Articles | Volume 15, issue 14
https://doi.org/10.5194/gmd-15-5461-2022
https://doi.org/10.5194/gmd-15-5461-2022
Model evaluation paper
 | 
19 Jul 2022
Model evaluation paper |  | 19 Jul 2022

Atmospheric river representation in the Energy Exascale Earth System Model (E3SM) version 1.0

Sol Kim, L. Ruby Leung, Bin Guan, and John C. H. Chiang

Related authors

Improving Thermodynamic Nudging in the E3SM Atmosphere Model Version 2 (EAMv2): Strategy and Hindcast Skills on Weather Systems
Shixuan Zhang, L. Ruby Leung, Bryce E. Harrop, Aniruddha Bora, George Karniadakis, Khemraj Shukla, and Kai Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2025-4277,https://doi.org/10.5194/egusphere-2025-4277, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
A Unified Scheme for Modeling Saturation and Infiltration Excess Runoff
Yuanqi Hong, Guta Abeshu, Hong-Yi Li, Dingbao Wang, Mengqi Zhao, Thomas Wild, Günter Blöschl, and Ruby Leung
EGUsphere, https://doi.org/10.5194/egusphere-2025-5039,https://doi.org/10.5194/egusphere-2025-5039, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Disentangling atmospheric, hydrological, and coupling uncertainties in compound flood modeling within a coupled Earth system model
Dongyu Feng, Zeli Tan, Darren Engwirda, Jonathan D. Wolfe, Donghui Xu, Chang Liao, Gautam Bisht, James J. Benedict, Tian Zhou, Mithun Deb, Hong-Yi Li, and L. Ruby Leung
Nat. Hazards Earth Syst. Sci., 25, 3619–3639, https://doi.org/10.5194/nhess-25-3619-2025,https://doi.org/10.5194/nhess-25-3619-2025, 2025
Short summary
An efficient hybrid downscaling framework to estimate high-resolution river hydrodynamics
Zeli Tan, Donghui Xu, Sourav Taraphdar, Jiangqin Ma, Gautam Bisht, and L. Ruby Leung
Hydrol. Earth Syst. Sci., 29, 3833–3852, https://doi.org/10.5194/hess-29-3833-2025,https://doi.org/10.5194/hess-29-3833-2025, 2025
Short summary
A derecho climatology (2004–2021) in the United States based on machine learning identification of bow echoes
Jianfeng Li, Andrew Geiss, Zhe Feng, L. Ruby Leung, Yun Qian, and Wenjun Cui
Earth Syst. Sci. Data, 17, 3721–3740, https://doi.org/10.5194/essd-17-3721-2025,https://doi.org/10.5194/essd-17-3721-2025, 2025
Short summary

Cited articles

Caesar, L., Rahmstorf, S., Robinson, A., Feulner, G., and Saba, V.: Observed fingerprint of a weakening Atlantic Ocean overturning circulation, Nature, 556, 191–196, 2018. a
Caldwell, P. M., Mametjanov, A., Tang, Q., Van Roekel, L. P., Golaz, J.-C., Lin, W., Bader, D. C., Keen, N. D., Feng, Y., Jacob, R., et al.​​​​​​​: The DOE E3SM coupled model version 1: Description and results at high resolution, J. Adv. Model. Earth Sy., 11, 4095–4146, 2019. a
Chen, X., Leung, L. R., Wigmosta, M., and Richmond, M.: Impact of atmospheric rivers on surface hydrological processes in western US watersheds, J. Geophys. Res.-Atmos., 124, 8896–8916, 2019. a
Chiang, J. C., Fischer, J., Kong, W., and Herman, M. J.: Intensification of the pre-Meiyu rainband in the late 21st century, Geophys. Res. Lett., 46, 7536–7545, 2019. a
Corringham, T. W., Ralph, F. M., Gershunov, A., Cayan, D. R., and Talbot, C. A.: Atmospheric rivers drive flood damages in the western United States, Science Advances, 5, eaax4631, https://doi.org/10.1126/sciadv.aax4631, 2019. a
Download
Short summary
The Energy Exascale Earth System Model (E3SM) project is a state-of-the-science Earth system model developed by the US Department of Energy (DOE). Understanding how the water cycle behaves in this model is of particular importance to the DOE’s mission. Atmospheric rivers (ARs) – which are crucial to the global water cycle – move vast amounts of water vapor through the sky and produce rain and snow. We find that this model reliably represents atmospheric rivers around the world.
Share