Articles | Volume 15, issue 19
https://doi.org/10.5194/gmd-15-7505-2022
https://doi.org/10.5194/gmd-15-7505-2022
Model evaluation paper
 | 
11 Oct 2022
Model evaluation paper |  | 11 Oct 2022

Estimation of missing building height in OpenStreetMap data: a French case study using GeoClimate 0.0.1

Jérémy Bernard, Erwan Bocher, Elisabeth Le Saux Wiederhold, François Leconte, and Valéry Masson

Related authors

URock 2023a: An open source GIS-based wind model for complex urban settings
Jérémy Bernard, Fredrik Lindberg, and Sandro Oswald
EGUsphere, https://doi.org/10.5194/egusphere-2023-354,https://doi.org/10.5194/egusphere-2023-354, 2023
Short summary
A generic algorithm to automatically classify urban fabric according to the Local Climate Zone system: implementation in GeoClimate 0.0.1 and application to French cities
Jérémy Bernard, Erwan Bocher, Matthieu Gousseff, François Leconte, and Elisabeth Le Saux Wiederhold
EGUsphere, https://doi.org/10.5194/egusphere-2023-371,https://doi.org/10.5194/egusphere-2023-371, 2023
Short summary

Related subject area

Climate and Earth system modeling
Climate model Selection by Independence, Performance, and Spread (ClimSIPS v1.0.1) for regional applications
Anna L. Merrifield, Lukas Brunner, Ruth Lorenz, Vincent Humphrey, and Reto Knutti
Geosci. Model Dev., 16, 4715–4747, https://doi.org/10.5194/gmd-16-4715-2023,https://doi.org/10.5194/gmd-16-4715-2023, 2023
Short summary
IceTFT v1.0.0: interpretable long-term prediction of Arctic sea ice extent with deep learning
Bin Mu, Xiaodan Luo, Shijin Yuan, and Xi Liang
Geosci. Model Dev., 16, 4677–4697, https://doi.org/10.5194/gmd-16-4677-2023,https://doi.org/10.5194/gmd-16-4677-2023, 2023
Short summary
The KNMI Large Ensemble Time Slice (KNMI–LENTIS)
Laura Muntjewerf, Richard Bintanja, Thomas Reerink, and Karin van der Wiel
Geosci. Model Dev., 16, 4581–4597, https://doi.org/10.5194/gmd-16-4581-2023,https://doi.org/10.5194/gmd-16-4581-2023, 2023
Short summary
ENSO statistics, teleconnections, and atmosphere–ocean coupling in the Taiwan Earth System Model version 1
Yi-Chi Wang, Wan-Ling Tseng, Yu-Luen Chen, Shih-Yu Lee, Huang-Hsiung Hsu, and Hsin-Chien Liang
Geosci. Model Dev., 16, 4599–4616, https://doi.org/10.5194/gmd-16-4599-2023,https://doi.org/10.5194/gmd-16-4599-2023, 2023
Short summary
Using probabilistic machine learning to better model temporal patterns in parameterizations: a case study with the Lorenz 96 model
Raghul Parthipan, Hannah M. Christensen, J. Scott Hosking, and Damon J. Wischik
Geosci. Model Dev., 16, 4501–4519, https://doi.org/10.5194/gmd-16-4501-2023,https://doi.org/10.5194/gmd-16-4501-2023, 2023
Short summary

Cited articles

Bernabé, A., Musy, M., Andrieu, H., and Calmet, I.: Radiative properties of the urban fabric derived from surface form analysis: A simplified solar balance model, Sol. Energy, 122, 156–168, 2015. a
Bernard, J., Bocher, E., Petit, G., and Palominos, S.: Sky View Factor Calculation in Urban Context: Computational Performance and Accuracy Analysis of Two Open and Free GIS Tools, Climate, 6, 60, https://doi.org/10.3390/cli6030060, 2018. a
Bernard, J., Bocher, E., Wiederhold, E. L. S., Leconte, F., Masson, V., and Noûs, C.: Estimated height of the OpenStreetMap buildings of 24 French communes using the GeoClimate Software (version 0.0.1), Zenodo, https://doi.org/10.5281/zenodo.6855063, 2021. a, b, c, d
Biljecki, F., Ledoux, H., and Stoter, J.: Generating 3D city models without elevation data, Computers, Environment and Urban Systems, 64, 1–18, 2017. a, b, c, d
Bocher E., Bernard J., Le Saux Wiederhold E., Leconte F., Petit G., Palominos S., and Noûs C.: GeoClimate: a Geospatial processing toolbox for environmental and climate studies, Zenodo, https://doi.org/10.5281/zenodo.5534680, 2021a. a, b
Download
Short summary
OpenStreetMap is a collaborative project aimed at creaing a free dataset containing topographical information. Since these data are available worldwide, they can be used as standard data for geoscience studies. However, most buildings miss the height information that constitutes key data for numerous fields (urban climate, noise propagation, air pollution). In this work, the building height is estimated using statistical modeling using indicators that characterize the building's environment.