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Abstract. We describe the development of a block-
structured, equal-CPU-load (central processing unit), multi-
grid-nesting interface for the Boussinesq wave model
FUNWAVE-TVD (Fully Nonlinear Boussinesq Wave Model
with Total Variation Diminishing Solver). The new model
framework does not interfere with the core solver, and thus
the core program, FUNWAVE-TVD, is still a standalone
model used for a single grid. The nesting interface manages
the time sequencing and two-way nesting processes between
the parent grid and child grid with grid refinement in a hierar-
chical manner. Workload balance in the MPI-based (message
passing interface) parallelization is handled by an equal-load
scheme. A strategy of shared array allocation is applied for
data management that allows for a large number of nested
grids without creating additional memory allocations. Four
model tests are conducted to verify the nesting algorithm
with assessments of model accuracy and the robustness in the
application in modeling transoceanic tsunamis and coastal
effects.

1 Introduction

To improve the resilience of the world’s highly populated
coastal areas to tsunami hazard when tsunamigenic events
(typically earthquakes or landslides) occur, there has been

an increasing need for issuing early warnings and near- and
far-field forecasts of tsunami coastal impact. This has led
to a growing demand for accurate and efficient models of
transoceanic tsunami propagation, in multiple-level nested-
grid systems that allow for refining the discretization towards
shore, as depth decreases. Models predicting tsunami wave
evolution from generation at the source to propagation at the
ocean basin scale, transformation over the shelf, and coastal
inundation in the nearshore scale are typically based on
the non-dispersive nonlinear shallow-water wave equations
(NSWEgs, e.g., GeoClaw; George and LeVeque, 2008), dis-
persive Boussinesq-type equations such as FUNWAVE-TVD
(Fully Nonlinear Boussinesq Wave Model with Total Varia-
tion Diminishing Solver; e.g., Shi et al., 2012; Kirby et al.,
2013), or non-hydrostatic wave equations such as NHWAVE
(Non-Hydrostatic WAVE model; e.g., Ma et al., 2012; Tappin
et al., 2014; Grilli et al., 2019). Modeling studies of tsunami
propagation in the ocean with and without dispersion have in-
dicated that, even for co-seismic tsunamis, frequency disper-
sion effects can accumulate to a sufficient degree to change
waveforms, altering the spatial distribution of wave eleva-
tions and coastal inundation (Ioualalen et al., 2007; Horrillo
et al., 2012; Zhou et al., 2012; Kirby et al., 2013; Glimsdal
et al., 2013; Kirby, 2016). Due to wave dispersion and non-
linearity, tsunami wave crests often evolve into undular bores
(a.k.a. dispersive shock waves) as they approach the shore-
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line, an effect which may significantly increase tsunami im-
pact (i.e., currents and forces) on coastal structures (Madsen
et al., 2008; Schambach et al., 2019). For landslide-generated
tsunamis, wavelengths are relatively shorter, and thus wave
dispersion effects cannot be neglected (e.g., Ma et al., 2012;
Grilli et al., 2015, 2017; Schambach et al., 2019). As shown
in the above studies, the magnitude of dispersive effects at
given locations is a priori unknown; hence, it can only be es-
timated by performing simulations with a dispersive models
for each specific event, whether hypothetical, historical, or in
real time. With this realization, in the last decade, modelers
have gradually acknowledged the need for using a dispersive
wave model to accurately assess tsunami hazard, especially
nearshore effects. A Boussinesq-type wave model appears to
be a more appropriate tool for performing tsunami simula-
tions relative to other types of dispersive wave models, such
as models based on the non-hydrostatic wave equations, be-
cause the frequency dispersion effects are manifested by so-
called “dispersive terms” in the equations, avoiding the pres-
sure Poisson solver, which is unaffordable for ocean-basin-
scale simulations.

Although some models use irregular grids or adaptive
mesh refinement, the traditional way for carrying out multi-
scale tsunami modeling has been to use nested grids, with
either a one-way nesting or a two-way nesting method. The
grid-nesting method is usually performed by nesting a fine
grid within a coarse grid in a two- or multi-grid system with
the hierarchical structure from coarser (lower-level) to finer
grids (upper-level). In a one-way nesting, the model at an
upper level is forced by the boundary conditions obtained
from the output of the lower-level model. There is no feed-
back from the upper-level grid to the lower-level grid. The
nesting process can be done offline manually by running the
model from the lower-level grid to the upper-level grid with-
out an additional interface developed in the model. Kirby
et al. (2013), Tappin et al. (2014), Nemati et al. (2019), and
Schambach et al. (2019, 2020), for instance, are recent ex-
amples of using many levels of one-way nested spherical
and/or Cartesian grids, with FUNWAVE and/or NHWAVE,
varying from a few meters or tens of meters nearshore to 1
or 2 arcmin in the deep ocean. In a two-way nesting, the pro-
cedure to force the upper-level grid model is the same as the
one-way nesting, but the feedback from the fine grid to the
coarse grid is taken into account by updating the coarse-grid
solution with the fine-grid solution. To achieve this, the cal-
culations at all grid levels have to perform simultaneously. To
this effect, an interface to handle the interactions between the
nested grids has to be developed, which involves a significant
programming effort.

Multi-scale tsunami modeling may also be carried out us-
ing adaptive mesh refinement (AMR). In an AMR model,
the calculations at all grid levels have to perform simulta-
neously, in which the grid resolution is adaptively refined
as a function of chosen features of the flow field, such as
a high spatial gradient in the solution. AMR can be imple-
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mented using either an unstructured (e.g., Sleigh et al., 1998;
Skoula et al., 2006) or a block-structured scheme (Berger
and Oliger, 1984; Berger and Leveque, 1998; Liang, 2012).
The latter is very similar to the two-way grid nesting men-
tioned above, except that the grid refinement is processed
dynamically rather than prescribed using static subdomains
in the traditional two-way nesting framework. Over the last
decade, the AMR technique has found increasing use in pub-
licly available codes (see the review paper by Dubey et al.,
2014). In tsunami applications, the AMR technique has been
used in the NSWE-based models such as GeoClaw (George
and LeVeque, 2008; Watanabe et al., 2012; Arcos and LeV-
eque, 2015). For Boussinesg-type wave models, however,
the higher-order numerical schemes and tridiagonal matri-
ces, which are derived on a structured grid system, make
it challenging to implement a quadtree-structured AMR; al-
though a block-structured AMR is relatively easier to imple-
ment, its efficiency may be penalized by the high data man-
agement and computational costs when solving the complex
nonlinear dispersive equations at multi-grid levels. There-
fore, the AMR technique has rarely been applied to solving
Boussinesq-type wave equations.

In practical applications of multi-scale tsunami modeling
using a dispersive wave model, the traditional multi-grid one-
way nesting approach has proved efficient and accurate when
focusing on nearshore effects, provided the nearshore grid
refinement ratio (i.e., ratio of discretization size from one
nested grid to the next) is 4 or smaller. As the coastal area of
interest is usually predetermined when setting up the model,
the grid refinement can be generated at the beginning and
remain unchanged throughout the entire simulation. Besides
other applications mentioned above, a typical recent exam-
ple is FUNWAVE-TVD simulations of the far-field effects of
the 2011 Tohoku-Oki tsunami in the Crescent City harbor,
Crescent City, California (Tehranirad et al., 2021), using a
nested-grid system including the ocean basin, regional, and
nearshore harbor domains, as shown in Fig. 1. The basin-
scale grid has a 2 arcmin resolution, covering the entire Pa-
cific Ocean; the nested grids are then specified in five levels
along the US West Coast, with a hierarchical structure from a
resolution of 16 to 1/6 arcsec, downsizing towards the Cres-
cent City harbor, Crescent City, California, domain. The fully
nonlinear Boussinesq model FUNWAVE-TVD (Shi et al.,
2012; Kirby et al., 2013) is used in each individual grid with
a one-way nesting scheme performed by applying the bound-
ary conditions obtained from a lower-level grid model. While
this nesting process is straightforward, it involves consider-
able post-processing effort to manipulate and interpolate re-
sults from one level of nested grid to prepare data for simu-
lating the next level grid. In addition, the one-way nesting
scheme may cause inconsistencies between different grids
because of wave reflection at model boundaries. For exam-
ple, in the case of the Crescent City harbor, Crescent City,
California, simulation mentioned above, the edge wave ef-
fects were not modeled properly due to the limitation of
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the small local domains and the one-way nesting algorithm
(Tehranirad et al., 2021).

Yamazaki et al. (2011) implemented a two-way nesting
method in their dispersive depth-integrated, non-hydrostatic
wave model for tsunami applications. The nesting model
framework was based on a block-structured scheme with
multiple prescribed nested grids. They used this model to
simulate the 2009 Samoa tsunami and the coastal inunda-
tion caused in the Pago Pago harbor and reported good ef-
ficiency and accuracy of the two-way nesting model frame-
work. However, it is not clear whether this two-way nest-
ing scheme was parallelized and how the mega-data structure
was handled in the nesting framework. Recently, Chakrabarti
et al. (2017) implemented the fully nonlinear and dispersive
Boussinesq model FUNWAVE-TVD in the block-structured
AMR framework Cactus, which has been widely used in
the field of astrophysics (Loffler et al., 2014). They showed
that shallow-water waves could be simulated at higher res-
olution, with a reasonable computational cost, which also
allowed using an improved higher-order representation of
the vegetation drag force. However, in this application, the
nested grids were statically prescribed to reduce the com-
putational cost from using dynamically adapted grids with
a Boussinesq-type model. In addition, the Cactus-based ver-
sion of FUNWAVE-TVD relies on a specific library package
and configuration (Oler et al., 2016), limiting its general ap-
plications in the large user community.

There are significant challenges implementing an AMR
and two-way multi-grid-nesting framework in a parallel com-
puting environment. Load balance, communication between
parent and child grids, and mega-data management are major
issues in MPI-based (message passing interface) programs.
Load balance is important for CPU (central processing unit)
scaling, in terms of synchronization of solutions across re-
finement levels. Dubey et al. (2014) reviewed load balanc-
ing methods in several public-domain AMR packages and
pointed out the difficulties in achieving workload balance
in the AMR framework. In a parallel multi-level grid sys-
tem, the parent—child grid communication is also critical to
modeling efficiency. Strategies to build direct communica-
tion between multi-level grids cross-ranks can be found in
many AMR packages (Dubey et al., 2014). A multi-level grid
system makes the mega-data management more complex, es-
pecially for tree-structured data. Finally, it is important to
optimize the amount of mega-data replication according to
both the communication cost and memory cost (Dubey et al.,
2014).

The limitation of the prior Cactus implementation of
an AMR version of FUNWAVE-TVD to a specific high-
performance computing (HPC) platform (Chakrabarti et al.,
2017) motivates the development of a more platform-
independent implementation of a two-way nesting scheme.
The primary objective for the present development is to pro-
vide a generic interface which can be used with any HPC
platforms. The interface is used as a master program to man-
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age model input/output, the time sequencing, and two-way
nesting processes between grids at two different levels. Data
exchanges between parent and child grids are performed us-
ing the linear interpolator and restriction operator. We used
an equal-load scheme in workload balance and applied a
strategy of shared array allocation for data management. The
interface is developed separately from the core program and
does not interfere with the main solver of FUNWAVE-TVD.
Hence, the package of the combined interface and core pro-
gram can be updated concurrently.

In the following, a brief description of the FUNWAVE-
TVD model is given in Sect. 2. Section 3 describes the two-
way nesting interface, including the general algorithm, work-
load balance, and flowchart of a master program. Applica-
tions are presented in Sect. 4. Section 5 provides a summary
of the present study.

2 FUNWAVE-TVD

2.1 The TVD version of the fully nonlinear Boussinesq
model

The scope of the present work is to develop a multi-grid-
nesting framework for the Boussinesq-type wave model
FUNWAVE-TVD, a widely used public-domain model in
the nearshore and tsunami research community. FUNWAVE
was initially developed by Kirby et al. (1998) based on
the fully nonlinear Boussinesq equations derived by Wei
et al. (1995). The development of the Total Variation Di-
minishing (TVD) version of the model was motivated by a
growing demand for phase-resolving modeling of nearshore
waves and coastal inundation during storm or tsunami events.
The conservative form of the Boussinesq equations was dis-
cretized by a hybrid method combining finite-volume and
finite-difference TVD-type schemes. The model was devel-
oped in both the Cartesian coordinates (Cartesian mode;
Shi et al., 2012) and spherical coordinates (spherical mode;
Kirby et al., 2013). The Cartesian mode solves the fully
nonlinear Boussinesq equations, initially derived by Wei
et al. (1995), with the second-order correction of vertical
vorticity by Chen (2006) and the moving reference level
of Kennedy et al. (2001). The spherical mode solves the
weakly nonlinear, weakly dispersive Boussinesq equations
in spherical coordinates (Kirby et al., 2013). The code was
parallelized using the domain decomposition method based
on MPI for CPU-based high-performance computing (HPC)
clusters, and the GPU-accelerated (graphics processing unit)
program is for single- and multi-GPU systems (Yuan et al.,
2020). In tsunami applications, where nearshore waves are
expected to be strongly nonlinear, a combination of deep-
water spherical and nearshore Cartesian grids has often been
used in the one-way coupling nested-grid framework (e.g.,
Grilli et al., 2013, 2015, 2017; Schambach et al., 2019, 2020;
Tappin et al., 2014).
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Figure 1. The nested grids in the simulation of the 2011 Tohoku-Oki tsunami impact on Crescent City harbor, Crescent City, California
(Tehranirad et al., 2021). The nesting process scales down the grid resolution from 2 arcmin in the ocean basin domain to 1/6 arcsec in the
harbor domain. The same simulation was conducted using the present model nesting framework in Sect. 4.4. Courtesy of Google Maps ©

2021 Google, © TerraMetrics.

2.2 Governing equations in the Cartesian and spherical
coordinate systems

Although the sets of equations in Cartesian and spherical co-

ordinate systems are different, the two FUNWAVE modes

were developed within the same numerical framework and

using the same TVD-type solver. The combined form of the

Boussinesq equations in the two coordinate systems can be

written as

ow

— +V-0(¥) =S, )]
ot

where ¥ and @ (W) are the vector of conserved variables and

the flux vector function, respectively, given by

H
v=| U |,
Vv
SpPi+0Qj
S, P? . .
o=| |2 +ise?+2m]i+ 52 |, @)
S,PQ . 2 .
S @i [ % + hg 0P +20m) ] j
where (P, Q) are the horizontal volume fluxes of
(P,Q)=H(uy+us), 3

where H = h + n with & being the water depth and 7 being
the surface elevation; u, is the horizontal velocity vector at
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a reference depth z,; and u, is the depth-averaged second-
order horizontal velocity of 0(,u2), in which u is ratio of
characteristic water depth to a horizontal length, a dimen-
sionless parameter quantifying the magnitude of wave dis-
persion. The velocity components (U, V) combine u, and
the dispersive terms V7:

(U,V)=H(us+ V). “)

The velocity u,, is obtained by solving a system of equations
with a tridiagonal matrix formed by Eq. (4).

In Eq. (2), S, is the spherical coordinate correction factor
defined for the spherical mode as

cos by
p =

cosf’ ®)
in which 6 and 6 are the latitude and the reference lati-
tude, respectively (see Kirby et al., 2013). For the Cartesian
mode, S, = 1. The last term S in Eq. (1) contains the Boussi-
nesq source terms, which are detailed in Shi et al. (2012) for
the Cartesian mode and Kirby et al. (2013) for the spherical
mode.

2.3 Numerical schemes

In FUNWAVE-TVD, the HLL (Harten—-Lax—van Leer) Rie-
mann solver with several options of finite-volume schemes
in different orders of accuracy was implemented. By default,
the fourth-order accurate MUSCL-TVD scheme (monotonic

https://doi.org/10.5194/gmd-15-5441-2022



Y.-K. Choi et al.: Multi-grid-nesting FUNWAVE-TVD

upstream-centered scheme for conservation laws; Erduran
et al., 2005) was applied for discretizing the leading-order
spatial derivative terms of the equations, while the disper-
sive terms were discretized by a second-order centered fi-
nite difference scheme. Choi et al. (2018) compared the per-
formance of the MUSCL-TVD, WENO (weighted essen-
tially non-oscillatory), and MLP (multi-dimensional limiting
process) schemes in FUNWAVE-TVD and showed that the
MUSCL-TVD scheme with a van Leer limiter provides an
accurate and stable solution in long-term simulations. Here,
we only briefly present the basic methods related to the nest-
ing procedure in the present work. Readers interested in de-
tailed numerical schemes are referred to Shi et al. (2012) and
Choi et al. (2018).

For a time-stepping scheme, FUNWAVE-TVD uses the
third-order strong stability-preserving (SSP) Runge—Kutta
scheme (Gottlieb et al., 2001), with an adaptive time stepping
based on the Courant-Friedrichs—Lewy (CFL) condition pre-
scribed as

Ax . Ay ) ©)
, min ,
| +/gH| |ve ++/gH|

where C¢q is the Courant number and Ax and Ay are grid
sizes in the x and y directions, respectively.

Although the conservative equations of Eq. (1) are solved
explicitly using the HLL Riemann solver, a system of tridiag-
onal matrix equations derived from Eq. (3) needs to be solved
to get the velocity at the reference level, which is done with
Thomas’ algorithm (Naik et al., 1993).

Various boundary conditions were implemented in the
model, including a wall boundary condition, wave periodic
boundary condition, wavemaker boundary condition, and ab-
sorbing or partially absorbing boundary conditions. The wall
boundary condition is the main boundary condition, dealing
with either full wave reflection or a moving shoreline. Ghost
cells are used in the grid to implement a mirror boundary
condition. As mentioned earlier, the multi-grid interface is
developed separately from the core program, and each grid
in the nesting system runs the same core program for given
initial and boundary conditions.

At = Cegmin (min

2.4 Parallelization

The CPU code uses a domain decomposition technique to
subdivide the problem into multiple regions and assign each
subdomain to a separate processor core. Each subdomain re-
gion contains an overlapping area of ghost cells, which is
three rows deep, as required by the fourth-order MUSCL-
TVD scheme. MPI with non-blocking communication is
used to exchange data in the overlapping region between
neighboring processors. The tridiagonal matrices are solved
using the parallel pipelining tridiagonal solver described in
Naik et al. (1993).

Data exchanges between neighboring subdomains are con-
ducted through the ghost cells at every Runge—Kutta time
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step. To increase the model efficiency, the values of disper-
sive terms, in addition to the major variables (n, P, Q), are
also exchanged at the ghost cell boundaries.

3 Two-way nesting interface
3.1 Algorithm

For simplicity, we consider first a two-level nested-grid sys-
tem containing the parent grid ¢ and the child grid 2 as
shown in Fig. 2. The parent grid has a larger grid size Axo,
while the child grid has a smaller grid size Ax;. The grid re-
finement ratio is thus defined as s = Axp/Ax1. The boundary
of the child grid is denoted by I', which has ghost cells. Fol-
lowing the general procedure for two-way nesting, such as
detailed in Debreu and Blayo (2008), the partial differential
equation of Eq. (1) can be rewritten as

w_ L(¥) (7N
ar '

where L(W) =S — V- O (W) represents a general operator.

The equation is discretized in ¢ and €21 grids by

Wy oW,

W—LO(‘I’O)a W—Ll(‘l’l), (3)
respectively, where Lo and L denote the discretized form of
the same operator L at a different resolution. In the two-way
nesting framework, the child grid solution is driven by the
lateral boundary conditions along I, while the parent grid is
updated using the child grid solution. Noting that both of the
procedures need interpolation/mapping processes, we define
the interpolators /5 and I; and the restriction operator R. I
and /; perform interpolations in space and time, respectively,
at I', and R performs the mapping from the child grid solu-
tion to the parent grid solution. Assuming the grid refinement
factor s equals the time refinement factor based on the CFL
condition of Eq. (6), the two-way nesting can be described
by the following pseudo code:

Wyt = Lo(Wy")
loop i=1tos

Uy = L ()

with "5 |p = L (80"), (W)
endloop
‘I’0n+1 c Ql — R(‘I’1n+1).
Four ghost cells are used along I'. Here, we want to men-
tion that the number of ghost cells in the MPI-based paral-
lelization is three, as required by the higher-order numerical
schemes used in the model. The nesting scheme needs one

more cell for the requirement because of recalculating rather
than passing values of the ghost cells.

Geosci. Model Dev., 15, 5441-5459, 2022
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ghost cells

Figure 2. Schematic drawing for the two-way nesting method. The
parent grid 2 has a coarse-resolution grid, while the child grid €1
is high resolution. Ghost cells (four rows) are specified along the
inter-grid boundary, I".

Based on the assumption that the grid refinement factor
equals the time refinement factor and that the linear relation
between the time step and grid spacing holds in the CFL cri-
terion, the child time step between two parent time levels is
constant and can be written as

Alchild = Atparenl/s, &)

where Afparene and Afchilg denote the parent time step and
child time step, respectively. In addition, the tridiagonal
solver required to solve Eq. (4) in each child grid is per-
formed for given nesting boundary conditions at ghost cells.

3.2 Interpolator and restriction operator

In some two-way nesting methods used in 3D ocean mod-
els, the interpolator /s and I; and the restriction operator R
are complex due to issues raised by mass/momentum imbal-
ance, barotropic/baroclinic mode splitting, and the staggered
grid configuration (Debreu et al., 2012). To ensure mass and
momentum conservation during the two-way nesting, a cor-
rection may be needed at the nesting boundaries according
to specific numerical schemes. This especially occurs in a
nesting scheme using discretizations of the nonconservative
forms of mass and momentum equations, based on finite dif-
ferences, because the flux of mass or momentum is expressed
by a nonlinear term. Hence, typically, the mass flux (& + n)u
is no longer conserved when performing a linear interpola-
tion individually for n and u at a nesting boundary.
FUNWAVE-TVD is based on the conservative forms of
mass and momentum equations, in which advection is per-
formed using the finite-volume method (Shi et al., 2012).
The latter makes it possible to use a linear or doubly lin-
ear interpolator in the nesting method, without changing the
conservative property of the equations. In the AMR appli-
cation of an NSWE model, Liang (2012) demonstrated the
conservative property of the linear operator used in the finite-
volume Godunov-type scheme and, later, pointed out that the
operator preserves both mass conservation and the C prop-
erty (i.e., conservation property) as the wetting—drying pro-
cess involved in the grid nesting. FUNWAVE-TVD uses a
finite-volume scheme similar to Liang (2012) and Liang et al.
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Figure 3. Decomposed domain by MPI and the relation between
the parent processor ID and child processor ID.

(2015), and, therefore, its conservative property should be
maintained when applying a linear operator. Unlike Liang
(2012), who used a second-order scheme, FUNWAVE-TVD
applies a higher-order Godunov-type scheme; hence ghost
cells must be used along nesting boundaries.

Consequently, a doubly linear interpolation is applied to
ghost points in the child domain, using values from the parent
grid. Thus, at a ghost point (X, Y) in the child domain, which
is surrounded by four points, (x;j,yij), (Xit1,j,Yi+1,j)s
(Xi+1,j+1, Yi+1,j+1)s (Xi j+1,Yi j+1), in the parent domain,
a given variable ¢ is interpolated as

o1 =[agij+ (1 —a)pit1,j]b

+[agijr1+ A —a)pir1 1] (1—b), (10
where,
0= Xi+1,j b= Vi, j+1 7 (11
Xit1,j — Xij Vi, j+1 — Yij

where @i, @it1,j, @i j+1, @i+1,j+1 are values of the variable
in the parent domain.

The restriction operator uses linear averaging, which guar-
antees the conservation of mass and momentum. The restric-
tion operator can be expressed as

1 MM
2= MN;;%,,, (12)
where ¢, represents the averaged value passing to the parent
grid, ¢; ; is the value at (i, j) in the child grid, and (M, N)
represents the numbers of child grid cells in (x, y) directions
embedded in each parent grid cell.

Both the interpolator and the restriction operator are per-
formed to n, uy, vy, U and V, which pass the values back and
forth between the child domain €2 and the parent domain £2¢
in the two-way nesting process. It should be pointed out that
U and V are not necessarily included in the interpolation/re-
striction processes because they can be calculated based on
n, Uy, and v, . However, our tests show that directly using the
passed U and V can make the model more efficient and does
not affect the results much.
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MPI initialization

| Input data, including nested grid information |
v

| Array allocation and initialization |
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| Assignments of grid and boundary conditions (1, 4,,,V,.U,V) |

v
FUNWAVE-TVD @ridnu}

| Store boundary values for child grid |

v

| Update parent grids using child grids results (7,,,V,-U,V ") |

< conime >

Figure 4. Flowchart of the two-way nesting interface. t and n rep-
resent time and grid level, respectively.

3.3 Workload balance and data management

The MPI parallelization of FUNWAVE-TVD uses a 2D
Cartesian topology for the domain decomposition, which
subdivides the computational domain into a 2D grid, each
cell of which is assigned to a processor. The size of the
global arrays is not necessarily divisible by the number of
processors, but an evenly divisible configuration results in
a perfectly equal workload. To ensure workload balance
in computations involving multi-grid levels, we used the
same domain decomposition algorithm on all grid levels
with the same number of processors. This algorithm is espe-
cially efficient for block-structured or patch-structured nest-
ing schemes, as described in Debreu et al. (2012).

Figure 3 gives an example of the domain decomposition
and communication at two-grid levels in a system of nine
processors. Both the parent domain and the child domain
are decomposed evenly into a 3 x 3 grid, according to the
standard 2D Cartesian virtual topology used in the MPI li-
brary, with ranks named ID=1,2,...,9. For efficient com-
munication between the parent and child grids in the MPI-
based parallel-communication system, parent—child spatial
proximity is created at the beginning of the model run. The
parent—child proximity is associated with the parent proces-
sor IDs and the child processor IDs at the nesting boundaries
in the image distribution, as shown in Fig. 3. The parent—
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Figure 5. Wave generation from an initial 1 m elevation still-water
hump. The parent grid, Grid 1, covers the entire domain, and solid
and dashed lines mark the boundaries of Grid 2 and Grid 3, respec-
tively. Bullets mark locations of numerical wave gauges for com-
paring free-surface elevations.

child proximity records the spatial relation of processor IDs
between the parent and child grids and is saved in a param-
eter array. Therefore, the communication between the par-
ent and child grids can be carried out straightforwardly using
MPI_SEND and MPI_IRECV (MPI library) with the exist-
ing parameter array whenever a communication is needed.
In this example, along the west boundary of the child grid,
the child processors with ID =1, 2, and 3 communicate di-
rectly with parent processors with ID =4 and 5. In particu-
lar, the variables in the ghost cells located in child processor
ID = 1 are evaluated by the interpolator in the parent proces-
sor ID =4 and so on.

As mentioned in the Introduction, our goal in development
is to make a generic grid-nesting interface without altering
the main FUNWAVE-TVD code. To achieve this, we treated
the main program of the original model as a kernel, which
performs computations at all grid levels. The kernel is called
from the master program, which manages the time sequenc-
ing and nesting processes. A strategy of shared array alloca-
tion is used, whereby the arrays are allocated with the max-
imum dimension of all grids at the initialization stage, and
grids at all levels share the same memory allocations. For
example, in the case presented later in Sect. 4.1, the nesting
system has four grid levels, the dimensions of which are (48,
48), (73, 73), (92, 92), and (91, 91) for Grids 1-4, respec-
tively. A 2D array for n will be allocated in 7(92,92), the
maximum dimension among the four grids. The four grids
share the same array of 17(92,92), while the grids with a di-
mension smaller than (92, 92) only use part of the allocation,

Geosci. Model Dev., 15, 5441-5459, 2022
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Figure 6. Wave generation from an initial 1 m elevation still-water hump. Snapshots of surface elevations computed at =23 s in (a) two-
level grids, (b) three-level grids, and (c) four-level grids, with a discretization of 10, 5, 2.5, and 1.25 m, respectively (s =2), and (d) a
single-level grid with a resolution of 1.25 m. Dashed lines denote the boundary of child grids.

i.e., (48,48) for Grid 1, (73, 73) for Grid 2, and (91, 91) for
Grid 4. There is no additional array allocation needed for a
specific child grid with such a shared allocation strategy. It
can apparently save a significant amount of computer mem-
ory and does not create an extra burden for a large number of
nested grids.

Additional storage arrays are created to store the nesting
boundary conditions at different grid levels. There is no ad-
ditional data structure implemented in the mega-data man-
agement.

3.4 Flowchart

Figure 4 summarizes the flowchart of the master program.
After the MPI initialization, the program reads input data, in-
cluding model parameters needed in the original model and
nested-grid information. As mentioned earlier, array alloca-
tion and initialization are performed based on the maximum
dimension of all grid levels. Additional arrays for the stor-
age of boundary conditions are also allocated at this stage.
Then the program starts the main time loop based on time

Geosci. Model Dev., 15, 5441-5459, 2022

stepping of the background (first-level parent) grid. The cal-
culations at each grid level are conducted hierarchically in-
side the main time loop, with a time step based on Eq. (9).
At each grid level, the model is assigned by the initial condi-
tion (solution at the last time level) and boundary conditions
obtained from the I and I; interpolation processes. Then the
core FUNWAVE-TVD program is called at the grid level and
stores boundary values for the child grid. All parent grids are
updated based on the child grid results through the R process
after all subgrid levels computations are completed.

In summary, the hierarchical-type grid refinement pro-
cesses are sequential, and the synchronization is conducted
at each grid level. Therefore, there is no additional optimiza-
tion for MPI partitions needed for the nesting framework.

4 Applications

Hereafter we test our new two-way coupled nested-grid solu-
tion with FUNWAVE-TVD on a series of standard idealized
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Figure 7. The detailed comparison between two-level, three-level,
and four-level grids and single higher-resolution grid configurations
along the transect crossing (0, 0)—(250, 250) m.
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Figure 8. Computational domain and bottom topography of
Berkhoff et al. (1982) experiments of wave transformations over
a tilted elliptical shoal on a sloping bottom. The bold dashed line

box marks the area of the nested grid, Grid 2. Dashed lines (a)—(h)
are transects for model-data comparisons.

or benchmarking applications and then on the 2011 Tohoku-
Oki tsunami case study discussed earlier.

4.1 Evolution of an initial rectangular-shaped hump

The evolution of waves generated from an initial arbitrary
rectangular-shaped hump on the free surface is used to test
the consistency of the multi-grid-nesting system and effects
of the higher resolution resulting from the grid refinement.
As shown in Fig. 5, 2 100 m x 100 m hump with an elevation
of 1 m is specified, with no initial velocity, at the center of a
500 m x 500 m rectangular domain with a 5 m water depth.
Wall boundary conditions (fully reflective) are specified at
the four boundaries of the domain. The initial still-water level
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Figure 9. Experimental benchmark of Fig. 8. Snapshots of free-
surface elevation at + =40s, computed in (a) the single-grid and
(b) the nested-grid models.

can thus be defined as

0) — 1.0m, 200m <x <300m,200m <y <300m,
n(x,0) = 0.0m, elsewhere.

The consistency and accuracy of the two-way nested-grid
algorithm is first assessed by defining a three-level nested-
grid system with identical grid resolution Ax = Ay =2.5m
in Cartesian coordinates, hence a grid refinement ratio of s =
1. Grid 1 is the background parent grid, and Grids 2 and 3 are
nested grids located in 10.0m < x, y <247.5mand 30.0m <
x,y <207.5m, respectively. Because the refinement ratio is
1, the same numerical solution is expected whether nesting
is used or not. To verify this, surface elevation time series
were computed at four numerical wave gauges located at
(x,y) =(125,125), (375, 125), (125,375), and (375,375) m
(see Fig. 5). The bottom-left gauge is located within the two
nested grids, and its time series computed in Grid 3 is com-
pared to those at the three gauges located in Grid 1. Because
of the symmetry of the initial solution, results at the four
gauges should be identical, which was verified by the com-
parison (not shown here), hence assessing the consistency of
the nested-grid model.

Next, we examine the effects of grid refinement in a hierar-
chical nested-grid system for the same application. Here, the

Geosci. Model Dev., 15, 5441-5459, 2022
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Figure 10. Experimental benchmark of Fig. 8. Comparison of wave height distribution along transects (a)—(h) in (circles) experimental data

and results of the (dashed) single-grid and (solid) nested-grid models.

Grid 1 resolution is Ax = Ay = 10 m, and Grid 2 and Grid 3
are nested within Grid 1, as before, but with grid resolutions
of 5 and 2.5 m, respectively. Grid 2 is located in 10.0m <
x,y <245m,and Grid3isin35.0m < x,y <215m. An ad-
ditional grid, Grid 4, was added within Grid 3, located in
67.5m<x,y <181.25m with a grid resolution of 1.25m.
The dimensions for Grids 14 are (48, 48), (73, 73), (92, 92),
and (91, 91), respectively. Note that this is the example we
mentioned earlier in the last section to explain the strategy
of the shared array allocation. Three computations were per-
formed using two- to four-level nested grids. Additionally,
we carried out a test using a single grid with the highest res-
olution (1.25 m) for a comparison as suggested by one of the
reviewers. Figure 6 shows a comparison of surface elevation
computed at ¢ = 23 s between two- to four-level nested grids
and the single grid. Because wave dispersive effects are re-
lated to grid resolution, the solution in a finer grid is not ex-
actly the same as in a coarser grid, resulting in asymmetric
distributions of surface elevations in the figure. With a two-
level nested-grid system (Grids 1 and 2), Fig. 6a shows the
appearance of sharper crests (dark red) in Grid 2, as com-
pared to the solution in Grid 1. As more levels of nested grids
are used, Fig. 6b and ¢ show that shorter waves increasingly

Geosci. Model Dev., 15, 5441-5459, 2022

appear in the finer grids, consistent with the result from the
single fine grid. Figure 7 provides the detailed comparison
between the four grid configurations along the transect cross-
ing (0, 0)—(250,250) m. Short waves induced by the disper-
sion effect appear to be more and more apparent as nesting
levels increase, closer to the result from the single fine grid.

4.2 Wave refraction—diffraction over a shoal on a
sloping bottom topography

Although the main targeted applications of our new two-way
grid-nesting model system are tsunami simulations in multi-
scale cases, the method can also be applied to the model-
ing of ocean wave transformations in coastal areas. This is
demonstrated here by simulating the laboratory experiments
of Berkhoff et al. (1982), for wave refraction—diffraction over
a shoal on a 1/50 sloping bottom topography, both rotated
by 20° off the y axis (Fig. 8). This experimental dataset has
served as a standard benchmark for assessing the accuracy
and performances of numerical wave models for simulat-
ing wave shoaling, refraction, diffraction, and nonlinear dis-
persion. Shi et al. (2011) showed that the original version
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Figure 11. Solitary wave runup on a shelf with an island (Lynett
et al., 2010). Bathymetry contours (solid lines, in meters) and mea-
surement locations in the computational domain. The parent grid,
Grid 1, covers the entire domain; blocks with dashed lines mark
the boundaries of the nested grids, Grids 2 and 3. Symbols mark
locations of (L) physical/numerical wave gauges, E1-E9, and (A)
velocimeters (ADVs), V1-V3.

of FUNWAVE-TVD accurately reproduces measured wave
heights in this experiment.

Two numerical simulations were carried out for (i) the
original single-grid model and (ii) a two-level nested-grid
model (Fig. 8). Both models are set up in a rectangular do-
main with Cartesian coordinates, —13m < x <16.9m and
—10m <y < 10m. The single-grid model has grid resolu-
tions of Ax =0.025m and Ay =0.05m. In the two-level
grid model, Grid 1 is coarser with Ax =0.1m and Ay =
0.2 m resolutions, and the finer Grid 2 is nested in the region
of —9.9m<x <11.075m and —6m < y <6m, with a res-
olution of Ax = 0.025m and Ay = 0.05 m identical to those
of the single-grid model, corresponding to a grid refinement
ratio of thus s = 4. The total numbers of cells in Grid 1 and 2
are 30300 and 202 440, respectively, which is much smaller
than the 480 000 cells of the single-grid model.

In both model setups, regular waves with a period 7 =1 s
and an amplitude A =4.64cm are generated, as in experi-
ments, by a wavemaker located at x = —10m. Sponge lay-
ers with a width of 2m were specified on the left and right
boundaries of both the single-grid domain and Grid 1 in the
nested-grid model.

Figure 9 shows snapshots of surface elevation computed
att = 40 s in both model setups. Compared to the single-grid
model, which uses the finest grid resolution over the entire
domain, the nested-grid model, which only uses it in Grid 2,
shows that waves are numerically damped due to the coarse-
grid resolution used outside of Grid 2. Over the shoal and
slope behind it, results in both the nested Grid 2 and the sin-
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gle grid show similarly intense wave shoaling, refraction, and
diffraction patterns. However, in the nested-grid model, ad-
ditional spurious wave diffraction effects can be seen around
the lateral nesting boundaries due to the wave damping on
the coarse-grid side.

Figure 10 shows comparisons of both model results with
experimental data for the wave height variation along the
transects marked in Fig. 8. For all transects, both the single-
grid and nested-grid model results agree well with the data.
As expected from the spurious diffraction effects, compared
to the single-grid model, the nested-grid model predicts
slightly smaller wave heights at the ends of transects (a)—(e).

Regarding computational efficiency, in this application,
the cost of the nested-grid model is about 46.5 % of the
single-grid model. It should be mentioned that this test is
only for verification of the nested-grid algorithm and is not
a typical case for demonstrating the efficiency of the nested-
grid method.

4.3 Solitary wave runup on a shelf with an island

A second experimental benchmark, for the runup of a soli-
tary wave over a complex nearshore bathymetry with an is-
land (Fig. 11), is simulated to assess the accuracy of the
wetting and drying algorithm along the model shoreline, in
a nested-grid system. These experiments were performed in
the large wave basin of Oregon State University’s O.H. Hins-
dale Wave Research Laboratory (Lynett et al., 2010). The 3D
bathymetry was constructed in the 48.8 m long and 26.5m
wide basin, with a 2.1 m depth. It consists of a 1/30 plane
slope connected to a triangular shelf with a conical island
over the shelf (Figs. 11 and 12). Surface elevations were mea-
sured at nine locations using wave gauges (E1-E9 in Fig. 11),
and velocities were measured at three locations by acoustic
Doppler velocimeters (ADVs) (V1-V3in Fig. 11). Details of
the experiment can be found in Lynett et al. (2010). Shi et al.
(2012) applied the original version of FUNWAVE-TVD to
this case.

In the model simulations, a three-level nested-grid system
is set up with Grid 1, Grid 2, and Grid 3 shown in Fig. 11.
The model setup for Grid 1 is similar to Shi et al. (2012),
except that the grid resolution is coarser, with Ax = Ay =
0.4 m, versus 0.1 m in the original model. The nested grids,
Grid 2 and Grid 3, have 0.2 and 0.1 m resolution, respectively
(hence, s = 2), and are centered in the middle of the domain
where wetting and drying frequently occur due to the mov-
ing shoreline during runup. As measured in experiments, an
incident solitary wave of height H, = 0.39 m is specified in
Grid 1, in the constant depth &, = 0.78 m region on the left
side of the model, at —5m < x < 5 m, with its crest initially
located at x = 0. The initial solitary wave condition is based
on Nwogu’s extended Boussinesq equations (Wei and Kirby,
1998). With H,,/h, = 0.5 this represents a strongly nonlinear
incident wave. A summary of the nested-grid configuration is
given in Table 1.

Geosci. Model Dev., 15, 5441-5459, 2022
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Figure 12. Case of Fig. 11. Surface elevations simulated at r = 4.0, 6.5, 9.0, 14.5, 21.0, and 27.5 s in a nested-grid system.

Table 1. Grid information for the solitary wave experiment.

Domain  x range (m) y range (m) mx xny Ax, Ay (m)
Grid 1 —5.044.6 —13.0-13.0 66 x 125 0.4
Grid 2 54-39.2 —122-122 123 x 170 0.2
Grid 3 6.0-35.9 —7.0-7.0 141 x 300 0.1

Figure 12 shows snapshots of surface elevations simu-
lated in the nested-grid model, constructed using results from
all grids, wherever the highest-resolution results are avail-
able. Results show successively that wave breaking occurs
at t =4.0s; that edge waves collide behind the island at
t = 6.5s; and that a breaking bore forms at r = 9.0s, with its
front running up and down the upper slope and beach terrace,
from ¢ = 9.0 to 27.5 s. These are all quite complex processes
that appear well-resolved in the nested grids.

Geosci. Model Dev., 15, 5441-5459, 2022

Figure 13 shows the comparison of model results with ex-
perimental data for surface elevations measured at the nine
wave gauges (EI-E9 in Fig. 11). Results from the single-
grid model (with a grid resolution of 0.1 m) are also plotted
in the figure for comparison. Surface elevations simulated in
the new nested-grid model are quite close to those in the orig-
inal single-grid model, and both agree well with the experi-
mental data. Slight differences between the nested grid and
single-grid models can be seen at Gauge 9, likely because
this gauge is located in Grid 2, for which the resolution is
lower than that in the single-grid model; all the other gauges
are located in Grid 3, which has the same resolution as the
original single-grid model.

Figure 14 similarly compares time series of simulated and
measured mean horizontal velocity at three ADVs (V1-V3 in
Fig. 11). Results from the nested-grid model are all close to
those of the original single-grid model, and both agree well
with the data. We note that all ADVs are located in Grid 3,
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Figure 13. Case of Fig. 11. Comparison of surface elevations at wave gauges in (solid) experiments and (blue and red dashed, respectively)

results of the present nested and original FUNWAVE-TVD models.

Table 2. Grid parameters for the 2011 Tohoku-Oki tsunami simulation.

Domain Range of longitude Range of latitude mx x ny Resolution

(arcmin)
Grid 1 132.0000° E-68.0000° W 60.0000° S—60.0000° N 2400 x 1800 4
Grid 2 121.6000-154.9167° W 29.7500-49.7333° N 2000 x 1200 1
Grid 3 123.3083-138.3000° W 37.2000-45.5250° N 1800 x 1000 1/2
Grid 4 123.7458-127.0750° W 40.6750-43.1708° N 800 x 600 1/4
Grid 5 124.0479-125.1708° W 41.4750-42.4313° N 540 x 460 1/8
Grid 6 124.0948-124.3437° W 41.5833-41.8531°N 240 x 260 1/16
Grid 7 124.1599-124.2323° W 41.6844-41.7359° N 140 x 100 1/32

https://doi.org/10.5194/gmd-15-5441-2022

Geosci. Model Dev., 15, 5441-5459, 2022



5454

Y.-K. Choi et al.: Multi-grid-nesting FUNWAVE-TVD

U (m/s)

U (m/s)

2 2 | ADV 3 ]
IS [ It
= J ===
> 0 P~ =———— -
2 | | | | | | | | |
0 5 10 15 20 25 30 35 40 45
T T T T T
@ %[ ADV 3 ]
£
> 0 __—,f\_,—-%_ ——
2 | | | | | | | | 1
0 5 10 15 20 25 30 35 40 45
Time (s)

Figure 14. Case of Fig. 11. Comparison of velocities at ADV locations in (solid) experiments and (blue and red dashed, respectively) results

of the present nested and original FUNWAVE-TVD models.

which has the same grid resolution as the original single-grid
model; hence results of both models are expected to be con-
sistent.

4.4 2011 Tohoku-OKki tsunami impact on Crescent City
harbor, Crescent City, California

As mentioned in the introduction, the multi-scale modeling
of transoceanic tsunamis is a typical application of the nest-
ing grid technique. Tehranirad et al. (2021) used the one-
way nesting technique with six-level nested grids to simu-
late the impact of the 2011 Tohoku-OKki tsunami, particularly
morphological changes, on the Crescent City harbor, Cres-
cent City, California. This harbor is known for its vulnera-
bility to tsunamis due to wave-guiding effects caused by a
ridge feature in the bottom topography of the Pacific Ocean
(Grilli et al., 2013). During the 2011 tsunami, the Crescent
City harbor, Crescent City, California, experienced extensive
damage caused by a significant inundation but by most of
all strong currents induced within the harbor by successive
long waves in the incoming tsunami wave train. Tsunami-
induced oscillations of the harbor, as well as currents, were
reported to have lasted for several days in the harbor (Wilson
et al., 2012), due to nearshore edge waves associated with
the tsunami event. When using that many levels of grids, the
multi-scale modeling using the one-way nesting technique
is particularly cumbersome, in terms of the manual post-
processing it involves. Hereafter, we repeat this simulation

Geosci. Model Dev., 15, 5441-5459, 2022

using the new two-way nesting framework. Unlike the three
earlier tests, which used the Cartesian mode, this test uses
spherical coordinates.

The nested-grid system uses seven levels, with grid res-
olutions varying from 4 arcmin at the ocean basin scale to
1/32 arcmin around the harbor and a nesting ratio of s = 2.
As shown in Fig. 15, with a high resolution of 1/32 arcmin in
Grid 7 (or about 53 m), the model is able to resolve the harbor
structures quite well. Following Tehranirad et al. (2021), the
bathymetry used to define the model grids was constructed
by combining 1 arcmin ETOPO1 data (Amante and Eakins,
2009), 3 arcsec Coastal Relief Model (CRM) data (NOAA
National Geophysical Data Center, 2003), and the local 10 m
resolution tsunami digital elevation model (DEM) of the
Crescent City harbor, Crescent City, California (Grothe et al.,
2011). The tsunami was generated using the same source
configuration as in Grilli et al. (2013) and Kirby et al. (2013).
Model parameters were specified according to Tehranirad
et al. (2021). Table 2 summarizes the locations, dimensions,
and grid sizes of the nested grids.

Figure 16 shows snapshots of tsunami surface elevations
computed in the basin-scale Grid 1 and the nested grids,
Grid 5 and Grid 7, at t = 11.18 and 11.43 h, when the water
surface elevation within the harbor reaches its maximum and
minimum levels, respectively (Fig. 17). The model shows
the generation of edge waves propagating along the coast
(Grid 5), which were not simulated in Tehranirad et al. (2021)
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Figure 15. Nested-grid simulation of the 2011 Tohoku-Oki tsunami. Bottom topography and computational domains for Grids 1 to 7. Red

circles in Grid 7 denote numerical wave gauge locations.

one-way nesting computations. The two-way nesting is a
more relevant technique to model waves propagating across
nesting boundaries, without significant wave reflection from
the boundaries.

Figure 17 compares the modeled surface elevation with
the data measured at the gauge location within the harbor
(red circle in Grid 7 in Fig. 15). Following Tehranirad et al.
(2021), the model results were shifted by 8 min backward
to compensate for the time delay identified in earlier stud-
ies, which was possibly caused by compressibility and earth
elasticity effects (Allgeyer and Cummins, 2014; Wang, 2015;
Abdolali and Kirby, 2017; Abdolali et al., 2019). Overall, the

https://doi.org/10.5194/gmd-15-5441-2022

model shows a good agreement with the data, although the
largest wave crests are slightly overpredicted.

5 Conclusions

The main goal of this study was to develop a multi-
grid-nesting interface for the Boussinesq wave model
FUNWAVE-TVD which can be used as a master program
to manage time sequencing and nesting processes and make
it both easier and more accurate and efficient when perform-
ing multi-scale tsunami simulations. The background model

Geosci. Model Dev., 15, 5441-5459, 2022
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Figure 16. Same case as Fig. 15. Snapshots of tsunami surface elevations simulated in Grid 1, Grid 5, and Grid 7 at t = 11.18 and 11.43 h.
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n (m)

Figure 17. Same case
California.

couples a series of submodels with grid refinement in a hi-
erarchical manner. Unlike other AMR-type models, the new
modeling framework does not alter the original solver, and
hence FUNWAVE-TVD can still be used as a standalone pro-
gram for each individual grid.

The nesting algorithm performs a two-way coupling be-
tween the parent and child grids. The child grid is driven by
the boundary conditions provided by the parent grid. Lin-
ear interpolators are performed both in time and space at the
ghost cells of nesting boundaries. The parent grid is updated
with results from the child grids using a linear restriction op-

Geosci. Model Dev., 15, 5441-5459, 2022

i
115
Time (h)

as Fig. 15. Comparison between model result and measured data inside the Crescent City harbor, Crescent City,

erator. No correction of mass and momentum is needed dur-
ing the nesting process because of the use of conservative
forms of mass and momentum equations.

Workload balance is handled by an equal-load scheme,
which performs the same domain decomposition algorithm
on all grid-levels using the same number of processors, guar-
anteeing equal CPU load over the entire computation. Com-
munication between the parent and child grids is direct with-
out a data-gathering process. The parent—child proximity is
precalculated at the beginning of the model run and, hence,
does not cause additional computational cost. A strategy of

https://doi.org/10.5194/gmd-15-5441-2022
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shared array allocations is used in data management. Grids
at all levels share the same memory allocations, and no ad-
ditional memory allocation is required, allowing for a large
number of nesting levels to share the same memory alloca-
tion.

The nested-grid model was verified on four applications,
three of which are standard benchmarks and one of which
is a tsunami case study. The numerical test of wave evolu-
tion from a rectangular hump examined the consistency and
general performance of the nesting algorithm. The simula-
tion of the Berkhoff et al. (1982) experiment showed that the
model is capable of simulating surface waves and their trans-
formation in shallow water, which involves dispersive and
nonlinear effects. The simulation of experiments for solitary
wave runup on a shelf with an island was used to assess the
accuracy of the wetting and drying processes in the nested-
grid system. The last application, the simulation of the 2011
Tohoku-Oki tsunami and its effects on the Crescent City har-
bor, Crescent City, California, demonstrated the robustness
of the two-way nesting model for the multi-scale modeling
of transoceanic tsunamis and their coastal effects.

As mentioned at the beginning of the paper, a combination
of the weakly nonlinear spherical mode and the fully nonlin-
ear Cartesian mode has often been used in the one-way cou-
pling nested-grid framework for transoceanic tsunami sim-
ulations. However, the nesting interface developed in the
present study cannot be used for such mixed-mode applica-
tions. It is necessary to further develop the spherical mode
based on the fully nonlinear Boussinesq equations. This de-
velopment may be left for future work, noting that any new
developments in the model will not interfere with the nest-
ing interface developed here. Future work may also include
the development of an interface for the GPU version of
FUNWAVE-TVD and of an adaptive mesh refinement algo-
rithm for the nesting framework.

Code and data availability. The computer code, all exam-
ples illustrated in the paper, MATLAB post-processing
scripts, and data used in this research are archived at
https://doi.org/10.5281/zenodo.4735599  (Shi,  2021).  The
code of the multi-grid-nesting interface and the original
FUNWAVE-TVD model are maintained at the GITHUB site:
https://github.com/fengyanshi/FUNWAVE-MGN (last access: 3
May 2021). Documentation and users’ manual are updated in Shi
etal. (2011).
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