Articles | Volume 15, issue 14
Geosci. Model Dev., 15, 5883–5903, 2022
Geosci. Model Dev., 15, 5883–5903, 2022
Model description paper
28 Jul 2022
Model description paper | 28 Jul 2022

TransClim (v1.0): a chemistry–climate response model for assessing the effect of mitigation strategies for road traffic on ozone

Vanessa Simone Rieger and Volker Grewe

Related authors

An advanced method of contributing emissions to short-lived chemical species (OH and HO2): the TAGGING 1.1 submodel based on the Modular Earth Submodel System (MESSy 2.53)
Vanessa S. Rieger, Mariano Mertens, and Volker Grewe
Geosci. Model Dev., 11, 2049–2066,,, 2018
Short summary
Revisiting the contribution of land transport and shipping emissions to tropospheric ozone
Mariano Mertens, Volker Grewe, Vanessa S. Rieger, and Patrick Jöckel
Atmos. Chem. Phys., 18, 5567–5588,,, 2018
Short summary

Related subject area

Atmospheric sciences
Assessment of the data assimilation framework for the Rapid Refresh Forecast System v0.1 and impacts on forecasts of a convective storm case study
Ivette H. Banos, Will D. Mayfield, Guoqing Ge, Luiz F. Sapucci, Jacob R. Carley, and Louisa Nance
Geosci. Model Dev., 15, 6891–6917,,, 2022
Short summary
Downscaling atmospheric chemistry simulations with physically consistent deep learning
Andrew Geiss, Sam J. Silva, and Joseph C. Hardin
Geosci. Model Dev., 15, 6677–6694,,, 2022
Short summary
A machine learning methodology for the generation of a parameterization of the hydroxyl radical
Daniel C. Anderson, Melanie B. Follette-Cook, Sarah A. Strode, Julie M. Nicely, Junhua Liu, Peter D. Ivatt, and Bryan N. Duncan
Geosci. Model Dev., 15, 6341–6358,,, 2022
Short summary
Large-eddy simulations with ClimateMachine v0.2.0: a new open-source code for atmospheric simulations on GPUs and CPUs
Akshay Sridhar, Yassine Tissaoui, Simone Marras, Zhaoyi Shen, Charles Kawczynski, Simon Byrne, Kiran Pamnany, Maciej Waruszewski, Thomas H. Gibson, Jeremy E. Kozdon, Valentin Churavy, Lucas C. Wilcox, Francis X. Giraldo, and Tapio Schneider
Geosci. Model Dev., 15, 6259–6284,,, 2022
Short summary
Hybrid ensemble-variational data assimilation in ABC-DA within a tropical framework
Joshua Chun Kwang Lee, Javier Amezcua, and Ross Noel Bannister
Geosci. Model Dev., 15, 6197–6219,,, 2022
Short summary

Cited articles

Dahlmann, K., Grewe, V., Frömming, C., and Burkhardt, U.: Can we reliably assess climate mitigation options for air traffic scenarios despite large uncertainties in atmospheric processes?, Transport. Res. D: Tr. E., 46, 40–55,, 2016. a
Deckert, R., Jöckel, P., Grewe, V., Gottschaldt, K.-D., and Hoor, P.: A quasi chemistry-transport model mode for EMAC, Geosci. Model Dev., 4, 195–206,, 2011. a
Dietmüller, S., Jöckel, P., Tost, H., Kunze, M., Gellhorn, C., Brinkop, S., Frömming, C., Ponater, M., Steil, B., Lauer, A., and Hendricks, J.: A new radiation infrastructure for the Modular Earth Submodel System (MESSy, based on version 2.51), Geosci. Model Dev., 9, 2209–2222,, 2016. a
Dodge, M.: Combined use of modeling techniques and smog chamber data to derive ozoneprecursor relationships, in: International Conference on Photochemical Oxidant Pollution and its Control: Proceedings, edited by: Dimitriades, B., U.S. Environmental Protection Agency, Environmental Sciences Research Laboratory, Research Triangle Park, N.C., Vol. II., 881–889, ePA/600/3-77-001b, 1977. a
Fouquart, Y. and Bonnel, B.: Computations of solar heating of the Earth's atmosphere: A new parameterization, Beitr. Phys. Atmos., 53, 35–62, 1980. a
Short summary
Road traffic emissions of nitrogen oxides, volatile organic compounds and carbon monoxide produce ozone in the troposphere and thus influence Earth's climate. To assess the ozone response to a broad range of mitigation strategies for road traffic, we developed a new chemistry–climate response model called TransClim. It is based on lookup tables containing climate–response relations and thus is able to quickly determine the climate response of a mitigation option.