Articles | Volume 15, issue 20
https://doi.org/10.5194/gmd-15-7913-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-15-7913-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A new bootstrap technique to quantify uncertainty in estimates of ground surface temperature and ground heat flux histories from geothermal data
Francisco José Cuesta-Valero
CORRESPONDING AUTHOR
Department of Remote Sensing, Helmholtz Centre for Environmental Research (UFZ), Permoserstraße 15, Leipzig, 04318, Saxony, Germany
Remote Sensing Centre for Earth System Research, Leipzig University, 04103, Leipzig, Germany
Hugo Beltrami
Climate & Atmospheric Sciences Institute, St. Francis Xavier University, 5009 Chapel Square, Antigonish, B2G 2W5, NS, Canada
Stephan Gruber
Department of Geography and Environmental Studies, Carleton University, 1125 Colonel By Dr, Ottawa, K1S 5B6, ON, Canada
Almudena García-García
Department of Remote Sensing, Helmholtz Centre for Environmental Research (UFZ), Permoserstraße 15, Leipzig, 04318, Saxony, Germany
Remote Sensing Centre for Earth System Research, Leipzig University, 04103, Leipzig, Germany
J. Fidel González-Rouco
Instituto de Geociencias, Consejo Superior de Investigaciones Científicas – Universidad Complutense de Madrid, Madrid, Spain
Related authors
Félix García-Pereira, Jesús Fidel González-Rouco, Camilo Melo-Aguilar, Norman Julius Steinert, Elena García-Bustamante, Philip de Vrese, Johann Jungclaus, Stephan Lorenz, Stefan Hagemann, Francisco José Cuesta-Valero, Almudena García-García, and Hugo Beltrami
Earth Syst. Dynam., 15, 547–564, https://doi.org/10.5194/esd-15-547-2024, https://doi.org/10.5194/esd-15-547-2024, 2024
Short summary
Short summary
According to climate model estimates, the land stored 2 % of the system's heat excess in the last decades, while observational studies show it was around 6 %. This difference stems from these models using land components that are too shallow to constrain land heat uptake. Deepening the land component does not affect the surface temperature. This result can be used to derive land heat uptake estimates from different sources, which are much closer to previous observational reports.
Félix García-Pereira, Jesús Fidel González-Rouco, Thomas Schmid, Camilo Melo-Aguilar, Cristina Vegas-Cañas, Norman Julius Steinert, Pedro José Roldán-Gómez, Francisco José Cuesta-Valero, Almudena García-García, Hugo Beltrami, and Philipp de Vrese
SOIL, 10, 1–21, https://doi.org/10.5194/soil-10-1-2024, https://doi.org/10.5194/soil-10-1-2024, 2024
Short summary
Short summary
This work addresses air–ground temperature coupling and propagation into the subsurface in a mountainous area in central Spain using surface and subsurface data from six meteorological stations. Heat transfer of temperature changes at the ground surface occurs mainly by conduction controlled by thermal diffusivity of the subsurface, which varies with depth and time. A new methodology shows that near-surface diffusivity and soil moisture content changes with time are closely related.
Francisco José Cuesta-Valero, Hugo Beltrami, Almudena García-García, Gerhard Krinner, Moritz Langer, Andrew H. MacDougall, Jan Nitzbon, Jian Peng, Karina von Schuckmann, Sonia I. Seneviratne, Wim Thiery, Inne Vanderkelen, and Tonghua Wu
Earth Syst. Dynam., 14, 609–627, https://doi.org/10.5194/esd-14-609-2023, https://doi.org/10.5194/esd-14-609-2023, 2023
Short summary
Short summary
Climate change is caused by the accumulated heat in the Earth system, with the land storing the second largest amount of this extra heat. Here, new estimates of continental heat storage are obtained, including changes in inland-water heat storage and permafrost heat storage in addition to changes in ground heat storage. We also argue that heat gains in all three components should be monitored independently of their magnitude due to heat-dependent processes affecting society and ecosystems.
Karina von Schuckmann, Audrey Minière, Flora Gues, Francisco José Cuesta-Valero, Gottfried Kirchengast, Susheel Adusumilli, Fiammetta Straneo, Michaël Ablain, Richard P. Allan, Paul M. Barker, Hugo Beltrami, Alejandro Blazquez, Tim Boyer, Lijing Cheng, John Church, Damien Desbruyeres, Han Dolman, Catia M. Domingues, Almudena García-García, Donata Giglio, John E. Gilson, Maximilian Gorfer, Leopold Haimberger, Maria Z. Hakuba, Stefan Hendricks, Shigeki Hosoda, Gregory C. Johnson, Rachel Killick, Brian King, Nicolas Kolodziejczyk, Anton Korosov, Gerhard Krinner, Mikael Kuusela, Felix W. Landerer, Moritz Langer, Thomas Lavergne, Isobel Lawrence, Yuehua Li, John Lyman, Florence Marti, Ben Marzeion, Michael Mayer, Andrew H. MacDougall, Trevor McDougall, Didier Paolo Monselesan, Jan Nitzbon, Inès Otosaka, Jian Peng, Sarah Purkey, Dean Roemmich, Kanako Sato, Katsunari Sato, Abhishek Savita, Axel Schweiger, Andrew Shepherd, Sonia I. Seneviratne, Leon Simons, Donald A. Slater, Thomas Slater, Andrea K. Steiner, Toshio Suga, Tanguy Szekely, Wim Thiery, Mary-Louise Timmermans, Inne Vanderkelen, Susan E. Wjiffels, Tonghua Wu, and Michael Zemp
Earth Syst. Sci. Data, 15, 1675–1709, https://doi.org/10.5194/essd-15-1675-2023, https://doi.org/10.5194/essd-15-1675-2023, 2023
Short summary
Short summary
Earth's climate is out of energy balance, and this study quantifies how much heat has consequently accumulated over the past decades (ocean: 89 %, land: 6 %, cryosphere: 4 %, atmosphere: 1 %). Since 1971, this accumulated heat reached record values at an increasing pace. The Earth heat inventory provides a comprehensive view on the status and expectation of global warming, and we call for an implementation of this global climate indicator into the Paris Agreement’s Global Stocktake.
Almudena García-García, Francisco José Cuesta-Valero, Hugo Beltrami, J. Fidel González-Rouco, and Elena García-Bustamante
Geosci. Model Dev., 15, 413–428, https://doi.org/10.5194/gmd-15-413-2022, https://doi.org/10.5194/gmd-15-413-2022, 2022
Short summary
Short summary
We study the sensitivity of a regional climate model to resolution and soil scheme changes. Our results show that the use of finer resolutions mainly affects precipitation outputs, particularly in summer due to changes in convective processes. Finer resolutions are associated with larger biases compared with observations. Changing the land surface model scheme affects the simulation of near-surface temperatures, yielding the lowest biases in mean temperature with the most complex soil scheme.
Francisco José Cuesta-Valero, Almudena García-García, Hugo Beltrami, and Joel Finnis
Earth Syst. Dynam., 12, 581–600, https://doi.org/10.5194/esd-12-581-2021, https://doi.org/10.5194/esd-12-581-2021, 2021
Short summary
Short summary
The current radiative imbalance at the top of the atmosphere is increasing the heat stored in the oceans, atmosphere, continental subsurface and cryosphere, with consequences for societies and ecosystems (e.g. sea level rise). We performed the first assessment of the ability of global climate models to represent such heat storage in the climate subsystems. Models are able to reproduce the observed atmosphere heat content, with biases in the simulation of heat content in the rest of components.
Francisco José Cuesta-Valero, Almudena García-García, Hugo Beltrami, J. Fidel González-Rouco, and Elena García-Bustamante
Clim. Past, 17, 451–468, https://doi.org/10.5194/cp-17-451-2021, https://doi.org/10.5194/cp-17-451-2021, 2021
Short summary
Short summary
We provide new global estimates of changes in surface temperature, surface heat flux, and continental heat storage since preindustrial times from geothermal data. Our analysis includes new measurements and a more comprehensive description of uncertainties than previous studies. Results show higher continental heat storage than previously reported, with global land mean temperature changes of 1 K and subsurface heat gains of 12 ZJ during the last half of the 20th century.
Almudena García-García, Francisco José Cuesta-Valero, Hugo Beltrami, Fidel González-Rouco, Elena García-Bustamante, and Joel Finnis
Geosci. Model Dev., 13, 5345–5366, https://doi.org/10.5194/gmd-13-5345-2020, https://doi.org/10.5194/gmd-13-5345-2020, 2020
Karina von Schuckmann, Lijing Cheng, Matthew D. Palmer, James Hansen, Caterina Tassone, Valentin Aich, Susheel Adusumilli, Hugo Beltrami, Tim Boyer, Francisco José Cuesta-Valero, Damien Desbruyères, Catia Domingues, Almudena García-García, Pierre Gentine, John Gilson, Maximilian Gorfer, Leopold Haimberger, Masayoshi Ishii, Gregory C. Johnson, Rachel Killick, Brian A. King, Gottfried Kirchengast, Nicolas Kolodziejczyk, John Lyman, Ben Marzeion, Michael Mayer, Maeva Monier, Didier Paolo Monselesan, Sarah Purkey, Dean Roemmich, Axel Schweiger, Sonia I. Seneviratne, Andrew Shepherd, Donald A. Slater, Andrea K. Steiner, Fiammetta Straneo, Mary-Louise Timmermans, and Susan E. Wijffels
Earth Syst. Sci. Data, 12, 2013–2041, https://doi.org/10.5194/essd-12-2013-2020, https://doi.org/10.5194/essd-12-2013-2020, 2020
Short summary
Short summary
Understanding how much and where the heat is distributed in the Earth system is fundamental to understanding how this affects warming oceans, atmosphere and land, rising temperatures and sea level, and loss of grounded and floating ice, which are fundamental concerns for society. This study is a Global Climate Observing System (GCOS) concerted international effort to obtain the Earth heat inventory over the period 1960–2018.
Niccolò Tubini and Stephan Gruber
EGUsphere, https://doi.org/10.5194/egusphere-2025-2649, https://doi.org/10.5194/egusphere-2025-2649, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
This research introduces a new model for simulating how melting ground ice in permafrost reshapes the land surface over time. It shows that small differences in soil and the depth where ice is found can cause large differences in how the ground sinks or rises. This helps improves our ability to predict future impacts on terrain, ecosystems, and infrastructure as the climate warms.
Nicholas Brown and Stephan Gruber
EGUsphere, https://doi.org/10.5194/egusphere-2025-2658, https://doi.org/10.5194/egusphere-2025-2658, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
This study improves how we track changes in permafrost by testing new ways to use ground temperature data. A set of five simple but powerful metrics was found to give a clearer picture of thawing than current methods. The results also show that the depth where sensors are placed can strongly affect measured warming rates. These findings help make permafrost monitoring more accurate and support better planning for a changing climate.
Félix García-Pereira, Jesús Fidel González-Rouco, Nagore Meabe-Yanguas, Philipp de Vrese, Norman Julius Steinert, Johann Jungclaus, and Stephan Lorenz
EGUsphere, https://doi.org/10.5194/egusphere-2025-2126, https://doi.org/10.5194/egusphere-2025-2126, 2025
Short summary
Short summary
This work shows that changing the hydrological state of permafrost produces differences of up to 3 °C in the annual ground temperature, 1–2 m in the active layer thickness, and 5 million km2 in the permafrost extent. Including a deeper vertical thermal scheme reduces the extent decline by more than 2 million km2 in the highest radiative emission scenario. This is shown for the first time in fully-coupled experiments with an Earth System Model.
Hosein Fereydooni, Stephan Gruber, David Stillman, and Derek Cronmiller
EGUsphere, https://doi.org/10.5194/egusphere-2025-1801, https://doi.org/10.5194/egusphere-2025-1801, 2025
Short summary
Short summary
Detecting ground ice in permafrost is crucial for climate research and infrastructure, but traditional methods often struggle to distinguish it. This study examines the dielectric properties of ground ice as a unique fingerprint. Field measurements were taken at two Yukon permafrost sites: a retrogressive thaw slump and a pingo. Comparing these with electrical resistivity and impedance results, we found relaxation time is a more reliable indicator for ground ice detection.
Bin Cao and Stephan Gruber
EGUsphere, https://doi.org/10.5194/egusphere-2025-575, https://doi.org/10.5194/egusphere-2025-575, 2025
Short summary
Short summary
The climate-driven changes in cold regions have an outsized importance for local resilient communities and for global climate through teleconnections. We shows that reanalyses are less accurate in cold regions compared to other more populated regions, coincident with the low density of observations. Our findings likely point to similar gaps in our knowledge and capabilities for climate research and services in cold regions.
Félix García-Pereira, Jesús Fidel González-Rouco, Camilo Melo-Aguilar, Norman Julius Steinert, Elena García-Bustamante, Philip de Vrese, Johann Jungclaus, Stephan Lorenz, Stefan Hagemann, Francisco José Cuesta-Valero, Almudena García-García, and Hugo Beltrami
Earth Syst. Dynam., 15, 547–564, https://doi.org/10.5194/esd-15-547-2024, https://doi.org/10.5194/esd-15-547-2024, 2024
Short summary
Short summary
According to climate model estimates, the land stored 2 % of the system's heat excess in the last decades, while observational studies show it was around 6 %. This difference stems from these models using land components that are too shallow to constrain land heat uptake. Deepening the land component does not affect the surface temperature. This result can be used to derive land heat uptake estimates from different sources, which are much closer to previous observational reports.
Félix García-Pereira, Jesús Fidel González-Rouco, Thomas Schmid, Camilo Melo-Aguilar, Cristina Vegas-Cañas, Norman Julius Steinert, Pedro José Roldán-Gómez, Francisco José Cuesta-Valero, Almudena García-García, Hugo Beltrami, and Philipp de Vrese
SOIL, 10, 1–21, https://doi.org/10.5194/soil-10-1-2024, https://doi.org/10.5194/soil-10-1-2024, 2024
Short summary
Short summary
This work addresses air–ground temperature coupling and propagation into the subsurface in a mountainous area in central Spain using surface and subsurface data from six meteorological stations. Heat transfer of temperature changes at the ground surface occurs mainly by conduction controlled by thermal diffusivity of the subsurface, which varies with depth and time. A new methodology shows that near-surface diffusivity and soil moisture content changes with time are closely related.
Pedro José Roldán-Gómez, Jesús Fidel González-Rouco, Jason E. Smerdon, and Félix García-Pereira
Clim. Past, 19, 2361–2387, https://doi.org/10.5194/cp-19-2361-2023, https://doi.org/10.5194/cp-19-2361-2023, 2023
Short summary
Short summary
Analyses of reconstructed data suggest that the precipitation and availability of water have evolved in a similar way during the Last Millennium in different regions of the world, including areas of North America, Europe, the Middle East, southern Asia, northern South America, East Africa and the Indo-Pacific. To confirm this link between distant regions and to understand the reasons behind it, the information from different reconstructed and simulated products has been compiled and analyzed.
Philipp de Vrese, Goran Georgievski, Jesus Fidel Gonzalez Rouco, Dirk Notz, Tobias Stacke, Norman Julius Steinert, Stiig Wilkenskjeld, and Victor Brovkin
The Cryosphere, 17, 2095–2118, https://doi.org/10.5194/tc-17-2095-2023, https://doi.org/10.5194/tc-17-2095-2023, 2023
Short summary
Short summary
The current generation of Earth system models exhibits large inter-model differences in the simulated climate of the Arctic and subarctic zone. We used an adapted version of the Max Planck Institute (MPI) Earth System Model to show that differences in the representation of the soil hydrology in permafrost-affected regions could help explain a large part of this inter-model spread and have pronounced impacts on important elements of Earth systems as far to the south as the tropics.
Francisco José Cuesta-Valero, Hugo Beltrami, Almudena García-García, Gerhard Krinner, Moritz Langer, Andrew H. MacDougall, Jan Nitzbon, Jian Peng, Karina von Schuckmann, Sonia I. Seneviratne, Wim Thiery, Inne Vanderkelen, and Tonghua Wu
Earth Syst. Dynam., 14, 609–627, https://doi.org/10.5194/esd-14-609-2023, https://doi.org/10.5194/esd-14-609-2023, 2023
Short summary
Short summary
Climate change is caused by the accumulated heat in the Earth system, with the land storing the second largest amount of this extra heat. Here, new estimates of continental heat storage are obtained, including changes in inland-water heat storage and permafrost heat storage in addition to changes in ground heat storage. We also argue that heat gains in all three components should be monitored independently of their magnitude due to heat-dependent processes affecting society and ecosystems.
Karina von Schuckmann, Audrey Minière, Flora Gues, Francisco José Cuesta-Valero, Gottfried Kirchengast, Susheel Adusumilli, Fiammetta Straneo, Michaël Ablain, Richard P. Allan, Paul M. Barker, Hugo Beltrami, Alejandro Blazquez, Tim Boyer, Lijing Cheng, John Church, Damien Desbruyeres, Han Dolman, Catia M. Domingues, Almudena García-García, Donata Giglio, John E. Gilson, Maximilian Gorfer, Leopold Haimberger, Maria Z. Hakuba, Stefan Hendricks, Shigeki Hosoda, Gregory C. Johnson, Rachel Killick, Brian King, Nicolas Kolodziejczyk, Anton Korosov, Gerhard Krinner, Mikael Kuusela, Felix W. Landerer, Moritz Langer, Thomas Lavergne, Isobel Lawrence, Yuehua Li, John Lyman, Florence Marti, Ben Marzeion, Michael Mayer, Andrew H. MacDougall, Trevor McDougall, Didier Paolo Monselesan, Jan Nitzbon, Inès Otosaka, Jian Peng, Sarah Purkey, Dean Roemmich, Kanako Sato, Katsunari Sato, Abhishek Savita, Axel Schweiger, Andrew Shepherd, Sonia I. Seneviratne, Leon Simons, Donald A. Slater, Thomas Slater, Andrea K. Steiner, Toshio Suga, Tanguy Szekely, Wim Thiery, Mary-Louise Timmermans, Inne Vanderkelen, Susan E. Wjiffels, Tonghua Wu, and Michael Zemp
Earth Syst. Sci. Data, 15, 1675–1709, https://doi.org/10.5194/essd-15-1675-2023, https://doi.org/10.5194/essd-15-1675-2023, 2023
Short summary
Short summary
Earth's climate is out of energy balance, and this study quantifies how much heat has consequently accumulated over the past decades (ocean: 89 %, land: 6 %, cryosphere: 4 %, atmosphere: 1 %). Since 1971, this accumulated heat reached record values at an increasing pace. The Earth heat inventory provides a comprehensive view on the status and expectation of global warming, and we call for an implementation of this global climate indicator into the Paris Agreement’s Global Stocktake.
Alessandro Cicoira, Samuel Weber, Andreas Biri, Ben Buchli, Reynald Delaloye, Reto Da Forno, Isabelle Gärtner-Roer, Stephan Gruber, Tonio Gsell, Andreas Hasler, Roman Lim, Philippe Limpach, Raphael Mayoraz, Matthias Meyer, Jeannette Noetzli, Marcia Phillips, Eric Pointner, Hugo Raetzo, Cristian Scapozza, Tazio Strozzi, Lothar Thiele, Andreas Vieli, Daniel Vonder Mühll, Vanessa Wirz, and Jan Beutel
Earth Syst. Sci. Data, 14, 5061–5091, https://doi.org/10.5194/essd-14-5061-2022, https://doi.org/10.5194/essd-14-5061-2022, 2022
Short summary
Short summary
This paper documents a monitoring network of 54 positions, located on different periglacial landforms in the Swiss Alps: rock glaciers, landslides, and steep rock walls. The data serve basic research but also decision-making and mitigation of natural hazards. It is the largest dataset of its kind, comprising over 209 000 daily positions and additional weather data.
Élise G. Devoie, Stephan Gruber, and Jeffrey M. McKenzie
Earth Syst. Sci. Data, 14, 3365–3377, https://doi.org/10.5194/essd-14-3365-2022, https://doi.org/10.5194/essd-14-3365-2022, 2022
Short summary
Short summary
Soil freezing characteristic curves (SFCCs) relate the temperature of a soil to its ice content. SFCCs are needed in all physically based numerical models representing freezing and thawing soils, and they affect the movement of water in the subsurface, biogeochemical processes, soil mechanics, and ecology. Over a century of SFCC data exist, showing high variability in SFCCs based on soil texture, water content, and other factors. This repository summarizes all available SFCC data and metadata.
Almudena García-García, Francisco José Cuesta-Valero, Hugo Beltrami, J. Fidel González-Rouco, and Elena García-Bustamante
Geosci. Model Dev., 15, 413–428, https://doi.org/10.5194/gmd-15-413-2022, https://doi.org/10.5194/gmd-15-413-2022, 2022
Short summary
Short summary
We study the sensitivity of a regional climate model to resolution and soil scheme changes. Our results show that the use of finer resolutions mainly affects precipitation outputs, particularly in summer due to changes in convective processes. Finer resolutions are associated with larger biases compared with observations. Changing the land surface model scheme affects the simulation of near-surface temperatures, yielding the lowest biases in mean temperature with the most complex soil scheme.
Niccolò Tubini, Stephan Gruber, and Riccardo Rigon
The Cryosphere, 15, 2541–2568, https://doi.org/10.5194/tc-15-2541-2021, https://doi.org/10.5194/tc-15-2541-2021, 2021
Short summary
Short summary
We present a new method to compute temperature changes with melting and freezing – a fundamental challenge in cryosphere research – extremely efficiently and with guaranteed correctness of the energy balance for any time step size. This is a key feature since the integration time step can then be chosen according to the timescale of the processes to be studied, from seconds to days.
John Mohd Wani, Renoj J. Thayyen, Chandra Shekhar Prasad Ojha, and Stephan Gruber
The Cryosphere, 15, 2273–2293, https://doi.org/10.5194/tc-15-2273-2021, https://doi.org/10.5194/tc-15-2273-2021, 2021
Short summary
Short summary
We study the surface energy balance from a cold-arid permafrost environment in the Indian Himalayan region. The GEOtop model was used for the modelling of surface energy balance. Our results show that the variability in the turbulent heat fluxes is similar to that reported from the seasonally frozen ground and permafrost regions of the Tibetan Plateau. Further, the low relative humidity could be playing a critical role in the surface energy balance and the permafrost processes.
Francisco José Cuesta-Valero, Almudena García-García, Hugo Beltrami, and Joel Finnis
Earth Syst. Dynam., 12, 581–600, https://doi.org/10.5194/esd-12-581-2021, https://doi.org/10.5194/esd-12-581-2021, 2021
Short summary
Short summary
The current radiative imbalance at the top of the atmosphere is increasing the heat stored in the oceans, atmosphere, continental subsurface and cryosphere, with consequences for societies and ecosystems (e.g. sea level rise). We performed the first assessment of the ability of global climate models to represent such heat storage in the climate subsystems. Models are able to reproduce the observed atmosphere heat content, with biases in the simulation of heat content in the rest of components.
Francisco José Cuesta-Valero, Almudena García-García, Hugo Beltrami, J. Fidel González-Rouco, and Elena García-Bustamante
Clim. Past, 17, 451–468, https://doi.org/10.5194/cp-17-451-2021, https://doi.org/10.5194/cp-17-451-2021, 2021
Short summary
Short summary
We provide new global estimates of changes in surface temperature, surface heat flux, and continental heat storage since preindustrial times from geothermal data. Our analysis includes new measurements and a more comprehensive description of uncertainties than previous studies. Results show higher continental heat storage than previously reported, with global land mean temperature changes of 1 K and subsurface heat gains of 12 ZJ during the last half of the 20th century.
Rupesh Subedi, Steven V. Kokelj, and Stephan Gruber
The Cryosphere, 14, 4341–4364, https://doi.org/10.5194/tc-14-4341-2020, https://doi.org/10.5194/tc-14-4341-2020, 2020
Short summary
Short summary
Permafrost beneath tundra near Lac de Gras (Northwest Territories, Canada) contains more ice and less organic carbon than shown in global compilations. Excess-ice content of 20–60 %, likely remnant Laurentide basal ice, is found in upland till. This study is based on 24 boreholes up to 10 m deep. Findings highlight geology and glacial legacy as determinants of a mosaic of permafrost characteristics with potential for thaw subsidence up to several metres in some locations.
Almudena García-García, Francisco José Cuesta-Valero, Hugo Beltrami, Fidel González-Rouco, Elena García-Bustamante, and Joel Finnis
Geosci. Model Dev., 13, 5345–5366, https://doi.org/10.5194/gmd-13-5345-2020, https://doi.org/10.5194/gmd-13-5345-2020, 2020
Andrea N. Hahmann, Tija Sīle, Björn Witha, Neil N. Davis, Martin Dörenkämper, Yasemin Ezber, Elena García-Bustamante, J. Fidel González-Rouco, Jorge Navarro, Bjarke T. Olsen, and Stefan Söderberg
Geosci. Model Dev., 13, 5053–5078, https://doi.org/10.5194/gmd-13-5053-2020, https://doi.org/10.5194/gmd-13-5053-2020, 2020
Short summary
Short summary
Wind energy resource assessment routinely uses numerical weather prediction model output. We describe the evaluation procedures used for picking the suitable blend of model setup and parameterizations for simulating European wind climatology with the WRF model. We assess the simulated winds against tall mast measurements using a suite of metrics, including the Earth Mover's Distance, which diagnoses the performance of each ensemble member using the full wind speed and direction distribution.
Martin Dörenkämper, Bjarke T. Olsen, Björn Witha, Andrea N. Hahmann, Neil N. Davis, Jordi Barcons, Yasemin Ezber, Elena García-Bustamante, J. Fidel González-Rouco, Jorge Navarro, Mariano Sastre-Marugán, Tija Sīle, Wilke Trei, Mark Žagar, Jake Badger, Julia Gottschall, Javier Sanz Rodrigo, and Jakob Mann
Geosci. Model Dev., 13, 5079–5102, https://doi.org/10.5194/gmd-13-5079-2020, https://doi.org/10.5194/gmd-13-5079-2020, 2020
Short summary
Short summary
This is the second of two papers that document the creation of the New European Wind Atlas (NEWA). The paper includes a detailed description of the technical and practical aspects that went into running the mesoscale simulations and the microscale downscaling for generating the climatology. A comprehensive evaluation of each component of the NEWA model chain is presented using observations from a large set of tall masts located all over Europe.
Karina von Schuckmann, Lijing Cheng, Matthew D. Palmer, James Hansen, Caterina Tassone, Valentin Aich, Susheel Adusumilli, Hugo Beltrami, Tim Boyer, Francisco José Cuesta-Valero, Damien Desbruyères, Catia Domingues, Almudena García-García, Pierre Gentine, John Gilson, Maximilian Gorfer, Leopold Haimberger, Masayoshi Ishii, Gregory C. Johnson, Rachel Killick, Brian A. King, Gottfried Kirchengast, Nicolas Kolodziejczyk, John Lyman, Ben Marzeion, Michael Mayer, Maeva Monier, Didier Paolo Monselesan, Sarah Purkey, Dean Roemmich, Axel Schweiger, Sonia I. Seneviratne, Andrew Shepherd, Donald A. Slater, Andrea K. Steiner, Fiammetta Straneo, Mary-Louise Timmermans, and Susan E. Wijffels
Earth Syst. Sci. Data, 12, 2013–2041, https://doi.org/10.5194/essd-12-2013-2020, https://doi.org/10.5194/essd-12-2013-2020, 2020
Short summary
Short summary
Understanding how much and where the heat is distributed in the Earth system is fundamental to understanding how this affects warming oceans, atmosphere and land, rising temperatures and sea level, and loss of grounded and floating ice, which are fundamental concerns for society. This study is a Global Climate Observing System (GCOS) concerted international effort to obtain the Earth heat inventory over the period 1960–2018.
Cited articles
Alexeev, V. A., Nicolsky, D. J., Romanovsky, V. E., and Lawrence, D. M.: An
evaluation of deep soil configurations in the CLM3 for improved
representation of permafrost, Geophys. Res. Lett., 34, l09502,
https://doi.org/10.1029/2007GL029536, 2007. a
Beltrami, H.: Surface heat flux histories from inversion of geothermal data:
Energy balance at the Earth's surface, J. Geophys. Res.-Sol.
Ea., 106, 21979–21993, https://doi.org/10.1029/2000JB000065, 2001. a, b, c, d
Beltrami, H. and Mareschal, J.-C.: Ground temperature histories for central and
eastern Canada from geothermal measurements: Little Ice Age signature,
Geophys. Res. Lett., 19, 689–692, https://doi.org/10.1029/92GL00671, 1992. a, b
Beltrami, H. and Taylor, A. E.: Records of climatic change in the Canadian
Arctic: towards calibrating oxygen isotope data with geothermal data,
Global Planet. Change, 11, 127–138,
https://doi.org/10.1016/0921-8181(95)00006-2, 1995. a
Beltrami, H., Jessop, A. M., and Mareschal, J.-C.: Ground temperature histories
in eastern and central Canada from geothermal measurements: evidence of
climatic change, Global Planet. Change, 6, 167–183,
https://doi.org/10.1016/0921-8181(92)90033-7, 1992. a, b
Beltrami, H., Smerdon, J. E., Matharoo, G. S., and Nickerson, N.: Impact of maximum borehole depths on inverted temperature histories in borehole paleoclimatology, Clim. Past, 7, 745–756, https://doi.org/10.5194/cp-7-745-2011, 2011. a
Beltrami, H., Matharoo, G. S., and Smerdon, J. E.: Impact of borehole depths on
reconstructed estimates of ground surface temperature histories and energy
storage, J. Geophys. Res.-Ea. Surf., 120, 763–778,
https://doi.org/10.1002/2014JF003382, 2015b. a, b, c
Beltrami, H., Matharoo, G. S., Smerdon, J. E., Illanes, L., and Tarasov, L.:
Impacts of the Last Glacial Cycle on ground surface temperature
reconstructions over the last millennium, Geophys. Res. Lett., 44,
355–364, https://doi.org/10.1002/2016GL071317, 2017. a
Burton-Johnson, A., Dziadek, R., and Martin, C.: Review article: Geothermal heat flow in Antarctica: current and future directions, The Cryosphere, 14, 3843–3873, https://doi.org/10.5194/tc-14-3843-2020, 2020. a
Cermak, V. and Rybach, L.: Thermal conductivity and specific heat of minerals
and rocks, in: Landolt Börnstein: Physical Properties of Rocks, Group V,
Geophysics, Volume 1a, edited by: Angenheister, G., Springer-Verlag Berlin
Heidelberg, https://doi.org/10.1007/10201894_62, 1982. a
Chouinard, C., Fortier, R., and Mareschal, J.-C.: Recent climate variations in
the subarctic inferred from three borehole temperature profiles in northern
Quebec, Canada, Earth Planet. Sc. Lett., 263, 355–369,
https://doi.org/10.1016/j.epsl.2007.09.017, 2007. a
Clauser, C. and Mareschal, J.-C.: Ground temperature history in central Europe
from borehole temperature data, Geophys. J. Int., 121,
805–817, https://doi.org/10.1111/j.1365-246X.1995.tb06440.x, 1995. a, b, c
Cuesta-Valero, F. J.: CIBOR: Codes for Inverting BOReholes (1.0.0), Zenodo [code], https://doi.org/10.5281/zenodo.7152900, 2022. a
Cuesta-Valero, F. J., García-García, A., Beltrami, H., and Smerdon,
J. E.: First assessment of continental energy storage in CMIP5 simulations,
Geophys. Res. Lett., 43, 2016GL068496, https://doi.org/10.1002/2016GL068496,
2016. a
Cuesta-Valero, F. J., García-García, A., Beltrami, H., Zorita, E., and Jaume-Santero, F.: Long-term Surface Temperature (LoST) database as a complement for GCM preindustrial simulations, Clim. Past, 15, 1099–1111, https://doi.org/10.5194/cp-15-1099-2019, 2019. a, b, c
Cuesta-Valero, F. J., Beltrami, H., García-García, A., González-Rourco,
J. F., and García-Bustamante, E.: Xibalbá: Underground Temperature
Database, figshare [data set], https://doi.org/10.6084/m9.figshare.13516487.v4,
2021a. a, b, c
Cuesta-Valero, F. J., García-García, A., Beltrami, H., and Finnis, J.: First assessment of the earth heat inventory within CMIP5 historical simulations, Earth Syst. Dynam., 12, 581–600, https://doi.org/10.5194/esd-12-581-2021, 2021b. a
Cuesta-Valero, F. J., García-García, A., Beltrami, H., González-Rouco, J. F., and García-Bustamante, E.: Long-term global ground heat flux and continental heat storage from geothermal data, Clim. Past, 17, 451–468, https://doi.org/10.5194/cp-17-451-2021, 2021c. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, aa, ab, ac, ad
Davis, M. G., Harris, R. N., and Chapman, D. S.: Repeat temperature
measurements in boreholes from northwestern Utah link ground and air
temperature changes at the decadal time scale, J. Geophys.
Res.-Sol. Ea., 115, B05203, https://doi.org/10.1029/2009JB006875, 2010. a
Demezhko, D. Y. and Gornostaeva, A. A.: Late Pleistocene–Holocene ground surface heat flux changes reconstructed from borehole temperature data (the Urals, Russia), Clim. Past, 11, 647–652, https://doi.org/10.5194/cp-11-647-2015, 2015a. a
Demezhko, D. Y. and Gornostaeva, A. A.: Reconstructions of ground surface heat
flux variations in the urals from geothermal and meteorological data,
Izvestiya, Atmos. Ocean. Phys., 51, 723–736,
https://doi.org/10.1134/S0001433815070026, 2015b. a
DiCiccio, T. J. and Efron, B.: Bootstrap confidence intervals, Stat.
Sci., 11, 189–228, https://doi.org/10.1214/ss/1032280214, 1996. a, b, c
Donohoe, A., Armour, K. C., Pendergrass, A. G., and Battisti, D. S.: Shortwave
and longwave radiative contributions to global warming under increasing CO2,
P. Natl. Acad. Sci., 111, 16700–16705,
https://doi.org/10.1073/pnas.1412190111, 2014. a
Efron, B.: Better Bootstrap Confidence Intervals, J. Am.
Stat. Assoc., 82, 171–185, https://doi.org/10.1080/01621459.1987.10478410,
1987. a, b, c
García-García, A., Cuesta-Valero, F. J., Beltrami, H., and Smerdon,
J. E.: Simulation of air and ground temperatures in PMIP3/CMIP5 last
millennium simulations: implications for climate reconstructions from
borehole temperature profiles, Environ. Res. Lett., 11, 044022,
https://doi.org/10.1088/1748-9326/11/4/044022, 2016. a
González-Rouco, J. F., Beltrami, H., Zorita, E., and von Storch, H.:
Simulation and inversion of borehole temperature profiles in surrogate
climates: Spatial distribution and surface coupling, Geophys. Res.
Lett., 33, l01703, https://doi.org/10.1029/2005GL024693, 2006. a
González-Rouco, J. F., Beltrami, H., Zorita, E., and Stevens, M. B.: Borehole climatology: a discussion based on contributions from climate modeling, Clim. Past, 5, 97–127, https://doi.org/10.5194/cp-5-97-2009, 2009. a, b, c, d
González-Rouco, J. F., J.Steinert, N., E.García-Bustamante, Hagemann, S.,
de Vreseand J. H. Jungclaus, P., Lorenz, S. J., Melo-Aguilar, C.,
García-Pereira, F., and Navarro, J.: Increasing the Depth of a Land Surface
Model. Part I: Impacts on the Subsurface Thermal Regime and Energy
Storage, J. Hydrometeorol., 22, 3211–3230,
https://doi.org/10.1175/JHM-D-21-0024.1, 2021. a
Hansen, J., Sato, M., Kharecha, P., and von Schuckmann, K.: Earth's energy imbalance and implications, Atmos. Chem. Phys., 11, 13421–13449, https://doi.org/10.5194/acp-11-13421-2011, 2011. a, b
Harris, R. N. and Chapman, D. S.: Borehole temperatures and tree rings:
Seasonality and estimates of extratropical Northern Hemispheric warming,
J. Geophys. Res.-Ea. Surf., 110, F04003,
https://doi.org/10.1029/2005JF000303, 2005. a, b
Harrison, S. P., Bartlein, P. J., Izumi, K., Li, G., Annan, J., Hargreaves, J.,
Braconnot, P., and Kageyama, M.: Evaluation of CMIP5 palaeo-simulations to
improve climate projections, Nature Clim. Change, 5, 735–743,
https://doi.org/10.1038/nclimate2649, 2015. a, b
Hawkins, E., Ortega, P., Suckling, E., Schurer, A., Hegerl, G., Jones, P.,
Joshi, M., Osborn, T. J., Masson-Delmotte, V., Mignot, J., Thorne, P., and
van Oldenborgh, G. J.: Estimating Changes in Global Temperature since the
Preindustrial Period, Bull. Am. Meteorol. Soc., 98,
1841–1856, https://doi.org/10.1175/BAMS-D-16-0007.1, 2017. a
Hermoso de Mendoza, I., Beltrami, H., MacDougall, A. H., and Mareschal, J.-C.: Lower boundary conditions in land surface models – effects on the permafrost and the carbon pools: a case study with CLM4.5, Geosci. Model Dev., 13, 1663–1683, https://doi.org/10.5194/gmd-13-1663-2020, 2020. a
Hicks Pries, C. E., Castanha, C., Porras, R. C., and Torn, M. S.: The
whole-soil carbon flux in response to warming, Science, 355, 1420–1423,
https://doi.org/10.1126/science.aal1319, 2017. a
Hopcroft, P. O., Gallagher, K., and Pain, C. C.: Inference of past climate from
borehole temperature data using Bayesian Reversible Jump Markov chain
Monte Carlo, Geophys. J. Int., 171, 1430–1439,
https://doi.org/10.1111/j.1365-246X.2007.03596.x, 2007. a, b, c, d
Hopcroft, P. O., Gallagher, K., and Pain, C. C.: A Bayesian partition
modelling approach to resolve spatial variability in climate records from
borehole temperature inversion, Geophys. J. Int., 178,
651–666, https://doi.org/10.1111/j.1365-246X.2009.04192.x, 2009. a, b
Huang, S., Pollack, H. N., and Shen, P.-Y.: Temperature trends over the past
five centuries reconstructed from borehole temperatures, Nature, 403,
756–758, https://doi.org/10.1038/35001556, 2000. a
Huang, S. P., Pollack, H. N., and Shen, P.-Y.: A late Quaternary climate
reconstruction based on borehole heat flux data, borehole temperature data,
and the instrumental record, Geophys. Res. Lett., 35, L13703,
https://doi.org/10.1029/2008GL034187, 2008. a
Jaupard, C. and Mareschal, J. C.: Heat generation and transport in the Earth,
Cambridge University Press, New York, 2010. a
Johnson, G. C., Lyman, J. M., and Loeb, N. G.: Improving estimates of Earth's
energy imbalance, Nat. Clim. Change, 6, 639,
https://doi.org/10.1038/nclimate3043, 2016. a
Kukkonen, I. T., Suhonen, E., Ezhova, E., Lappalainen, H., Gennadinik, V.,
Ponomareva, O., Gravis, A., Miles, V., Kulmala, M., Melnikov, V., and
Drozdov, D.: Observations and modelling of ground temperature evolution in
the discontinuous permafrost zone in Nadym, north-west Siberia,
Permafrost and Periglacial Processes, 31, 264–280,
https://doi.org/10.1002/ppp.2040, 2020. a
Lanczos, C.: Linear differential operators, Van Nostrand, New York, 1961. a
MacDougall, A. H., Beltrami, H., González-Rouco, J. F., Stevens, M. B., and
Bourlon, E.: Comparison of observed and general circulation model derived
continental subsurface heat flux in the Northern Hemisphere, J.
Geophys. Res.-Atmos., 115, D12109,
https://doi.org/10.1029/2009JD013170, 2010. a
Mareschal, J.-C. and Beltrami, H.: Evidence for recent warming from perturbed
geothermal gradients: examples from eastern Canada, Clim. Dynam., 6,
135–143, https://doi.org/10.1007/BF00193525, 1992. a, b
Marti, F., Blazquez, A., Meyssignac, B., Ablain, M., Barnoud, A., Fraudeau, R., Jugier, R., Chenal, J., Larnicol, G., Pfeffer, J., Restano, M., and Benveniste, J.: Monitoring the ocean heat content change and the Earth energy imbalance from space altimetry and space gravimetry, Earth Syst. Sci. Data, 14, 229–249, https://doi.org/10.5194/essd-14-229-2022, 2022. a
McGuire, A. D., Lawrence, D. M., Koven, C., Clein, J. S., Burke, E., Chen, G.,
Jafarov, E., MacDougall, A. H., Marchenko, S., Nicolsky, D., Peng, S., Rinke,
A., Ciais, P., Gouttevin, I., Hayes, D. J., Ji, D., Krinner, G., Moore,
J. C., Romanovsky, V., Schädel, C., Schaefer, K., Schuur, E. A. G., and
Zhuang, Q.: Dependence of the evolution of carbon dynamics in the northern
permafrost region on the trajectory of climate change, P.
Natl. Acad. Sci., 115, 3882–3887, https://doi.org/10.1073/pnas.1719903115,
2018. a
Melo-Aguilar, C., González-Rouco, J. F., García-Bustamante, E., Steinert, N., Jungclaus, J. H., Navarro, J., and Roldán-Gómez, P. J.: Methodological and physical biases in global to subcontinental borehole temperature reconstructions: an assessment from a pseudo-proxy perspective, Clim. Past, 16, 453–474, https://doi.org/10.5194/cp-16-453-2020, 2020. a, b
Neukom, R., Barboza, L. A., Erb, M. P., Shi, F., Emile-Geay, J., Evans, M. N.,
Franke, J., Kaufman, D. S., Lücke, L., Rehfeld, K., Schurer, A., Zhu, F.,
Brönnimann, S., Hakim, G. J., Henley, B. J., Ljungqvist, F. C., McKay, N.,
Valler, V., von Gunten, L., and the PAGES 2k Consortium: Consistent
multidecadal variability in global temperature reconstructions and
simulations over the Common Era, Nature Geosci., 12, 643–649,
https://doi.org/10.1038/s41561-019-0400-0, 2019. a
Nicolsky, D. J., Romanovsky, V. E., Alexeev, V. A., and Lawrence, D. M.:
Improved modeling of permafrost dynamics in a GCM land-surface scheme,
Geophys. Res. Lett., 34, l08501, https://doi.org/10.1029/2007GL029525,
2007. a
NOAA: Borehole Database at National Oceanic and Atmospheric Administration's
Server,
https://www.ncdc.noaa.gov/data-access/paleoclimatology-data/datasets/borehole
(last access: September 2019), 2019. a
Oppenheimer, M., Glavovic, B., Hinkel, J., van de Wal, R., Magnan, A.,
Abd-Elgawad, A., Cai, R., Cifuentes-Jara, M., DeConto, R., Ghosh, T., Hay,
J., Isla, F., Marzeion, B., Meyssignac, B., and Sebesvari, Z.: Sea Level Rise
and Implications for Low-Lying Islands, Coasts and Communities, in: IPCC
Special Report on the Ocean and Cryosphere in a Changing Climate, edited by:
Pörtner, H.-O., Roberts, D., Masson-Delmotte, V., Zhai, P., Tignor, M.,
Poloczanska, E., Mintenbeck, K., Alegría, A., Nicolai, M., Okem, A.,
Petzold, J., Rama, B., and Weyer, N., chap. 4,
https://www.ipcc.ch/site/assets/uploads/sites/3/2019/11/08_SROCC_Ch04_FINAL.pdf, 2019. a
PAGES2k Consortium: Webpage of the 2kNetwork of the Past Global
Changes (PAGES) Organization,
https://pastglobalchanges.org/science/wg/2k-network/intro
(last access: 11 February 2022), 2022. a
Pendergrass, A. G. and Hartmann, D. L.: The Atmospheric Energy Constraint on
Global-Mean Precipitation Change, J. Clim., 27, 757–768,
https://doi.org/10.1175/JCLI-D-13-00163.1, 2014. a
Pickler, C., Beltrami, H., and Mareschal, J.-C.: Laurentide Ice Sheet basal temperatures during the last glacial cycle as inferred from borehole data, Clim. Past, 12, 115–127, https://doi.org/10.5194/cp-12-115-2016, 2016. a
Pickler, C., Gurza Fausto, E., Beltrami, H., Mareschal, J.-C., Suárez, F., Chacon-Oecklers, A., Blin, N., Cortés Calderón, M. T., Montenegro, A., Harris, R., and Tassara, A.: Recent climate variations in Chile: constraints from borehole temperature profiles, Clim. Past, 14, 559–575, https://doi.org/10.5194/cp-14-559-2018, 2018. a, b
Rath, V., González Rouco, J. F., and Goosse, H.: Impact of postglacial warming on borehole reconstructions of last millennium temperatures, Clim. Past, 8, 1059–1066, https://doi.org/10.5194/cp-8-1059-2012, 2012. a
Shen, P., Wang, K., Beltrami, H., and Mareschal, J.-C.: A comparative study of
inverse methods for estimating climatic history from borehole temperature
data, Global Planet. Change, 6, 113–127,
https://doi.org/10.1016/0921-8181(92)90030-E, 1992. a, b, c, d
Shen, P. Y., Pollack, H. N., Huang, S., and Wang, K.: Effects of subsurface
heterogeneity on the inference of climate change from borehole temperature
data: Model studies and field examples from Canada, J. Geophys.
Res.-Sol. Ea., 100, 6383–6396, https://doi.org/10.1029/94JB03136, 1995. a
Smerdon, J. E. and Stieglitz, M.: Simulating heat transport of harmonic
temperature signals in the Earth's shallow subsurface: Lower-boundary
sensitivities, Geophys. Res. Lett., 33, L14402, https://doi.org/10.1029/2006GL026816, 2006. a
Stephens, G. L., Li, J., Wild, M., Clayson, C. A., Loeb, N., Kato, S.,
L'Ecuyer, T., Stackhouse, P. W., Lebsock, M., and Andrews, T.: An update on
Earth's energy balance in light of the latest global observations, Nat.
Geosci., 5, 691–696, https://doi.org/10.1038/ngeo1580, 2012. a
Stevens, M. B., Smerdon, J. E., González-Rouco, J. F., Stieglitz, M., and
Beltrami, H.: Effects of bottom boundary placement on subsurface heat
storage: Implications for climate model simulations, Geophys. Res.
Lett., 34, l02702, https://doi.org/10.1029/2006GL028546, 2007. a
Stevens, M. B., González-Rouco, J. F., and Beltrami, H.: North American
climate of the last millennium: Underground temperatures and model
comparison, J. Geophys. Res.-Ea. Surf., 113, f01008,
https://doi.org/10.1029/2006JF000705, 2008. a
Suman, A., Dyer, F., and White, D.: Late Holocene temperature variability in Tasmania inferred from borehole temperature data, Clim. Past, 13, 559–572, https://doi.org/10.5194/cp-13-559-2017, 2017. a
Turcotte, D. L. and Schubert, G.: Geodynamics, Cambridge University Press, 2nd
edition edn., 2002. a
Vanderkelen, I., van Lipzig, N. P. M., Lawrence, D. M., Droppers, B., Golub,
M., Gosling, S. N., Janssen, A. B. G., Marcé, R., Schmied, H. M., Perroud,
M., Pierson, D., Pokhrel, Y., Satoh, Y., Schewe, J., Seneviratne, S. I.,
Stepanenko, V. M., Tan, Z., Woolway, R. I., and Thiery, W.: Global Heat
Uptake by Inland Waters, Geophys. Res. Lett., 47, e2020GL087867,
https://doi.org/10.1029/2020GL087867, 2020. a
Vasseur, G., Bernard, P., de Meulebrouck, J. V., Kast, Y., and Jolivet, J.:
Holocene paleotemperatures deduced from geothermal measurements,
Palaeogeogr. Palaeoclimatol. Palaeoecol., 43, 237–259,
https://doi.org/10.1016/0031-0182(83)90013-5, 1983. a
von Schuckmann, K., Cheng, L., Palmer, M. D., Hansen, J., Tassone, C., Aich, V., Adusumilli, S., Beltrami, H., Boyer, T., Cuesta-Valero, F. J., Desbruyères, D., Domingues, C., García-García, A., Gentine, P., Gilson, J., Gorfer, M., Haimberger, L., Ishii, M., Johnson, G. C., Killick, R., King, B. A., Kirchengast, G., Kolodziejczyk, N., Lyman, J., Marzeion, B., Mayer, M., Monier, M., Monselesan, D. P., Purkey, S., Roemmich, D., Schweiger, A., Seneviratne, S. I., Shepherd, A., Slater, D. A., Steiner, A. K., Straneo, F., Timmermans, M.-L., and Wijffels, S. E.: Heat stored in the Earth system: where does the energy go?, Earth Syst. Sci. Data, 12, 2013–2041, https://doi.org/10.5194/essd-12-2013-2020, 2020.
a, b, c
Wang, J. and Bras, R.: Ground heat flux estimated from surface soil
temperature, J. Hydrol., 216, 214–226,
https://doi.org/10.1016/S0022-1694(99)00008-6, 1999. a, b
Woodbury, A. D. and Ferguson, G.: Ground surface paleotemperature
reconstruction using information measures and empirical Bayes, Geophys.
Res. Lett., 33, L06702, https://doi.org/10.1029/2005GL025243, 2006. a, b
Short summary
Inversions of subsurface temperature profiles provide past long-term estimates of ground surface temperature histories and ground heat flux histories at timescales of decades to millennia. Theses estimates complement high-frequency proxy temperature reconstructions and are the basis for studying continental heat storage. We develop and release a new bootstrap method to derive meaningful confidence intervals for the average surface temperature and heat flux histories from any number of profiles.
Inversions of subsurface temperature profiles provide past long-term estimates of ground surface...