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S1 Spatial degrees of freedom5

Spatial correlation between surface temperature series at nearby locations may be important to determine the confidence inter-

val of zonal and global averaged ground surface temperature histories from subsurface temperature profiles. To assess the effect

of spatial correlation on global histories, we estimate the number of effective degrees of freedom of the surface air temperatures

of the CRU TS 4.05 product (Harris et al., 2020). We select this product because it is based on meteorological observations and

it is provided as an homogeneous, gridded dataset without gaps in the temporal series of each grid cell. In any case, GISTEMP10

(Lenssen et al., 2019) and HadCRU (Morice et al., 2012) products have been also tested, yielding similar results.

The degrees of freedom (dof) of two temporal series depend on the correlation coefficient (c) between them as (Fraedrich

et al., 1995)

dof =
2

1+ c2
. (1)

In order to estimate the number of degrees of freedom from CRU temperatures, we apply Equation (1) to the temperature series15

in a given cell and the four closest neighbours, obtaining the effective degrees of freedom as the average of the four different

estimates. Thereby, we can assess the level of similarity of each cell with the surrounding cells.

Figure S1 shows the degrees of freedom estimated from annual temperature series and from their 30-yr running means.

Results considering the eight and twelve closest neighbours are also displayed to evaluate the effect of taking into account more

distant locations. Orography seems to be the leading factor in local variability, followed by the small number of meteorological20

observations included in the CRU dataset for several areas, like the Arctic and Africa. That is, areas with a smaller number of

observations seem to present larger spatial variability in surface temperature, leading to more degrees of freedom.

The effective number of degrees of freedom in different zones is included in the bootstrap estimates by estimating the

weighted mean of the inversions in the Sampling ensemble to retrieve the corresponding member of the Bootstrapping ensem-

ble. That is, the inversions within the Sampling ensemble are weighted by the corresponding degrees of freedom at the location25

of the profiles, thus inversions from temperature profiles within zones with more degrees of freedom weight more than inver-

sions from profiles in other zones. Concretely, we consider the degrees of freedom obtained using the twelve closest neighbours

and 30-yr running means, as this is the case showing higher spatial differences in Figure S1. The comparison between bootstrap

inversions performed considering the effective degrees of freedom and without this consideration is shown in Figure S2. Both

global averages and 95% confidence intervals with and without considering the spatial degrees of freedom present very similar30

results. Similar results are obtained when considering the degrees of freedom resulting from annual temperatures, and four and

eight neighbours (not shown). Therefore, the effect of the different number of degrees of freedom at borehole locations is not

relevant for estimating global ground surface temperature histories from subsurface temperature profiles, which is reasonable

seeing the small differences between locations with high and low degrees of freedom in Figure S1.

S2 Additional figures35
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Effective degrees of freedom

a) 4 cells, annual (Avg = 1.00481) b) 4 cells, 30y runmean (Avg = 1.00756)

c) 8 cells, annual (Avg = 1.00627) d) 8 cells, 30y runmean (Avg = 1.01012)

e) 12 cells, annual (Avg = 1.00835) f) 12 cells, 30y runmean (Avg = 1.01374)
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Figure S1. Number of effective degrees of freedom for CRU TS 4.05 temperatures from annual (left column) and long-term (30-yr running

means, right column) series. Results considering the four (first row), eight (second row), and twelve (third row) closest grid cells are displayed.
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Effect of E.D.O.F.
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Figure S2. Estimated temperature evolution from subsurface temperature profiles. (a) Global averaged surface temperature histories consid-

ering the different effective degrees of freedom at the location of each profile (red line), and weighting all profiles equally (purple line). (b)

Range of the 95% confidence interval for bootstrap inversions considering the effective degrees of freedom at the location of each profile

(red line), and weighting all profiles equally (purple line).
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