/10.5194/bg-6-2829-2009, 2009.
Ayache, M., Dutay, J.-C., Arsouze, T., Révillon, S., Beuvier, J., and Jeandel, C.: High-resolution neodymium characterization along the Mediterranean margins and modelling of εNd distribution in the Mediterranean basins, Biogeosciences, 13, 5259–5276, https://doi.org/10.5194/bg-13-5259-2016, 2016.
Ayache, M., Dutay, J.-C., Tachikawa, K., Arsouze, T., and Jeandel, C.: Neodymium budget in the Mediterranean Sea: evaluating the role of atmospheric dusts using a high-resolution dynamical-biogeochemical model, Biogeosciences, 20, 205–227, https://doi.org/10.5194/bg-20-205-2023, 2023.
Bacon, M. P. and Anderson, R. F.: Distribution of Thorium Isotopes Between
Dissolved and Particulate Forms in the Deep Sea, J. Geophys. Res., 87,
2045–2056, https://doi.org/10.1029/JC087iC03p02045, 1982.
Bayon, G., German, C. R., Burton, K. W., Nesbitt, R. W., and Rogers, N.:
Sedimentary Fe-Mn oxyhydroxides as paleoceanographic archives and the role
of aeolian flux in regulating oceanic dissolved REE, Earth Planet. Sc.
Lett., 224, 477–492, https://doi.org/10.1016/j.epsl.2004.05.033, 2004.
Behrenfeld, M. J. and Falkowski, P. G.: Photosynthetic rates derived from
satellite-based chlorophyll concentration, Limnol. Oceanogr., 1–20, https://doi.org/10.4319/lo.1997.42.1.0001, 1997.
Bertram, C. J. and Elderfield, H.: The geochemical balance of the rare earth
elements and neodymium isotopes in the oceans, Geochim. Cosmochim. Ac., 57,
1957–1986, https://doi.org/10.1016/0016-7037(93)90087-D, 1993.
Blanchet, C. L.: A database of marine and terrestrial radiogenic Nd and Sr isotopes for tracing earth-surface processes, Earth Syst. Sci. Data, 11, 741–759, https://doi.org/10.5194/essd-11-741-2019, 2019.
Blaser, P., Frank, M., and van de Flierdt, T.: Revealing past ocean
circulation with neodymium isotopes, Past Glob. Chang. Mag., 27, 54–55,
https://doi.org/10.22498/pages.27.2.54, 2019a.
Blaser, P., Pöppelmeier, F., Schulz, H., Gutjahr, M., Frank, M.,
Lippold, J., Heinrich, H., Link, J. M., Hoffmann, J., Szidat, S., and Frank,
N.: The resilience and sensitivity of Northeast Atlantic deep water εNd
to overprinting by detrital fluxes over the past 30,000 years, Geochim.
Cosmochim. Ac., 245, 79–97, https://doi.org/10.1016/j.gca.2018.10.018,
2019b.
Blaser, P., Gutjahr, M., Pöppelmeier, F., Frank, M., Kaboth-Bahr, S.,
and Lippold, J.: Labrador Sea bottom water provenance and REE exchange
during the past 35,000 years, Earth Planet. Sc. Lett., 542, 116299,
https://doi.org/10.1016/j.epsl.2020.116299, 2020.
Chamecki, M., Chor, T., Yang, D., and Meneveau, C.: Material Transport in
the Ocean Mixed Layer: Recent Developments Enabled by Large Eddy
Simulations, Rev. Geophys., 57, 1338–1371, https://doi.org/10.1029/2019RG000655, 2019.
Chavagnac, V., Saleban Ali, H., Jeandel, C., Leleu, T., Destrigneville, C.,
Castillo, A., Cotte, L., Waeles, M., Cathalot, C., Laes-Huon, A., Pelleter,
E., Nonnotte, P., Sarradin, P. M., and Cannat, M.: Sulfate minerals control
dissolved rare earth element flux and Nd isotope signature of buoyant
hydrothermal plume (EMSO-Azores, 37∘ N Mid-Atlantic Ridge), Chem.
Geol., 499, 111–125, https://doi.org/10.1016/j.chemgeo.2018.09.021, 2018.
Chen, T. Y., Stumpf, R., Frank, M., Bełdowski, J., and
Staubwasser, M.: Contrasting geochemical cycling of hafnium and neodymium in
the central Baltic Sea, Geochim. Cosmochim. Ac., 123, 166–180,
https://doi.org/10.1016/j.gca.2013.09.011, 2013.
Collins, W. J., Bellouin, N., Doutriaux-Boucher, M., Gedney, N., Halloran, P., Hinton, T., Hughes, J., Jones, C. D., Joshi, M., Liddicoat, S., Martin, G., O'Connor, F., Rae, J., Senior, C., Sitch, S., Totterdell, I., Wiltshire, A., and Woodward, S.: Development and evaluation of an Earth-System model – HadGEM2, Geosci. Model Dev., 4, 1051–1075, https://doi.org/10.5194/gmd-4-1051-2011, 2011.
Cox, P. M., Betts, R. A., Bunton, C. B., Essery, R. L. H., Rowntree, P. R.,
and Smith, J.: The impact of new land surface physics on the GCM simulation
of climate and climate sensitivity, Clim. Dynam., 15, 183–203,
https://doi.org/10.1007/s003820050276, 1999.
Crossley, J. F. and Roberts, D. L.: The Thermodynamic/Dynamic Sea Ice
Model, Unified Model Doc. Pap. No 45, 1995.
Dai, A. and Trenberth, K. E.: Estimates of Freshwater Discharge from
Continents: Latitudinal and Seasonal Variations, J. Hydrometeorol., 3,
660–687, 2002.
Deng, K., Yang, S., Du, J., Lian, E., and Vance, D.: Dominance of benthic
flux of REEs on continental shelves: implications for oceanic budgets,
Geochemical Perspect. Lett., 22, 26–30,
https://doi.org/10.7185/geochemlet.2223, 2022.
Dentith, J. E., Ivanovic, R. F., Gregoire, L. J., Tindall, J. C., and Smith,
R. S.: Ocean circulation drifts in multi-millennial climate simulations: the
role of salinity corrections and climate feedbacks, Clim. Dynam., 52,
1761–1781, https://doi.org/10.1007/s00382-018-4243-y, 2019.
Dentith, J. E., Ivanovic, R. F., Gregoire, L. J., Tindall, J. C., and Robinson, L. F.: Simulating stable carbon isotopes in the ocean component of the FAMOUS general circulation model with MOSES1 (XOAVI), Geosci. Model Dev., 13, 3529–3552, https://doi.org/10.5194/gmd-13-3529-2020, 2020.
Doney, S. C., Lindsay, K., Caldeira, K., Campin, J. M., Drange, H., Dutay,
J. C., Follows, M., Gao, Y., Gnanadesikan, A., Gruber, N., Ishida, A., Joos,
F., Madec, G., Maier-Reimer, E., Marshall, J. C., Matear, R. J., Monfray,
P., Mouchet, A., Najjar, R., Orr, J. C., Plattner, G. K., Sarmiento, J.,
Schlitzer, R., Slater, R., Totterdell, I. J., Weirig, M. F., Yamanaka, Y.,
and Yool, A.: Evaluating global ocean carbon models: The importance of
realistic physics, Global Biogeochem. Cy., 18, 3017,
https://doi.org/10.1029/2003GB002150, 2004.
Du, J., Haley, B. A., and Mix, A. C.: Neodymium isotopes in authigenic
phases, bottom waters and detrital sediments in the Gulf of Alaska and their
implications for paleo-circulation reconstruction, Geochim. Cosmochim. Ac.,
193, 14–35, https://doi.org/10.1016/j.gca.2016.08.005, 2016.
Du, J., Haley, B. A., Mix, A. C., Walczak, M. H., and Praetorius, S. K.:
Flushing of the deep Pacific Ocean and the deglacial rise of atmospheric CO2
concentrations, Nat. Geosci., 11, 749–755,
https://doi.org/10.1038/s41561-018-0205-6, 2018.
Du, J., Haley, B. A., and Mix, A. C.: Evolution of the Global Overturning
Circulation since the Last Glacial Maximum based on marine authigenic
neodymium isotopes, Quaternary Sci. Rev., 241, 106396,
https://doi.org/10.1016/j.quascirev.2020.106396, 2020.
Du, J., Haley, B. A., Mix, A. C., Abbott, A. N., McManus, J., and Vance, D.:
Reactive-transport modeling of neodymium and its radiogenic isotope in
deep-sea sediments: The roles of authigenesis, marine silicate weathering
and reverse weathering, Earth Planet. Sc. Lett., 596, 117792,
https://doi.org/10.1016/j.epsl.2022.117792, 2022.
Dunne, J. P., Sarmiento, J. L., and Gnanadesikan, A.: A synthesis of global
particle export from the surface ocean and cycling through the ocean
interior and on the seafloor, Global Biogeochem. Cy., 21, GB4006,
https://doi.org/10.1029/2006GB002907, 2007.
Dunne, J. P., Hales, B., and Toggweiler, J. R.: Global calcite cycling
constrained by sediment preservation controls, Global Biogeochem. Cy.,
26, GB3023, https://doi.org/10.1029/2010GB003935, 2012.
Dutay, J. C., Lacan, F., Roy-Barman, M., and Bopp, L.: Influence of particle
size and type on 231Pa and 230Th simulation with a global coupled
biogeochemical-ocean general circulation model: A first approach,
Geochem. Geophy. Geosy., 10, GB3023,
https://doi.org/10.1029/2008GC002291, 2009.
Elderfield, H., Upstill-Goddard, R., and Sholkovitz, E. R.: The rare earth
elements in rivers, estuaries, and coastal seas and their significance to
the composition of ocean waters, Geochim. Cosmochim. Ac., 54, 971–991,
https://doi.org/10.1016/0016-7037(90)90432-K, 1990.
Essery, R. and Clark, D. B.: Developments in the MOSES 2 land-surface model
for PILPS 2e, Glob. Planet. Change, 38, 161–164,
https://doi.org/10.1016/S0921-8181(03)00026-2, 2003.
Essery, R. L. H., Best, M. J., and Cox, P. M.: MOSES 2.2 technical
documentation, Hadley Centre Technical Note 30, https://jules.jchmr.org/sites/default/files/HCTN_30.pdf (last access: 15 February 2023), 2001.
Ferreira, D., Cessi, P., Coxall, H. K., De Boer, A., Dijkstra, H. A.,
Drijfhout, S. S., Eldevik, T., Harnik, N., McManus, J. F., Marshall, D. P.,
Nilsson, J., Roquet, F., Schneider, T., and Wills, R. C.: Atlantic-Pacific
Asymmetry in Deep Water Formation, Annu. Rev. Earth Planet. Sc., 46, 327–352,
https://doi.org/10.1146/annurev-earth-082517-010045, 2018.
Frajka-Williams, E., Ansorge, I. J., Baehr, J., Bryden, H. L., Chidichimo,
M. P., Cunningham, S. A., Danabasoglu, G., Dong, S., Donohue, K. A., Elipot,
S., Heimbach, P., Holliday, N. P., Hummels, R., Jackson, L. C., Karstensen,
J., Lankhorst, M., Le Bras, I. A., Susan Lozier, M., McDonagh, E. L.,
Meinen, C. S., Mercier, H., Moat, B. I., Perez, R. C., Piecuch, C. G.,
Rhein, M., Srokosz, M. A., Trenberth, K. E., Bacon, S., Forget, G., Goni,
G., Kieke, D., Koelling, J., Lamont, T., McCarthy, G. D., Mertens, C., Send,
U., Smeed, D. A., Speich, S., van den Berg, M., Volkov, D., and Wilson, C.:
Atlantic meridional overturning circulation: Observed transport and
variability, Front. Mar. Sci., 6, 260, https://doi.org/10.3389/fmars.2019.00260, 2019.
Frank, M.: Radiogenic isotopes: Tracers of past ocean circulation and
erosional input, Rev. Geophys., 40, 1001,
https://doi.org/10.1029/2000RG000094, 2002.
GEOTRACES Intermediate Data Product Group: The GEOTRACES Intermediate Data Product 2021 (IDP2021), NERC EDS British Oceanographic Data Centre NOC [data set], https://doi.org/10.5285/cf2d9ba9-d51d-3b7c-e053-8486abc0f5fd, 2021.
German, C. R., Klinkhammer, G. P., Edmond, J. M., Mitrat, A., and
H.Elderfield: Hydrothermal scavenging of rare-earth elements in the ocean,
Nature, 345, 516–518, 1990.
Goldstein, S. J. and Jacobsen, S. B.: The Nd and Sr isotopic systematics of
river-water dissolved material: Implications for the sources of Nd and Sr in
seawater, Chemical Geology: Isotope Geoscience Section, 66, 245–272,
https://doi.org/10.1016/0168-9622(87)90045-5, 1987.
Goldstein, S. L. and Hemming, S. R.: Long-lived Isotopic Tracers in
Oceanography, Paleoceanography, and Ice-Sheet Dynamics, Treatise of Geochemistry, 6, 453–483,
https://doi.org/10.1016/B0-08-043751-6/06179-X, 2003.
Goldstein, S. L. and O'Nions, R. K.: Nd and Sr isotopic relationships in
pelagic clays and gerromanganese deposits, Nature, 292, 324–327, 1981.
Goldstein, S. L., O'Nions, R. K., and Hamilton, P. J.: A Sm-Nd isotopic
study of atmospheric dusts and particulates from major river systems, Earth Planet. Sc. Lett., 70, 221–236,
https://doi.org/10.1016/0012-821X(84)90007-4, 1984.
Gordon, C., Cooper, C., Senior, C. A., Banks, H., Gregory, J. M., Johns, T.
C., Mitchell, J. F. B., and Wood, R. A.: The simulation of SST, sea ice
extents and ocean heat transports in a version of the Hadley Centre coupled
model without flux adjustments, Clim. Dynam., 16, 147–168,
https://doi.org/10.1007/s003820050010, 2000.
Greaves, M. J., Statham, P. J., and Elderfield, H.: Rare earth element
mobilization from marine atmospheric dust into seawater, Mar. Chem., 46,
255–260, https://doi.org/10.1016/0304-4203(94)90081-7, 1994.
Gregoire, L. J., Valdes, P. J., Payne, A. J., and Kahana, R.: Optimal tuning
of a GCM using modern and glacial constraints, Clim. Dynam., 37, 705–719,
https://doi.org/10.1007/s00382-010-0934-8, 2011.
Gregoire, L. J., Payne, A. J., and Valdes, P. J.: Deglacial rapid sea level
rises caused by ice-sheet saddle collapses, Nature, 487, 219–222,
https://doi.org/10.1038/nature11257, 2012.
Gregoire, L. J., Valdes, P. J., and Payne, A. J.: The relative contribution
of orbital forcing and greenhouse gases to the North American deglaciation,
Geophys. Res. Lett., 42, 9970–9979, https://doi.org/10.1002/2015GL066005,
2015.
Gregoire, L. J., Otto-Bliesner, B., Valdes, P. J., and Ivanovic, R.: Abrupt
Bølling warming and ice saddle collapse contributions to the Meltwater
Pulse 1a rapid sea level rise, Geophys. Res. Lett., 43, 9130–9137,
https://doi.org/10.1002/2016GL070356, 2016.
Grenier, M., Jeandel, C., Lacan, F., Vance, D., Venchiarutti, C., Cros, A.,
and Cravatte, S.: From the subtropics to the central equatorial Pacific
Ocean: Neodymium isotopic composition and rare earth element concentration
variations, J. Geophys. Res.-Oceans, 118, 592–618,
https://doi.org/10.1029/2012JC008239, 2013.
Grousset, F. E., Biscaye, P. E., Zindler, A., Prospero, J., and Chester, R.:
Neodymium isotopes as tracers in marine sediments and aerosols: North
Atlantic, Earth Planet. Sc. Lett., 87, 367–378,
https://doi.org/10.1016/0012-821X(88)90001-5, 1988.
Grousset, F. E., Parra, M., Bory, A., Martinez, P., Bertrand, P.,
Shimmield-M, G., and Ellamn, R. M.: Saharan Wind Regimes Traced by the Sr-Nd
Isotopic Composition of Subtropical Atlantic Sediments: Last Glacial Maximum
vs Today, Quaternary Sci. Rev., 17, 395–409,
https://doi.org/10.1016/S0277-3791(97)00048-6, 1998.
Gu, S., Liu, Z., Jahn, A., Rempfer, J., Zhang, J., and Joos, F.: Modeling
Neodymium Isotopes in the Ocean Component of the Community Earth System
Model (CESM1), J. Adv. Model. Earth Syst., 11, 624–640,
https://doi.org/10.1029/2018MS001538, 2019.
Haley, B. A., Klinkhammer, G. P., and McManus, J.: Rare earth elements in
pore waters of marine sediments, Geochim. Cosmochim. Ac., 68, 1265–1279,
https://doi.org/10.1016/j.gca.2003.09.012, 2004.
Haley, B. A., Frank, M., Hathorne, E., and Pisias, N.: Biogeochemical
implications from dissolved rare earth element and Nd isotope distributions
in the Gulf of Alaska, Geochim. Cosmochim. Ac., 126, 455–474,
https://doi.org/10.1016/j.gca.2013.11.012, 2014.
Haley, B. A., Du, J., Abbott, A. N., and McManus, J.: The Impact of Benthic
Processes on Rare Earth Element and Neodymium Isotope Distributions in the
Oceans, Front. Mar. Sci., 4, 426, https://doi.org/10.3389/fmars.2017.00426,
2017.
Henderson, G. M., Heinze, C., Anderson, R. F., and Winguth, A. M. E.: Global
distribution of the 230Th flux to ocean sediments constrained by GCM
modelling, Deep-Res. Pt. I, 46, 1861–1893,
https://doi.org/10.1016/S0967-0637(99)00030-8, 1999.
Hopcroft, P. O. and Valdes, P. J.: Last glacial maximum constraints on the
Earth System model HadGEM2-ES, Clim. Dynam., 45, 1657–1672,
https://doi.org/10.1007/s00382-014-2421-0, 2015.
Hopcroft, P. O., Valdes, P. J., Woodward, S., and Joshi, M. M.: Last glacial
maximum radiative forcing from mineral dust aerosols in an Earth system
model, J. Geophys. Res., 120, 8186–8205,
https://doi.org/10.1002/2015JD023742, 2015.
Jacobsen, S. B. and Wasserburg, G. J.: Sm-Nd evolution of chondrites, Earth Planet. Sc. Lett., 50, 139–155,
https://doi.org/10.1016/0012-821X(80)90125-9, 1980.
Jeandel, C.: Concentration and isotopic composition of Nd in the South
Atlantic Ocean, Earth Planet. Sc. Lett., 117, 581–591,
https://doi.org/10.1016/0012-821x(93)90104-h, 1993.
Jeandel, C., Bishop, J. K., and Zindler, A.: Exchange of neodymium and its
isotopes between seawater and small and large particles in the Sargasso Sea,
Geochim. Cosmochim. Ac., 59, 535–547,
https://doi.org/10.1016/0016-7037(94)00367-U, 1995.
Johannesson, K. H. and Burdige, D. J.: Balancing the global oceanic
neodymium budget: Evaluating the role of groundwater, Earth Planet. Sc. Lett., 253, 129–142, https://doi.org/10.1016/j.epsl.2006.10.021, 2007.
Jones, C.: A fast ocean GCM without flux adjustments, J. Atmos. Ocean.
Technol., 20, 1857–1868,
https://doi.org/10.1175/1520-0426(2003)020<1857:AFOGWF>2.0.CO;2, 2003.
Jones, C., Gregory, J., Thorpe, R., Cox, P., Murphy, J., Sexton, D., and
Valdes, P.: Systematic optimisation and climate simulation of FAMOUS, a fast
version of HadCM3, Clim. Dynam., 25, 189–204,
https://doi.org/10.1007/s00382-005-0027-2, 2005.
Jones, K. M., Khatiwala, S. P., Goldstein, S. L., Hemming, S. R., and van de
Flierdt, T.: Modeling the distribution of Nd isotopes in the oceans using an
ocean general circulation model, Earth Planet. Sc. Lett., 272, 610–619,
https://doi.org/10.1016/j.epsl.2008.05.027, 2008.
Kato, Y., Fujinaga, K., Nakamura, K., Takaya, Y., Kitamura, K., Ohta, J.,
Toda, R., Nakashima, T., and Iwamori, H.: Deep-sea mud in the Pacific Ocean
as a potential resource for rare-earth elements, Nat. Geosci., 4, 535–539,
https://doi.org/10.1038/ngeo1185, 2011.
Kriest, I. and Oschlies, A.: On the treatment of particulate organic matter sinking in large-scale models of marine biogeochemical cycles, Biogeosciences, 5, 55–72, https://doi.org/10.5194/bg-5-55-2008, 2008.
Kuhlbrodt, T., Griesel, A., Montoya, M., Levermann, A., Hofmann, M., and
Rahmstorf, S.: On the driving processes of the Atlantic meridional
overturning circulation, Rev. Geophys., 45, 2001,
https://doi.org/10.1029/2004RG000166, 2007.
Lacan, F. and Jeandel, C.: Neodymium isotopes as a new tool for quantifying
exchange fluxes at the continent-ocean interface, Earth Planet. Sc. Lett.,
232, 245–257, https://doi.org/10.1016/j.epsl.2005.01.004, 2005.
Lagarde, M., Lemaitre, N., Planquette, H., Grenier, M., Belhadj, M., Lherminier, P., and Jeandel, C.: Particulate rare earth element behavior in the North Atlantic (GEOVIDE cruise), Biogeosciences, 17, 5539–5561, https://doi.org/10.5194/bg-17-5539-2020, 2020.
Lambelet, M., van de Flierdt, T., Crocket, K., Rehkämper, M., Kreissig,
K., Coles, B., Rijkenberg, M. J. A., Gerringa, L. J. A., de Baar, H. J. W.,
and Steinfeldt, R.: Neodymium isotopic composition and concentration in the
western North Atlantic Ocean: Results from the GEOTRACES GA02 section,
Geochim. Cosmochim. Ac., 177, 1–29,
https://doi.org/10.1016/j.gca.2015.12.019, 2016.
Lambelet, M., van de Flierdt, T., Butler, E. C. V., Bowie, A. R., Rintoul,
S. R., Watson, R. J., Remenyi, T., Lannuzel, D., Warner, M., Robinson, L.
F., Bostock, H. C., and Bradtmiller, L. I.: The Neodymium Isotope
Fingerprint of Adélie Coast Bottom Water, Geophys. Res. Lett., 45,
11247–11256, https://doi.org/10.1029/2018GL080074, 2018.
Laws, E. A., Falkowski, P. G., Smith, W. O., Ducklow, H., and McCarthy, J.
J.: Temperature effects on export production in the open ocean, Global Biogeochem. Cy., 14, 1231–1246, https://doi.org/10.1029/1999GB001229,
2000.
Locarnini, R. A., Mishonov, A. V., Baranova, O. K., Boyer, T. P., Zweng, M. M., Garcia, H. E., Reagan, J. R., Seidov, D., Weathers, K., Paver, C. R., and Smolyar, I.: World Ocean Atlas 2018, Volume 1: Temperature, edited by: Mishonov, A., NOAA Atlas NESDIS 81, 52 pp., 2019.
Mahowald, N. M., Muhs, D. R., Levis, S., Rasch, P. J., Yoshioka, M., Zender,
C. S., and Luo, C.: Change in atmospheric mineral aerosols in response to
climate: Last glacial period, preindustrial, modern, and doubled carbon
dioxide climates, J. Geophys. Res.-Atmos., 111, D10202,
https://doi.org/10.1029/2005JD006653, 2006.
Maier-Reimer, E.: Geochemical cycles in an ocean general circulation model.
Preindustrial tracer distributions, Global Biogeochem. Cy., 7, 645–677,
https://doi.org/10.1029/93GB01355, 1993.
Martin, J. H., Knauer, G. A., Karl, D. M., and Broenkow, W. W.: VERTEX:
carbon cycling in the northeast Pacific, Deep-Sea Res. Pt. I, 34, 267–285, https://doi.org/10.1016/0198-0149(87)90086-0, 1987.
McCarthy, G. D., Smeed, D. A., Johns, W. E., Frajka-Williams, E., Moat, B.
I., Rayner, D., Baringer, M. O., Meinen, C. S., Collins, J., and Bryden, H.
L.: Measuring the Atlantic Meridional Overturning Circulation at
26∘ N, Prog. Oceanogr., 130, 91–111,
https://doi.org/10.1016/j.pocean.2014.10.006, 2015.
Najjar, R. and Orr, J. C.:
Design of OCMIP-2 simulations of chlorofluorocarbons, the solubility pump and common biogeochemistry,
Internal OCMIP Report, LSCE/CEA Saclay, Gif-sur-Yvette, France 1998.
National Centre for Atmospheric Science (NCAS): Standalone UM system and FAMOUS [code], https://cms.ncas.ac.uk/miscellaneous/um-famous/, last access: 15t February 2023.
Noh, Y., Kang, I. S., Herold, M., and Raasch, S.: Large eddy simulation of
particle settling in the ocean mixed layer, Phys. Fluids, 18, 85109,
https://doi.org/10.1063/1.2337098, 2006.
Oka, A., Hasumi, H., Obata, H., Gamo, T., and Yamanaka, Y.: Study on
vertical profiles of rare earth elements by using an ocean general
circulation model, Global Biogeochem. Cy., 23, GB4025,
https://doi.org/10.1029/2008GB003353, 2009.
Oka, A., Tazoe, H., and Obata, H.: Simulation of global distribution of rare
earth elements in the ocean using an ocean general circulation model, J.
Oceanogr., 1, 413–430, https://doi.org/10.1007/s10872-021-00600-x, 2021.
Osborne, A. H., Haley, B. A., Hathorne, E. C., Plancherel, Y., and Frank,
M.: Rare earth element distribution in Caribbean seawater: Continental
inputs versus lateral transport of distinct REE compositions in subsurface
water masses, Mar. Chem., 177, 172–183,
https://doi.org/10.1016/j.marchem.2015.03.013, 2015.
Osborne, A. H., Hathorne, E. C., Schijf., J., Plancherel, Y., Boning, P.,
and Frank, M.: The potential of sedimentary foraminiferal rare earth element
patterns to trace water masses in the past, Geochem. Geophy.
Geosy., 18, 1550-1568, https://doi.org/10.1002/2016GC006782, 2017.
Paffrath, R., Pahnke, K., Böning, P., Rutgers van der Loeff, M., Valk,
O., Gdaniec, S., and Planquette, H.: Seawater-Particle Interactions of Rare
Earth Elements and Neodymium Isotopes in the Deep Central Arctic Ocean, J. Geophys. Res.-Oceans, 126, e2021JC017423,
https://doi.org/10.1029/2021JC017423, 2021.
Palmer, J. R. and Totterdell, I. J.: Production and export in a global ocean
ecosystem model, Deep. Res.-Pt. I, 48, 1169–1198,
https://doi.org/10.1016/S0967-0637(00)00080-7, 2001.
Pasquier, B., Hines, S. K. V., Liang, H., Wu, Y., Goldstein, S. L., and John, S. G.: GNOM v1.0: an optimized steady-state model of the modern marine neodymium cycle, Geosci. Model Dev., 15, 4625–4656, https://doi.org/10.5194/gmd-15-4625-2022, 2022.
Paul, S. A. L., Haeckel, M., Bau, M., Bajracharya, R., and Koschinsky, A.: Small-scale heterogeneity of trace metals including rare earth elements and yttrium in deep-sea sediments and porewaters of the Peru Basin, southeastern equatorial Pacific, Biogeosciences, 16, 4829–4849, https://doi.org/10.5194/bg-16-4829-2019, 2019.
Pearce, C. R., Jones, M. T., Oelkers, E. H., Pradoux, C., and Jeandel, C.:
The effect of particulate dissolution on the neodymium (Nd) isotope and Rare
Earth Element (REE) composition of seawater, Earth Planet. Sc. Lett.,
369–370, 138–147, https://doi.org/10.1016/j.epsl.2013.03.023, 2013.
Pöppelmeier, F., Scheen, J., Blaser, P., Lippold, J., Gutjahr, M., and
Stocker, T. F.: Influence of Elevated Nd Fluxes on the Northern Nd Isotope
End Member of the Atlantic During the Early Holocene, Paleoceanogr.
Paleoclimatology, 35, e2020PA003973, https://doi.org/10.1029/2020PA003973,
2020a.
Pöppelmeier, F., Blaser, P., Gutjahr, M., Jaccard, S. L., Frank, M.,
Max, L., and Lippold, J.: Northern Sourced Water dominated the Atlantic
Ocean during the Last Glacial Maximum, Geology, 48, 826–829,
https://doi.org/10.1130/G47628.1, 2020b.
Pöppelmeier, F., Janssen, D. J., Jaccard, S. L., and Stocker, T. F.: Modeling the marine chromium cycle: new constraints on global-scale processes, Biogeosciences, 18, 5447–5463, https://doi.org/10.5194/bg-18-5447-2021, 2021a.
Pöppelmeier, F., Scheen, J., Jeltsch-Thömmes, A., and Stocker, T. F.: Simulated stability of the Atlantic Meridional Overturning Circulation during the Last Glacial Maximum, Clim. Past, 17, 615–632, https://doi.org/10.5194/cp-17-615-2021, 2021b.
Pöppelmeier, F., Lippold, J., Blaser, P., Gutjahr, M., Frank, M., and
Stocker, T. F.: Neodymium isotopes as a paleo-water mass tracer: A
model-data reassessment, Quaternary Sci. Rev., 279, 107404,
https://doi.org/10.1016/J.QUASCIREV.2022.107404, 2022.
Rahlf, P., Hathorne, E., Laukert, G., Gutjahr, M., Weldeab, S., and Frank,
M.: Tracing water mass mixing and continental inputs in the southeastern
Atlantic Ocean with dissolved neodymium isotopes, Earth Planet. Sc. Lett.,
530, 115944, https://doi.org/10.1016/j.epsl.2019.115944, 2020.
Rahlf, P., Laukert, G., Hathorne, E. C., Vieira, L. H., and Frank, M.:
Dissolved neodymium and hafnium isotopes and rare earth elements in the
Congo River Plume: Tracing and quantifying continental inputs into the
southeast Atlantic, Geochim. Cosmochim. Ac., 294, 192–214,
https://doi.org/10.1016/j.gca.2020.11.017, 2021.
Rempfer, J., Stocker, T. F., Joos, F., Dutay, J.-C., and Siddall, M.:
Modelling Nd-isotopes with a coarse resolution ocean circulation model:
Sensitivities to model parameters and source/sink distributions, Geochim.
Cosmochim. Ac., 75, 5927–5950, https://doi.org/10.1016/j.gca.2011.07.044,
2011.
Roberts, N. L., Piotrowski, A. M., McManus, J. F., and Keigwin, L. D.:
Synchronous deglacial overturning and water mass source changes, Science, 327, 75–78, https://doi.org/10.1126/science.1178068, 2010.
Robinson, S., Ivanovic, R., van de Flierdt, T., Blanchet, C. L., Tachikawa,
K., Martin, E. E., Cook, C. P., Williams, T., Gregoire, L., Plancherel, Y.,
Jeandel, C., and Arsouze, T.: Global continental and marine detrital
εNd: An updated compilation for use in understanding marine Nd cycling,
Chem. Geol., 567, 120119, https://doi.org/10.1016/j.chemgeo.2021.120119,
2021.
Robinson, S., Ivanovic, R., Gregoire, L., Tindall, J., van de Flierdt, T., Plancherel, Y., Pöppelmeier, F., Tachikawa, K., and Valdes, P.: Simulating marine neodymium isotope distributions using Nd v1.0 coupled to the ocean component of the FAMOUS-MOSES1 climate model: sensitivities to reversible scavenging efficiency and benthic source distributions, University of Leeds [data set], https://doi.org/10.5518/1136, 2022.
Rousseau, T. C. C., Sonke, J. E., Chmeleff, J., Van Beek, P., Souhaut, M.,
Boaventura, G., Seyler, P., and Jeandel, C.: Rapid neodymium release to
marine waters from lithogenic sediments in the Amazon estuary, Nat. Commun.,
6, 7592, https://doi.org/10.1038/ncomms8592, 2015.
Sarmiento, J. L. and Le Quéré, C.: Oceanic carbon dioxide uptake in a
model of century-scale global warming, Science, 274, 1346–1350,
https://doi.org/10.1126/science.274.5291.1346, 1996.
Sherriff-Tadano, S., Abe-Ouchi, A., and Oka, A.: Impact of mid-glacial ice sheets on deep ocean circulation and global climate, Clim. Past, 17, 95–110, https://doi.org/10.5194/cp-17-95-2021, 2021.
Sholkovitz, E. R.: The geochemistry of rare earth elements in the Amazon
River estuary, Geochim. Cosmochim. Ac., 57, 2181–2190,
https://doi.org/10.1016/0016-7037(93)90559-F, 1993.
Siddall, M., Khatiwala, S., van de Flierdt, T., Jones, K., Goldstein, S. L.,
Hemming, S., and Anderson, R. F.: Towards explaining the Nd paradox using
reversible scavenging in an ocean general circulation model, Earth Planet. Sc. Lett., 274, 448–461, https://doi.org/10.1016/j.epsl.2008.07.044, 2008.
Sinha, B., Smeed, D. A., McCarthy, G., Moat, B. I., Josey, S. A., Hirschi,
J. J. M., Frajka-Williams, E., Blaker, A. T., Rayner, D., and Madec, G.: The
accuracy of estimates of the overturning circulation from basin-wide mooring
arrays, Prog. Oceanogr., 160, 101–123,
https://doi.org/10.1016/J.POCEAN.2017.12.001, 2018.
Smith, R. N. B.: A scheme for predicting layer clouds and their water
content in a general circulation model, Q. J. Roy. Meteor. Soc., 116,
435–460, https://doi.org/10.1002/qj.49711649210, 1990.
Smith, R. N. B.: Subsurface, surface and boundary layer processes. Unified Model Documentation Paper 24, The Met. Office, Bracknell, Berkshire UK, 64 pp., 1993.
Smith, R. S.: The FAMOUS climate model (versions XFXWB and XFHCC): description update to version XDBUA, Geosci. Model Dev., 5, 269–276, https://doi.org/10.5194/gmd-5-269-2012, 2012.
Smith, R. S. and Gregory, J. M.: A study of the sensitivity of ocean
overturning circulation and climate to freshwater input in different regions
of the North Atlantic, Geophys. Res. Lett., 36, L15701,
https://doi.org/10.1029/2009GL038607, 2009.
Smith, R. S., Gregory, J. M., and Osprey, A.: A description of the FAMOUS (version XDBUA) climate model and control run, Geosci. Model Dev., 1, 53–68, https://doi.org/10.5194/gmd-1-53-2008, 2008.
Stichel, T., Kretschmer, S., Geibert, W., Lambelet, M., Plancherel, Y.,
Rutgers van der Loeff, M., and van de Flierdt, T.: Particle–Seawater
Interaction of Neodymium in the North Atlantic, ACS Earth Sp. Chem., 4, 1700–1717,
https://doi.org/10.1021/acsearthspacechem.0c00034, 2020.
Tachikawa, K., Jeandel, C., Vangriesheim, A., and Dupré, B.:
Distribution of rare earth elements and neodymium isotopes in suspended
particles of the tropical Atlantic Ocean (EUMELI site), Deep-Res. Pt. I,
46, 733–755, https://doi.org/10.1016/S0967-0637(98)00089-2, 1999.
Tachikawa, K., Athias, V., and Jeandel, C.: Neodymium budget in the modern
ocean and paleo-oceanographic implications, J. Geophys. Res., 108, 3254,
https://doi.org/10.1029/1999JC000285, 2003.
Tachikawa, K., Arsouze, T., Bayon, G., Bory, A., Colin, C., Dutay, J. C.,
Frank, N., Giraud, X., Gourlan, A. T., Jeandel, C., Lacan, F., Meynadier,
L., Montagna, P., Piotrowski, A. M., Plancherel, Y., Pucéat, E.,
Roy-Barman, M., and Waelbroeck, C.: The large-scale evolution of neodymium
isotopic composition in the global modern and Holocene ocean revealed from
seawater and archive data, Chem. Geol., 457, 131–148,
https://doi.org/10.1016/j.chemgeo.2017.03.018, 2017.
Talley, L. D., Pickard, G. L., Emery, W. J., and Swift, J. H.: Descriptive
physical oceanography: An introduction: Sixth edition, Academic Press,
ISBN 9780750645522, https://doi.org/10.1016/C2009-0-24322-4, 2011.
Valdes, P. J., Armstrong, E., Badger, M. P. S., Bradshaw, C. D., Bragg, F., Crucifix, M., Davies-Barnard, T., Day, J. J., Farnsworth, A., Gordon, C., Hopcroft, P. O., Kennedy, A. T., Lord, N. S., Lunt, D. J., Marzocchi, A., Parry, L. M., Pope, V., Roberts, W. H. G., Stone, E. J., Tourte, G. J. L., and Williams, J. H. T.: The BRIDGE HadCM3 family of climate models: HadCM3@Bristol v1.0, Geosci. Model Dev., 10, 3715–3743, https://doi.org/10.5194/gmd-10-3715-2017, 2017.
van de Flierdt, T., Grifths, A. M., Lambelet, M., Little, S. H., Stichel,
T., and Wilson, D. J.: Neodymium in the oceans: A global database, a
regional comparison and implications for palaeoceanographic research, 374, 20150293,
https://doi.org/10.1098/rsta.2015.0293, 2016.
Von Blanckenburg, F. and Nägler, T. F.: Weathering versus
circulation-controlled changes in radiogenic isotope tracer composition of
the Labrador Sea and North Atlantic Deep Water, Paleoceanography, 16,
424–434, https://doi.org/10.1029/2000PA000550, 2001.
Wang, R., Clegg, J. A., Scott, P. M., Larkin, C. S., Deng, F., Thomas, A.
L., Zheng, X. Y., and Piotrowski, A. M.: Reversible scavenging and advection
– Resolving the neodymium paradox in the South Atlantic, Geochim.
Cosmochim. Ac., 314, 121–139, https://doi.org/10.1016/j.gca.2021.09.015,
2021.
Williams, J. H. T., Smith, R. S., Valdes, P. J., Booth, B. B. B., and Osprey, A.: Optimising the FAMOUS climate model: inclusion of global carbon cycling, Geosci. Model Dev., 6, 141–160, https://doi.org/10.5194/gmd-6-141-2013, 2013.
Wilson, D. J., Piotrowski, A. M., Galy, A., and Clegg, J. A.: Reactivity of
neodymium carriers in deep sea sediments: Implications for boundary exchange
and paleoceanography, Geochim. Cosmochim. Ac., 109, 197–221,
https://doi.org/10.1016/j.gca.2013.01.042, 2013.
Woodward, S.: Mineral Dust in HadGEM2, Hadley Centre Technical Note 87 Mineral Dust in HadGEM 2 March 2011, https://sds-was.aemet.es/forecast-products/dust-forecasts/Woodward_2011_HadGEM2.pdf (last access: 15 February 2023), 2011.
Zhang, Y., Lacan, F., and Jeandel, C.: Dissolved rare earth elements tracing
lithogenic inputs over the Kerguelen Plateau (Southern Ocean), Deep-Res.
Pt. II, 55, 638–652,
https://doi.org/10.1016/j.dsr2.2007.12.029, 2008.
Zweng, M. M., Reagan, J. R., Seidov, D., Boyer, T. P., Locarnini, R. A., Garcia, H. E., Mishonov, A. V., Baranova, O. K., Weathers, K., Paver, C. R., and Smolyar, I.: World Ocean Atlas 2018, Volume 2: Salinity, edited by: Mishonov, A., NOAA Atlas NESDIS 82, 50 pp., http://www.nodc.noaa.gov/ (last access: 15 February 2023) 2019.
Short summary
We present the implementation of neodymium (Nd) isotopes into the ocean model of FAMOUS (Nd v1.0). Nd fluxes from seafloor sediment and incorporation of Nd onto sinking particles represent the major global sources and sinks, respectively. However, model–data mismatch in the North Pacific and northern North Atlantic suggest that certain reactive components of the sediment interact the most with seawater. Our results are important for interpreting Nd isotopes in terms of ocean circulation.
We present the implementation of neodymium (Nd) isotopes into the ocean model of FAMOUS (Nd...
Special issue