Articles | Volume 15, issue 5
https://doi.org/10.5194/gmd-15-2183-2022
https://doi.org/10.5194/gmd-15-2183-2022
Development and technical paper
 | 
15 Mar 2022
Development and technical paper |  | 15 Mar 2022

DINCAE 2.0: multivariate convolutional neural network with error estimates to reconstruct sea surface temperature satellite and altimetry observations

Alexander Barth, Aida Alvera-Azcárate, Charles Troupin, and Jean-Marie Beckers

Related authors

Sea surface height anomaly and geostrophic current velocity from altimetry measurements over the Arctic Ocean (2011–2020)
Francesca Doglioni, Robert Ricker, Benjamin Rabe, Alexander Barth, Charles Troupin, and Torsten Kanzow
Earth Syst. Sci. Data, 15, 225–263, https://doi.org/10.5194/essd-15-225-2023,https://doi.org/10.5194/essd-15-225-2023, 2023
Short summary
Climatological distribution of dissolved inorganic nutrients in the western Mediterranean Sea (1981–2017)
Malek Belgacem, Katrin Schroeder, Alexander Barth, Charles Troupin, Bruno Pavoni, Patrick Raimbault, Nicole Garcia, Mireno Borghini, and Jacopo Chiggiato
Earth Syst. Sci. Data, 13, 5915–5949, https://doi.org/10.5194/essd-13-5915-2021,https://doi.org/10.5194/essd-13-5915-2021, 2021
Short summary
DINCAE 1.0: a convolutional neural network with error estimates to reconstruct sea surface temperature satellite observations
Alexander Barth, Aida Alvera-Azcárate, Matjaz Licer, and Jean-Marie Beckers
Geosci. Model Dev., 13, 1609–1622, https://doi.org/10.5194/gmd-13-1609-2020,https://doi.org/10.5194/gmd-13-1609-2020, 2020
Short summary
Upscaling of a local model into a larger-scale model
Luc Vandenbulcke and Alexander Barth
Ocean Sci., 15, 291–305, https://doi.org/10.5194/os-15-291-2019,https://doi.org/10.5194/os-15-291-2019, 2019
Short summary
A method to generate fully multi-scale optimal interpolation by combining efficient single process analyses, illustrated by a DINEOF analysis spiced with a local optimal interpolation
J.-M. Beckers, A. Barth, I. Tomazic, and A. Alvera-Azcárate
Ocean Sci., 10, 845–862, https://doi.org/10.5194/os-10-845-2014,https://doi.org/10.5194/os-10-845-2014, 2014

Related subject area

Oceanography
Implementation and assessment of a model including mixotrophs and the carbonate cycle (Eco3M_MIX-CarbOx v1.0) in a highly dynamic Mediterranean coastal environment (Bay of Marseille, France) – Part 1: Evolution of ecosystem composition under limited light and nutrient conditions
Lucille Barré, Frédéric Diaz, Thibaut Wagener, France Van Wambeke, Camille Mazoyer, Christophe Yohia, and Christel Pinazo
Geosci. Model Dev., 16, 6701–6739, https://doi.org/10.5194/gmd-16-6701-2023,https://doi.org/10.5194/gmd-16-6701-2023, 2023
Short summary
Ocean wave tracing v.1: a numerical solver of the wave ray equations for ocean waves on variable currents at arbitrary depths
Trygve Halsne, Kai Håkon Christensen, Gaute Hope, and Øyvind Breivik
Geosci. Model Dev., 16, 6515–6530, https://doi.org/10.5194/gmd-16-6515-2023,https://doi.org/10.5194/gmd-16-6515-2023, 2023
Short summary
Design and evaluation of an efficient high-precision ocean surface wave model with a multiscale grid system (MSG_Wav1.0)
Jiangyu Li, Shaoqing Zhang, Qingxiang Liu, Xiaolin Yu, and Zhiwei Zhang
Geosci. Model Dev., 16, 6393–6412, https://doi.org/10.5194/gmd-16-6393-2023,https://doi.org/10.5194/gmd-16-6393-2023, 2023
Short summary
Evaluation of the CMCC global eddying ocean model for the Ocean Model Intercomparison Project (OMIP2)
Doroteaciro Iovino, Pier Giuseppe Fogli, and Simona Masina
Geosci. Model Dev., 16, 6127–6159, https://doi.org/10.5194/gmd-16-6127-2023,https://doi.org/10.5194/gmd-16-6127-2023, 2023
Short summary
Barents-2.5km v2.0: an operational data-assimilative coupled ocean and sea ice ensemble prediction model for the Barents Sea and Svalbard
Johannes Röhrs, Yvonne Gusdal, Edel S. U. Rikardsen, Marina Durán Moro, Jostein Brændshøi, Nils Melsom Kristensen, Sindre Fritzner, Keguang Wang, Ann Kristin Sperrevik, Martina Idžanović, Thomas Lavergne, Jens Boldingh Debernard, and Kai H. Christensen
Geosci. Model Dev., 16, 5401–5426, https://doi.org/10.5194/gmd-16-5401-2023,https://doi.org/10.5194/gmd-16-5401-2023, 2023
Short summary
Download
Short summary
Earth-observing satellites provide routine measurement of several ocean parameters. However, these datasets have a significant amount of missing data due to the presence of clouds or other limitations of the employed sensors. This paper describes a method to infer the value of the missing satellite data based on a convolutional autoencoder (a specific type of neural network architecture). The technique also provides a reliable error estimate of the interpolated value.