Articles | Volume 15, issue 14
https://doi.org/10.5194/gmd-15-5441-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-15-5441-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Block-structured, equal-workload, multi-grid-nesting interface for the Boussinesq wave model FUNWAVE-TVD (Total Variation Diminishing)
Young-Kwang Choi
Center for Applied Coastal Research, University of Delaware, Newark, DE 19716, USA
Task Force for Construction of RV ISABU Support Facility, Korea Institute of Ocean Science and Technology, Busan Metropolitan City, Republic of Korea
Fengyan Shi
CORRESPONDING AUTHOR
Center for Applied Coastal Research, University of Delaware, Newark, DE 19716, USA
Matt Malej
Coastal and Hydraulics Laboratory, US Army Engineer Research and Development Center, US Army Corps of Engineers, 3909 Halls Ferry Rd., Vicksburg, MS 39180, USA
Jane M. Smith
Coastal and Hydraulics Laboratory, US Army Engineer Research and Development Center, US Army Corps of Engineers, 3909 Halls Ferry Rd., Vicksburg, MS 39180, USA
James T. Kirby
Center for Applied Coastal Research, University of Delaware, Newark, DE 19716, USA
Stephan T. Grilli
Department of Ocean Engineering, University of Rhode Island, Narragansett, RI 20882, USA
Related authors
No articles found.
Yuksel R. Alkarem, Ian Ammerman, Kimberly Huguenard, Richard W. Kimball, Babak Hejrati, Amrit Verma, Amir R. Nejad, Reza Hashemi, and Stephan Grilli
Wind Energ. Sci., 10, 2475–2488, https://doi.org/10.5194/wes-10-2475-2025, https://doi.org/10.5194/wes-10-2475-2025, 2025
Short summary
Short summary
Laboratory testing campaigns for the wind energy industry play an essential role in testing innovative control strategies and digital twin applications. But incidents during testing can be detrimental and might cause project delays and damage to expensive equipment. We propose an anomaly detection scheme for laboratory experiments that are developed and tested to enhance reaction time and prediction quality, reducing the likelihood of damage to equipment due to human error or software malfunction.
Ali Abdolali, Saeideh Banihashemi, Jose Henrique Alves, Aron Roland, Tyler J. Hesser, Mary Anderson Bryant, and Jane McKee Smith
Geosci. Model Dev., 17, 1023–1039, https://doi.org/10.5194/gmd-17-1023-2024, https://doi.org/10.5194/gmd-17-1023-2024, 2024
Short summary
Short summary
This article presents an overview of the development and implementation of Great Lake Wave Unstructured (GLWUv2.0), including the core model and workflow design and development. The validation was conducted against in situ data for the re-forecasted duration for summer and wintertime (ice season). The article describes the limitations and challenges encountered in the operational environment and the path forward for the next generation of wave forecast systems in enclosed basins like the GL.
Cited articles
Abdolali, A. and Kirby, J. T.: Role of compressibility on tsunami propagation,
J. Geophys. Res.-Oceans, 122, 9780–9794,
https://doi.org/10.1002/2017JC013054, 2017. a
Abdolali, A., Kadri, U., and Kirby, J. T.: Effect of water compressibility,
sea-floor elasticity, and field gravitational potential on tsunami phase
speed, Sci. Rep., 9, 1–8,
https://doi.org/10.1038/s41598-019-52475-0, 2019. a
Allgeyer, S. and Cummins, P.: Numerical tsunami simulation including elastic
loading and seawater density stratification, Geophys. Res. Lett.,
41, 2368–2375, https://doi.org/10.1002/2014GL059348, 2014. a
Amante, C. and Eakins, B. W.: ETOPO1 arc-minute global relief model:
procedures, data sources and analysis, Technical Report, NOAA Technical
Memorandum NESDIS NGDC-24, 2009. a
Arcos, M. E. M. and LeVeque, R. J.: Validating velocities in the GeoClaw
tsunami model using observations near Hawaii from the 2011 Tohoku tsunami,
Pure Appl. Geophys., 172, 849–867,
https://doi.org/10.1007/s00024-014-0980-y, 2015. a
Berger, M. J. and Leveque, R. J.: Adaptive mesh refinement using
wave-propagation algorithms for hyperbolic systems, SIAM J. Numer.
Anal., 35, 2298–2316,
https://doi.org/10.1137/S0036142997315974, 1998. a
Berger, M. J. and Oliger, J.: Adaptive mesh refinement for hyperbolic partial
differential equations, J. Comput. Phys., 53, 484–512,
https://doi.org/10.1016/0021-9991(84)90073-1, 1984. a
Berkhoff, J. C. W., Booy, N., and Radder, A. C.: Verification of numerical wave
propagation models for simple harmonic linear water waves, Coast.
Eng., 6, 255–279,
https://doi.org/10.1016/0378-3839(82)90022-9, 1982. a, b, c
Chakrabarti, A., Brandt, S. R., Chen, Q., and Shi, F.: Boussinesq modeling of
wave-induced hydrodynamics in coastal wetlands, J. Geophys. Res.-Oceans, 122, 3861–3883,
https://doi.org/10.1002/2016JC012093, 2017. a, b
Chen, Q.: Fully nonlinear Boussinesq-type equations for waves and currents over
porous beds, J. Eng. Mech., 132, 220–230,
https://doi.org/10.1061/(ASCE)0733-9399(2006)132:2(220),
2006. a
Choi, Y.-K., Shi, F., Malej, M., and Smith, J. M.: Performance of various
shock-capturing-type reconstruction schemes in the Boussinesq wave model,
FUNWAVE-TVD, Ocean Model., 131, 86–100,
https://doi.org/10.1016/j.ocemod.2018.09.004, 2018. a, b
Debreu, L. and Blayo, E.: Two-way embedding algorithms: a review, Ocean
Dynam., 58, 415–428,
https://doi.org/10.1007/s10236-008-0150-9, 2008. a
Debreu, L., Marchesiello, P., Penven, P., and Cambon, G.: Two-way nesting in
split-explicit ocean models: Algorithms, implementation and validation, Ocean
Model., 49, 1–21,
https://doi.org/10.1016/j.ocemod.2012.03.003, 2012. a, b
Dubey, A., Almgren, A., Bell, J., Berzins, M.,
Brandt, S., Bryan, G., Colella, P., Graves, D.,
Lijewski, M., Löffler, F., O’Shea, B.,
Schnetter, E., van Straalen, B., and Weide,
K.: A survey of high level
frameworks in block-structured adaptive mesh refinement packages, J.
Parallel Distr. Com., 74, 3217–3227,
https://doi.org/10.1016/j.jpdc.2014.07.001, 2014. a, b, c, d
Erduran, K., Ilic, S., and Kutija, V.: Hybrid finite-volume finite-difference
scheme for the solution of Boussinesq equations, Int. J.
Numer. Meth. Fl., 49, 1213–1232,
https://doi.org/10.1002/fld.1021, 2005. a
George, D. L. and LeVeque, R. J.: High-resolution methods and adaptive
refinement for tsunami propagation and inundation, in: Hyperbolic problems:
theory, numerics, applications, Springer, 541–549,
https://doi.org/10.1007/978-3-540-75712-2_52, 2008. a, b
Glimsdal, S., Pedersen, G. K., Harbitz, C. B., and Løvholt, F.: Dispersion of tsunamis: does it really matter?, Nat. Hazards Earth Syst. Sci., 13, 1507–1526, https://doi.org/10.5194/nhess-13-1507-2013, 2013. a
Gottlieb, S., Shu, C.-W., and Tadmor, E.: Strong stability-preserving
high-order time discretization methods, SIAM Rev., 43, 89–112,
https://doi.org/10.1137/S003614450036757X, 2001. a
Grilli, S. T., Tappin, D. R., Carey, S.,
Watt, S. F. L., Ward, S. N., Grilli, A. R., Engwell, S. L., Zhang, C., Kirby, J. T., Schambach, L., and Muin,
M.: Numerical simulation of the
2011 Tohoku tsunami based on a new transient FEM co-seismic source:
Comparison to far-and near-field observations, Pure Appl. Geophys.,
170, 1333–1359, https://doi.org/10.1007/s00024-012-0528-y,
2013. a, b, c
Grilli, S. T., O’reilly, C., Harris, J. C., Tajalli
Bakhsh, T., Tehranirad, B., Banihashemi, S.,
Kirby, J. T., Baxter, C. D. P., Eggeling, T.,
Ma, G., and Shi, F.:
Modeling of SMF tsunami hazard along the upper US East Coast: detailed impact
around Ocean City, MD, Nat. Hazards, 76, 705–746,
https://doi.org/10.1007/s11069-014-1522-8, 2015. a, b
Grilli, S. T., Shelby, M., Kimmoun, O., Dupont, G., Nicolsky, D., Ma, G.,
Kirby, J. T., and Shi, F.: Modeling coastal tsunami hazard from submarine
mass failures: effect of slide rheology, experimental validation, and case
studies off the US East Coast, Nat. Hazards, 86, 353–391,
https://doi.org/10.1007/s11069-016-2692-3, 2017. a, b
Grilli, S. T., Tappin, D. R., Carey, S., Watt, S. F., Ward, S. N., Grilli,
A. R., Engwell, S. L., Zhang, C., Kirby, J. T., Schambach, L., et al.:
Modelling of the tsunami from the December 22, 2018 lateral collapse of Anak
Krakatau volcano in the Sunda Straits, Indonesia, Sci. Rep., 9,
1–13, https://doi.org/10.1038/s41598-019-48327-6, 2019. a
Grothe, P. R., Taylor, L. A., Eakins, B. W., Carignan, K. S., Caldwell, R. J.,
Lim, E., and Friday, D. Z.: Digital elevation models of Crescent City,
California: Procedures, data sources, and analysis, NOAA Technical Memorandum
NESDIS NGDC-51,
https://repository.library.noaa.gov/view/noaa/1188 (last access: 10 January 2015), 2011. a
Horrillo, J., Knight, W., and Kowalik, Z.: Tsunami propagation over the north
Pacific: dispersive and nondispersive models, Science of Tsunami Hazards, 31,
154–177, 2012. a
Ioualalen, M., Asavanant, J., Kaewbanjak, N., Grilli, S. T., Kirby, J. T., and Watts,
P.: Modeling the 26 December 2004 Indian Ocean tsunami: Case study of impact
in Thailand, J. Geophys. Res.-Oceans, 112, 1–21,
https://doi.org/10.1029/2006JC003850, 2007. a
Kennedy, A. B., Kirby, J. T., Chen, Q., and Dalrymple, R. A.: Boussinesq-type
equations with improved nonlinear performance, Wave Motion, 33, 225–243,
https://doi.org/10.1016/S0165-2125(00)00071-8, 2001. a
Kirby, J. T.: Boussinesq models and their application to coastal processes
across a wide range of scales, J. Waterway, Port, Coastal, and Ocean
Engineering, 142, 03116005,
https://doi.org/10.1061/(ASCE)WW.1943-5460.0000350, 2016. a
Kirby, J. T., Wei, G., Chen, Q., Kennedy, A. B., and Dalrymple, R. A.: FUNWAVE
1.0: fully nonlinear Boussinesq wave model-Documentation and user's manual,
Research Report NO. CACR-98-06, 1998. a
Liang, Q.: A simplified adaptive Cartesian grid system for solving the 2D
shallow water equations, Int. J. Numer. Meth.
Fl., 69, 442–458, https://doi.org/10.1002/fld.2568, 2012. a, b, c, d
Liang, Q., Hou, J., and Xia, X.: Contradiction between the C-property and mass
conservation in adaptive grid based shallow flow models: cause and solution,
Int. J. Numer. Meth. Fl., 78, 17–36,
https://doi.org/10.1002/fld.4005, 2015. a
Löffler, F., Brandt, S. R., Allen, G., and Schnetter, E.: Cactus: Issues
for sustainable simulation software, J. Open Res. Softw., 2,
e12, https://doi.org/10.5334/jors.au, 2014. a
Lynett, P. J., Swigler, D., Son, S., Bryant, D., and Socolofsky, S.:
Experimental study of solitary wave evolution over a 3D shallow shelf,
Coastal Engineering Proceedings, 1, 1–11,
https://doi.org/10.9753/icce.v32.currents.1, 2010. a, b, c
Ma, G., Shi, F., and Kirby, J. T.: Shock-capturing non-hydrostatic model for
fully dispersive surface wave processes, Ocean Model., 43, 22–35,
https://doi.org/10.1016/j.ocemod.2011.12.002, 2012. a, b
Madsen, P. A., Fuhrman, D. R., and Schäffer, H. A.: On the solitary wave
paradigm for tsunamis, J. Geophys. Res.-Oceans, 113, 1–22,
https://doi.org/10.1029/2008JC004932, 2008. a
Naik, N. H., Naik, V. K., and Nicoules, M.: Parallelization of a class of
implicit finite difference schemes in computational fluid dynamics,
Int. J. High Speed Com., 5, 1–50,
https://doi.org/10.1142/S0129053393000025, 1993. a, b
Nemati, F., Grilli, S. T., Ioualalen, M., Boschetti, L., Larroque, C., and
Trevisan, J.: High-resolution coastal hazard assessment along the French
Riviera from co-seismic tsunamis generated in the Ligurian fault system,
Nat. Hazards, 96, 553–586,
https://doi.org/10.1007/s11069-018-3555-x, 2019. a
NOAA National Geophysical Data Center: U.S. Coastal Relief Model Vol.7 –
Central Pacific, NOAA National Centers for Environmental Information,
https://doi.org/10.7289/V50Z7152, 2003. a
Oler, A., Zhang, N., Brandt, S. R., and Chen, Q.: Implementation of an
Infinite-Height Levee in CaFunwave Using an Immersed-Boundary Method, J. Fluid. Eng., 138, 1–9,
https://doi.org/10.1115/1.4033490, 2016. a
Schambach, L., Grilli, S. T., Kirby, J. T., and Shi, F.: Landslide tsunami
hazard along the upper US East Coast: effects of slide deformation, bottom
friction, and frequency dispersion, Pure Appl. Geophys., 176,
3059–3098, https://doi.org/10.1007/s00024-018-1978-7, 2019. a, b, c, d
Schambach, L., Grilli, S., Tappin, D., Gangemi, M., and Barbaro, G.: New
simulations and understanding of the 1908 Messina tsunami for a dual seismic
and deep submarine mass failure source, Mar. Geol., 421, 106093,
https://doi.org/10.1016/j.margeo.2019.106093, 2020. a, b
Shi, F.: fengyanshi/FUNWAVE-MGN: version 0.0 (0.0), Zenodo [code], https://doi.org/10.5281/zenodo.4735599, 2021. a
Shi, F., Tehranirad, B., Kirby, J. T., Harris J.
C., and Grilli S.: FUNWAVE-TVD: Fully
Nonlinear Boussinesq Wave Model with TVD
Solver – Documentation and User's Manual,
Research Report NO. CACR-11-04, Center
for Applied Coastal Research, Ocean
Engineering Laboratory, University of
Delaware, 77 pp., 2011. a, b
Skoula, Z., Borthwick, A., and Moutzouris, C.: Godunov-type solution of the
shallow water equations on adaptive unstructured triangular grids,
Int. J. Comput. Fluid D., 20, 621–636,
https://doi.org/10.1080/10618560601088327, 2006.
a
Sleigh, P., Gaskell, P., Berzins, M., and Wright, N.: An unstructured
finite-volume algorithm for predicting flow in rivers and estuaries,
Comput. Fluids, 27, 479–508,
https://doi.org/10.1016/S0045-7930(97)00071-6, 1998. a
Tappin, D. R., Grilli, S. T., Harris, J. C., Geller, R. J., Masterlark, T.,
Kirby, J. T., Shi, F., Ma, G., Thingbaijam, K., and Mai, P. M.: Did a
submarine landslide contribute to the 2011 Tohoku tsunami?, Mar. Geol.,
357, 344–361, https://doi.org/10.1016/j.margeo.2014.09.043,
2014. a, b, c
Wang, D.: An ocean depth-correction method for reducing model errors in tsunami
travel time: application to the 2010 Chile and 2011 Tohoku tsunamis, Science
of Tsunami Hazards, 34, 1–22, 2015. a
Watanabe, Y., Mitobe, Y., Saruwatari, A., Yamada, T., and Niida, Y.: Evolution
of the 2011 Tohoku earthquake tsunami on the Pacific coast of Hokkaido,
Coast. Eng. J., 54, 1250002-1-1250002-17,
https://doi.org/10.1142/S0578563412500027, 2012. a
Wei, G. and Kirby, J. T.: Simulation of water
waves by Boussinesq models, Research
Report NO. CACR-98-02, Center for Applied
Coastal Research, Ocean Engineering
Laboratory, University of Delaware, 202 pp.,
1998. a
Wei, G., Kirby, J. T., Grilli, S. T., and Subramanya, R.: A fully nonlinear
Boussinesq model for surface waves. Part 1. Highly nonlinear unsteady waves,
J. Fluid Mech., 294, 71–92,
https://doi.org/10.1017/S0022112095002813, 1995. a, b
Wilson, R., Davenport, C., and Jaffe, B.: Sediment scour and deposition within
harbors in California (USA), caused by the March 11, 2011 Tohoku-oki tsunami,
Sediment. Geol., 282, 228–240,
https://doi.org/10.1016/j.sedgeo.2012.06.001, 2012. a
Yamazaki, Y., Cheung, K. F., and Kowalik, Z.: Depth-integrated, non-hydrostatic
model with grid nesting for tsunami generation, propagation, and run-up,
Int. J. Numer. Meth. Fl., 67, 2081–2107,
https://doi.org/10.1002/fld.2485, 2011. a
Yuan, Y., Shi, F., Kirby, J. T., and Yu, F.: FUNWAVE-GPU: Multiple-GPU
Acceleration of a Boussinesq-Type Wave Model, J. Adv. Model.
Earth Sy., 12, e2019MS001957,
https://doi.org/10.1029/2019MS001957, 2020. a
Zhou, H., Wei, Y., and Titov, V. V.: Dispersive modeling of the 2009 Samoa
tsunami, Geophys. Res. Lett., 39, 1–5,
https://doi.org/10.1029/2012GL053068, 2012. a
Short summary
The multi-grid-nesting technique is an important methodology used for modeling transoceanic tsunamis and coastal effects. In this study, we developed a two-way nesting interface in a multi-grid-nesting system for the Boussinesq wave model FUNWAVE-TVD. The interface acts as a
backboneof the nesting framework, handling data input, output, time sequencing, and internal interactions between grids at different scales.
The multi-grid-nesting technique is an important methodology used for modeling transoceanic...