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Abstract. DINCAE (Data INterpolating Convolutional
Auto-Encoder) is a neural network used to reconstruct miss-
ing data (e.g., obscured by clouds or gaps between tracks)
in satellite data. Contrary to standard image reconstruction
(in-painting) with neural networks, this application requires
a method to handle missing data (or data with variable ac-
curacy) already in the training phase. Instead of using a stan-
dard L2 (or L1) cost function, the neural network (U-Net type
of network) is optimized by minimizing the negative log like-
lihood assuming a Gaussian distribution (characterized by a
mean and a variance). As a consequence, the neural network
also provides an expected error variance of the reconstructed
field (per pixel and per time instance).

In this updated version DINCAE 2.0, the code was rewrit-
ten in Julia and a new type of skip connection has been im-
plemented which showed superior performance with respect
to the previous version. The method has also been extended
to handle multivariate data (an example will be shown with
sea surface temperature, chlorophyll concentration and wind
fields). The improvement of this network is demonstrated for
the Adriatic Sea.

Convolutional networks work usually with gridded data as
input. This is however a limitation for some data types used
in oceanography and in Earth sciences in general, where ob-
servations are often irregularly sampled. The first layer of the
neural network and the cost function have been modified so
that unstructured data can also be used as inputs to obtain
gridded fields as output. To demonstrate this, the neural net-
work is applied to along-track altimetry data in the Mediter-
ranean Sea. Results from a 20-year reconstruction are pre-
sented and validated. Hyperparameters are determined using

Bayesian optimization and minimizing the error relative to a
development dataset.

1 Introduction

Ocean data are generally sparse and inhomogeneously dis-
tributed. The data coverage often contains large gaps in space
and time. This is in particular the case with in situ observa-
tions. Satellite remote sensing only measures the surface of
the ocean but generally has better spatial coverage than in situ
observations. However, still about 75 % of the ocean surface
is on average covered by clouds that block sensors in the opti-
cal and infrared bands (Wylie et al., 2005). Given the sparsity
of data, it is natural to aim to combine data representing dif-
ferent parameters as, e.g., mesoscale flow structures are often
visible in all ocean tracers.

Prior work on using multivariate data in connection with
satellite data use, for example, empirical orthogonal func-
tions (EOF), which can be naturally extended to multivariate
datasets as long as an appropriate norm is defined. For exam-
ple, Alvera-Azcárate et al. (2007) uses sea surface tempera-
ture, chlorophyll and wind satellite fields with data interpo-
lating empirical orthogonal functions (DINEOF). Multivari-
ate EOFs have also been used to project surface observations
to deeper layers (Nardelli and Santoleri, 2005) or to derive
nitrate maps in the Southern Ocean (Liang et al., 2018). In
the latter case, EOFs linking salinity, and potential tempera-
ture and nitrate concentrations are derived from model simu-
lations.
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As some observations can be measured at much high spa-
tial resolution via remote sensing (in particular the resolution
of sea surface temperature is much higher than the resolution
of sea surface salinity products), “multifractal fusion tech-
niques” are used to improve remote sensed surface salinity
estimates using sea surface temperature. Data fusion is im-
plemented as a locally weighted linear regression (Olmedo
et al., 2018, 2021). Han et al. (2020) also used an earlier ver-
sion of the DINCAE code to estimate sea surface chlorophyll
using additional sea surface temperature observations.

The structure of a neural network, and in particular its
depth, is uncertain and to some degree dependent on the
used data set. We also investigate the influence of the depth
of the neural networks in this work. It is known that neu-
ral networks are increasingly more difficult to train as their
depth increases because of the well-known vanishing gra-
dient problem (Hochreiter, 1998): the derivative of the loss
function relative to the weights of the first layers of a neu-
ral network has the tendency to either decrease (or increase)
exponentially with a increasing number of layers. This pre-
vents effective optimization (training) of these layers using
gradient-based optimization methods.

Several methods have been proposed in the literature to
mitigate such problems using alternative neural network ar-
chitectures. In the context of the present manuscript, skip
connections in the form of residual layers have been tested
(similar to residual networks; He et al., 2016). The deriva-
tive of the loss function relative to the weights in such layers
remains (at least initially) closer to one, so there is a more
direct relationship between the loss function and the weights
and biases to be optimized. Deeper residual networks include
shallower networks as a special case and thus, as per their
construction, should perform at least as well as shallower net-
works.

The gradient of a whole network is computed via back-
propagation, which is essentially based on the repeated ap-
plication of the chain rule for differentiation. The informa-
tion of the observation is injected via the loss function and
propagated backward in a way which is similar to the 4D-var
backward in time integration of the adjoint model. Another
interesting neural network architecture has been proposed in
the form of the Inception network (Szegedy et al., 2015),
where the output of intermediate layers, here in the form of
a preliminary reconstruction, are used in the loss function (in
addition to the output of the final layer). The result is that
the information of the observations are injected not only at
the final layer but also in the intermediate layer, which also
contributes to reducing the vanishing gradient problem.

While for gridded satellite data, approaches based on em-
pirical orthogonal functions and convolutional neural net-
works have been shown the be successful, it is difficult to
apply similar concepts to non-gridded data as these methods
typically require a stationary grid. Another objective of this
paper is to show how convolutional neural networks can be

used on non-gridded data. This approach is illustrated with
altimetry observations.

The objective of this manuscript is to highlight the im-
provement of DINCAE relative to the previously published
version (Barth et al., 2020). The Sect. 2 presents the updated
structure of the neural network. The gridded and non-gridded
observations used here are presented in Sect. 3. Details of the
implementation are also given (Sect. 4). The results and con-
clusions are presented in Sects. 5 and 6.

2 The neural network architecture

The DINCAE network (Barth et al., 2020) is a neural net-
work composed of an encoder and decoder network. The en-
coder uses the original gappy satellite data (with additional
metadata as explained later) and the decoder uses the out-
put of the encoder to reconstruct the full data image (along
with an error estimate). The encoder uses a series of con-
volutional layers followed by max pooling layers, reducing
the resolution of the datasets. The decoder does essentially
the reverse operation by using convolutional and interpola-
tion layers. This is the general structure of a convolutional
autoencoder and the classical U-Net networks (Ronneberger
et al., 2015). In the following section we will discuss the
main components of the DINCAE neural network used for
the different test cases and emphasize the changes relative to
the previous version.

2.1 Skip connections

In an autoencoder, the inputs are compressed by forcing the
data flow through a bottleneck, which ensures that the neu-
ral network must efficiently compress and decompress the
information. However, in U-Net (Ronneberger et al., 2015)
and DINCAE, skip connections are implemented, allowing
the information flow of the network to partially bypass the
bottleneck to prevent the loss of small-scale details in the re-
construction. Skip connections can be realized either by con-
catenating tensors along the feature map dimension (as it is
done in U-Net) or by summing the tensors. The cat skip con-
nections at the step l in the autoencoder can be written as the
following operation:

X(l+1)
= cat(f (l)(X(l)),X(l)), (1)

where cat concatenates two 3D arrays along the dimension
representing the features channels. The function f (l) is a se-
quence of neural network layers applied to the array of X(l)
(produced by previous network layers). Sum skip connec-
tions are implemented as

X(l+1)
= f (l)(X(l))+X(l). (2)

Clearly, the output of a cat skip connection has a size twice
as large as the output of a sum skip connection. These skip
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connections are followed by a convolutional layer, which en-
sures that the number of output features are the same for
both types of skip connection. In fact, one can show that
the sum skip connection (followed by a convolution layer)
is formally a special case of the cat skip connection. How-
ever, sum skip connections can be advantageous because the
weight and bias of the convolutional layers are more directly
related to the output of the neural network, which helps to
reduce the “vanishing gradient problem” (He et al., 2016).

2.2 Refinement step

The whole neural network can be described as two func-
tions that provide the input variable product between the re-
construction ŷ and its expected error variance σ̂ 2 for every
grid cell. The loss function is derived from the negative log-
likelihood of a Gaussian with mean ŷ and variance σ̂ 2:

J (ŷij , σ̂
2
ij )=

1
2N

∑
ij

[(
yij − ŷij

σ̂ij

)2

+ log(σ̂ 2
ij )+ 2log(

√
2π))

]
, (3)

where the sum with the spatial indices i and j runs over all
grid points with valid (i.e., non-masked) values and N is the
number of valid values. The first term of the right-hand side
of the equation is the mean square error, but scaled by the es-
timated error standard deviation, the second term penalizes
any overestimation of the error standard deviation and the
third term is constant and can be neglected as it does not in-
fluence the gradient of the cost function. For a convolutional
auto-encoder with refinement, the intermediate outputs ŷ and
σ̂ are concatenated with the inputs and passed through an-
other auto-encoder with the same structure (except for the
number of filters for the input layer, which has to accommo-
date the two additional fields corresponding to ŷ and σ̂ ). The
weights of the first and second auto-encoder are not related.
The final cost function with refinement Jr is given by

Jr = αJ (ŷij , σ̂
2
ij )+α

′J (ŷ′ij , σ̂
′
2
ij ), (4)

where ŷ′ and σ̂ ′2 are the reconstruction and its expected error
variance produced by the second auto-encoder. The weights
α and α′ control how much importance is given to the inter-
mediate output (relative to the final output).

With a refinement step, the neural network becomes essen-
tially twice as deep and the number of parameters (approx-
imately) doubles. The increased depth would make it prone
to the vanishing gradient problem. However, by including the
intermediate results in the cost function, this problem is re-
duced. In fact, information from the observations is injected
during back-propagation by the loss function. Due to the re-
finement step and the loss function, which also depends on
the intermediate result, the information from the observation
is injected at the last layer and at the middle layer of the com-
bined neural network (Szegedy et al., 2015). The relationship

between the first layers of the neural network and the cost
function is therefore more direct, which helps in the training
of these first layers.

The refinement step has been used in image in-painting
for a computer vision application (Liu et al., 2019) and it has
also been applied for oceanographic data for tide gauge data
(Zhang et al., 2020). In the present work, only one refinement
step is tested, but the code supports an arbitrary number of
sequential refinement steps.

2.3 Multivariate reconstructions

Auxiliary satellite data (with potentially missing data) can be
provided for the reconstruction. The handling of missing data
in these auxiliary data is identical to the way missing data are
treated for the primary variable. For every auxiliary satellite
data, the average over time is first removed. The auxiliary
data (divided by its corresponding error variance) and the in-
verse of the error variance are provided as input. Where data
are missing, the corresponding input values are set to zero
representing an infinitely large error (as a consequence of the
chosen scaling). Multiple time instances centered around a
target time can be provided as input.

2.4 Non-gridded input data

Current satellite altimetry mission measures sea surface
height along the ground track of the satellite. Satellite altime-
try can measure through clouds but the data are only available
along a collection of tracks. In order to better handle such
data sets, we extended DINCAE to handle unstructured data
as input.

The first layer in DINCAE is a convolutional layer, which
typically requires a field discretized on a rectangular grid.
The convolutional layer can be seen as the discretized version
of the following integral:

g(x,y)=

∫
�w

w(x− x′,y− y′)f (x,y)dx′dy′, (5)

where f is the input field, w are the weights in the convo-
lution (also called convolution kernel), �w is the support of
the function w (i.e., the domain where w is different from
zero) and g the output of the convolutional layer. To dis-
cretize the integral, the continuous function f is replaced by
a sum of Dirac functions using the values fi,j defined on a
regular grid:

f (x,y)=
∑
i,j

fi,j δ(x− i1x,y− j1y).

In this case, the continuous convolution becomes the stan-
dard discrete convolution as used in neural networks. The
weights w(x,y) only need to be known at the discrete loca-
tions defined by the underlying grid.

For data points which are not defined on a regular grid we
essentially use a similar approach. The function f is again
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written as a sum of Dirac functions:

f (x,y)=
∑
k

fkδ(x− xk,y− yk),

where now fk are the values at the locations (xk,yk), which
can be arbitrary. In order to evaluate the integral (Eq. 5), it is
necessary to know the weights at the location (xk,yk). The
weights are still discretized on a regular grid, but are inter-
polated bilinearly to the data location to evaluate the inte-
gral. In fact, instead of interpolating the weights w, one can
also apply the adjoint of the linear interpolation to fk (which
is mathematically equivalent). This has the benefit that the
computation of the convolution can be implemented using
the optimized functions in the neural network library.

For data defined on a regular grid, it has been verified nu-
merically that this proposed approach and the traditional ap-
proach used to compute the convolution give the same re-
sults.

3 Data

The improvements are examined in two test cases. For mul-
tivariate gridded data, the approach is tested with sea sur-
face temperature, chlorophyll and winds on the Adriatic Sea;
for non-gridded data altimetry, observations of the whole
Mediterranean Sea were used. As the altimetry observations
do not resolve as many small scales as sea surface tempera-
ture, a larger domain was chosen for the altimetry test case.

3.1 Gridded data (Adriatic Sea)

As the previous application (Barth et al., 2020) considered
relatively low-resolution AVHRR data, we used more mod-
ern and higher-resolution satellite data in this application for
the Adriatic Sea. The datasets used include the following.

– Sea Surface Temperature (MODIS Terra Level 3
SST Thermal IR Daily 4km Nighttime v2014.0,
https://doi.org/10.5067/MODST-1D4N4, OBPG, 2015)
made available by PO.DAAC (https://podaac.jpl.nasa.
gov/, last access: 10 February 2022, JPL, NASA, USA).

– Wind speed (Cross-Calibrated Multi-Platform,
CCMP; gridded surface vector winds) made
available from Remote Sensing Systems
(http://www.remss.com/measurements/ccmp/, last
access: 19 July 2019, Wentz et al., 2019). These
datasets are described in Atlas et al. (2011), Mears et al.
(2019) and Wentz et al. (2019). This dataset has a 6 h
temporal resolution and a 1/4◦ spatial resolution . The
wind fields are averaged as daily mean fields.

– Chlorophyll a from Ocean Biology Processing Group,
NASA Goddard Space Flight Center et al. (2018), https:
//oceancolor.gsfc.nasa.gov/data/overview/ (last access:

18 September 2019) at a 4 km resolution and L3 pro-
cessing level.

The data sets span the time period 1 January 2003 to
31 December 2016. They are all interpolated (using bi-linear
interpolation) on the common grid defined by the SST fields.

As ocean mixing reacts to the averaged effect of the wind
speed (norm of the wind vector), we also smoothed the speed
with a Laplacian filter using a time period of 2.2 d and a lag
of 4 d (wind speed preceding SST). The optimal lag and time
period were obtained by maximizing the correlation between
the smoothed wind field and SST from the training data.

3.2 Non-gridded data (Mediterranean Sea)

Altimetry data from 1 January 1993 to 13 May 2019 cov-
ering 7◦W to 37◦ E and from 30 to 46◦ N from 22 satellite
missions operating during this time frame are used. This do-
main essentially contains the Mediterranean Sea but also a
small part of the Bay of Biscay and the Black Sea. In prelim-
inary studies we found that including the data from adjacent
seas can help neural networks better generalize and prevent
overfitting (e.g., Gong et al., 2019) as the neural network is
confronted with a more diverse set of conditions. The data
(SEALEVEL_EUR_PHY_L3_MY_OBSERVATIONS_008
_061, accessed on 13 October 2020) are made available
by the Copernicus Marine Environment Monitoring Service
(CMEMS).

These data were split along the following fractions:

– 70 % training data,

– 20 % development data,

– 10 % test data.

To reduce the correlation between the different datasets,
satellite tracks are not split and belong entirely to one of these
three datasets.

Some experiments of the reconstructed altimetry use grid-
ded sea surface temperature satellite observations as an
auxiliary dataset for multivariate reconstruction. We use
the AVHRR_OI-NCEI-L4-GLOB-v2.0 datasets (Reynolds
et al., 2007; National Centers for Environmental Information,
2016) because it is a single consistent dataset covering the
full time period of the altimetry data and because it matches
approximately the altimetry dataset in terms of resolved spa-
tial scales.

4 Implementation

Python code was first ported from TensorFlow 1.12 to 1.15,
reducing the training time from 4.5 to 3.5 h using a GeForce
GTX 1080 GPU and Intel Core i7-7700 CPU. We also con-
sidered porting DINCAE to TensorFlow 2. The TensorFlow
2 programming interface is however quite different from pre-
vious versions. As our group gained familiarity with the Julia
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programming language (Bezanson et al., 2017), we decided
to rewrite DINCAE in Julia. Porting DINCAE to Julia with
the package Knet (Yuret, 2016) cut down the runtime from
3.5 to 1.9 h (thanks to more efficient data transformation) us-
ing the AVHRR dataset described in Barth et al. (2020), and
using a concatenation skip connection in both cases.

For the Adriatic test case, the input is a 3D array with the
dimension corresponding to the longitude, latitude and the
different parameters. The input parameters for an univariate
reconstruction are three time instances of temperature scaled
by the inverse of the error variance (previous, current and
next day), the corresponding inverse of the error variance,
the longitude and latitude of every grid cell and the sine
and cosine of the day of the year multiplied by 2π/365.25
as in Barth et al. (2020). The assembled array has a size
of 168× 144× 10 elements (for a single training sample).
The input is processed by the encoder which is composed
of five convolutional layers (with 16, 30, 58, 110 and 209
output filters) with a kernel size of 3× 3 and a rectified lin-
ear unit (RELU) activation function followed by a max pool-
ing layer with a size of 2× 2. The RELU activation func-
tion is commonly used in neural networks and is defined by
f (x)=max(x,0).

The output of the encoder is transformed back to a full
image by the decoder, which mirrors the structure of the
encoder. The decoder is composed of five upsampling lay-
ers (nearest-neighborhood interpolation or bilinear interpo-
lation) followed by a convolutional layer with the equivalent
number output filters from the encoder (except for the final
layer, which has only two outputs related to the reconstruc-
tion and its error variance). The final layer produces a 3D-
array T out

ijk (size 168×144×2) from which the reconstruction
ŷij and its error variance σ̂ 2

ij are computed by

σ̂ 2
ij =

1

max(exp(min(T (out)
ij1 ,γ )),µ)

, (6)

ŷij = T
(out)
ij2 σ̂ 2

ij , (7)

where the parameters γ and µ are set to 10 and 10−3, re-
spectively. The minimum and maximum functions (min and
max) are introduced here to prevent division by a value close
to zero or the exponentiation of a too-large value. This stabi-
lizes the neural network during the initial phase of the train-
ing as the weights and biases are randomly initialized.

In Barth et al. (2020), after the convolutional layers, the
model included two fully connected layers (with drop-out).
This is no longer used as such layers require that the input
matrix for training has exactly the same size as the input ma-
trix of the reconstruction (inference), which makes this archi-
tecture difficult for large input arrays (which would arise for
global or basin-wide sea surface temperature fields for exam-
ple). The benefit of replacing dense layers by convolutional
layers is further discussed in Long et al. (2015).

Figure 1. General structure of the DINCAE with 2D convolution
(conv), max pooling (pool) and interpolation layers (interp). All 2D
convolutions are followed by a RELU activation function.

Figure 2. DINCAE with a refinement step composed essentially by
two sequential autoencoders coupled such that the second autoen-
coder uses the output of the first and the input data.

The altimetry data were analyzed on a 0.25◦ resolution
grid covering the area from 7◦W and 37◦ E and 30 to 46◦ N.
For this neural network implementation, the input size is
177× 69. The resolution is progressively reduced to 89× 35,
45× 18 and 23× 9 by convolutional layers followed by max
pooling layers with 32, 64 and 96 convolutional filters, re-
spectively. Skip connections are implemented after the sec-
ond convolutional layer onwards.

During training, Gaussian noise with a standard deviation
σpos is added to the position of the measurements and ev-
ery track of the current date has a certain probability pdrop to
be withheld from the input of the neural network. The loss
function is computed only on tracks from the current date.
This helps the neural network to learn how to spread the in-
formation spatially. The neural network is optimized during
1000 epochs and the intermediate results are saved every 25
epochs.
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Table 1. Layers of the neural network for the gridded datasets. Note that every convolution is followed by a RELU activation function.

Number Type Output size Parameters of the layer

1 input 168× 144× 10
2 conv. 2d 168× 114× 16 n. filters= 16, kernel size= (3,3)
3 pooling 2d 84× 72× 16 pool size= (2,2), strides= (2,2)
4 conv. 2d 84× 72× 30 n. filters= 30, kernel size= (3,3)
5 pooling 2d 42× 36× 30 pool size= (2,2), strides= (2,2)
6 conv. 2d 42× 36× 58 n. filters= 58, kernel size= (3,3)
7 pooling 2d 21× 18× 58 pool size= (2,2), strides= (2,2)
8 conv. 2d 21× 18× 110 n. filters= 110, kernel size= (3,3)
9 pooling 2d 11× 9× 110 pool size= (2,2), strides= (2,2)
10 conv. 2d 11× 9× 209 n. filters= 209, kernel size= (3,3)
11 pooling 2d 6× 5× 209 pool size= (2,2), strides= (2,2)
12 interpolation 11× 9× 209
13 conv. 2d 11× 9× 110 n. filters= 110, kernel size= (3,3)
14 sum output of 13 and 9 11× 9× 110
15 interpolation 21× 18× 110
16 conv. 2d 21× 18× 58 n. filters= 58, kernel size= (3,3)
17 sum output of 16 and 9 21× 18× 58
18 interpolation 42× 36× 58
19 conv. 2d 42× 36× 30 n. filters= 30, kernel size= (3,3)
20 sum output of 19 and 5 42× 36× 30
21 interpolation 84× 72× 30
22 conv. 2d 84× 72× 16 n. filters= 16, kernel size= (3,3)
23 sum output of 22 and 3 84× 72× 16
24 interpolation 168× 144× 16
25 conv. 2d 168× 144× 2 n. filters= 2, kernel size= (3,3)

The altimetry test case illustrates the results for a non-
gridded dataset. Sea surface altimetry is usually gridded with
a method like optimal interpolation or variational analysis.
The latter can also be seen as a special case of optimal inter-
polation. For the autoencoder, the following fields are used
as inputs:

– longitude and latitude of the measurement;

– day of the year (sine and cosine) of the measurement
multiplied by 2π/Ty where Ty is 365.25 (the length of
a year in days);

– all data within a given centered time window of length
1twin. For instance if the time window of length 1twin
is 9, the data from the current day are used as well as
the tracks from the 4 previous days and the 4 following
days.

As in Barth et al. (2020), instead of using the observations
directly, the observations are divided by their respective error
variance and the inverse of the error variance is used as input.
Due to this scaling, it follows that missing data results in a
zero input value as it corresponds to a data point with an
“infinitely” large error.

The training is done using mini-batches of size nbatch. The
weights and biases in the neural network are updated using

the gradient of the loss function evaluated at a batch of nbatch
time instances (chosen at random). Evaluating the gradient
using a subset of the training data chosen at random intro-
duces some stochastic fluctuation allowing the optimization
procedure to escape a local minima.

All numerical experiments used the Adam optimizer
(Kingma and Ba, 2014) with the standard parameter for the
exponential decay rate for the first moment β1 = 0.9, and for
the second moment β1 = 0.999, and a regularization parame-
ter ε = 10−8. The learning rate αn is computed for every n-th
epoch as follows:

αn = α0 2−γdecayn,

where α0 is the initial learning rate and γdecay controls the
exponential decay of the learning rate: every 1/γdecay epochs,
the learning rates is halved. If γdecay is zero, then the learning
rate is kept constant.

The batch size includes 32 time instances (all hyper-
parameters are determined via Bayesian optimization as de-
scribed further on). The learning rate for the Adam optimizer
is 0.00058. The L2 regularization on the weights has been set
to a β value of 10−4. The upsampling method can either be
nearest neighbor or bilinear interpolation. In our tests, near-
est neighbor provided the lowest RMS error relative to the
development dataset. The absolute value of the gradients is
clipped to 5 in order to stabilize the training. Satellite tracks
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from 1twin = 27 time days (centered around the target time)
are used to derive gridded altimetry data.

The hyper-parameters of the neural network mentioned
previously have been determined by Bayesian optimization
(Mockus et al., 1978; Jones et al., 1998; Snoek et al., 2012)
by minimizing the RMS error relative to the development
dataset. The “expected improvement acquisition function”
(Mockus et al., 1978) is used to determine which sequence
of parameter values is to be evaluated. Bayesian optimiza-
tion as implemented by the Python package scikit-optimize
(Head et al., 2020) was used in these tests.

5 Results and discussion

5.1 Gridded data

The new type of skip connection was first tested with the
AVHRR Test case from the Ligurian Sea (Barth et al., 2020).
The previous best result (in terms of RMS) was 0.3835 ◦C
using the cat skip connection. With the new approach this
RMS error is reduced to 0.3604 ◦C. The new type of skip
connection makes the neural network more similar to resid-
ual networks, which have been shown to be highly successful
for image recognition tasks and allow for training deep net-
works more easily (He et al., 2016).

In Table 2 we present the test case for the Adriatic Sea
with and without the skip connections and using the mul-
tivariate reconstruction. Besides the RMS error, this table
also includes the 10 % and 90 % percentiles of the absolute
value of the difference between the reconstructed data and
the cross-validation data to provide a typical range of the er-
ror. In general, using chlorophyll a (or the wind fields) to-
gether with SST improved the results only marginally. The
improvements were more consistent by using again the sum
skip connection instead of the cat skip connection (in partic-
ular in conjunction with the additional refinement step). The
analysis in the following uses the result of the lowest RMS,
namely the reconstruction with sum skip connections and re-
finement and with the considered variables (chlorophyll a,
the wind speed, zonal wind component and meridional wind
component) as auxiliary parameters.

When reconstructing sea surface temperature time series,
it is often the case that for some days only very few data
points are available. Figure 3 illustrates such a case, where
a quite clear image was almost entirely masked as missing.
DINCAE essentially produces an average SST (still using
previous and next time frames) for the time of the year and
a realistic spatial distribution of the expected error. The few
pixels that are available have a relatively low error as ex-
pected, but the overall error structure looks quite realistic as
the expected error increases significantly in the coastal areas
(where the variability is higher and where the original satel-
lite data are expected to be noisier). The reconstructed im-
age matches the original image large-scale patterns relatively

Figure 3. (a) The original MODIS SST; (b) MODIS SST with ad-
ditional clouds for cross-validation; (c) the DINCAE reconstruction
using the data from panel (b); (d) the expected error standard devi-
ation of the DINCAE reconstruction. All panel values are in ◦C.

well, but as expected some small-scale structures are not re-
constructed by the neural network. For this particular image,
the RMS error (between the reconstructed data and the with-
held data for cross-validation) is 0.43 ◦C and the 10 % and
90 % percentiles of the absolute value of the error are 0.05
and 0.63 ◦C, respectively.

The detection of cloud pixels in the MODIS dataset is gen-
erally good, but Fig. 4 (for 17 September 2003) shows an
example where some pixels were characterized as valid sea
points while they are probably (at least partially) obscured by
clouds, resulting in an unrealistically low sea surface temper-
ature. For most analysis techniques derived from optimal in-
terpolation, outliers like undetected clouds typically degrade
the analyzed field in the vicinity of the spurious observations.
The outlier also produced an artifact in the output of DIN-
CAE, but it is interesting to note that in this case, the artifact
did not spread spatially and the associated expected error has
some elevated values indicating a potential issue at the loca-
tion. The RMS error for this time instance is at 0.45 ◦C, sim-
ilar to the previously shown image. The typical range of the
absolute value of the error is 0.04–0.72 ◦C (10 % and 90 %
percentiles).

A problem with techniques like optimal interpolation,
variational analysis and to some degree also DINEOF is that
the reconstruction smoothes out some small-scale features
present in the initial data. For optimal interpolation and vari-
ational analysis, this smoothing is explicitly induced by using
a specific correlation length. In EOF-based methods, this is
related to the truncation of the EOFs series. In DINCAE, the
input data are also compressed by a series of convolution and
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Table 2. RMS errors (in ◦C) relative to the test dataset for different configurations (chlor_a: chlorophyll a, wind_speed: the wind speed,
uwnd: zonal wind component, vwnd: meridional wind component). The two numbers in parentheses correspond to the 10 % and 90 %
percentiles of the absolute value of the error.

Auxiliary parameters cat skip connections sum skip connections sum skip connections and refinement

none 0.66 (0.06–1.02) 0.60 (0.05–0.93) 0.55 (0.04–0.84)
chlor_a 0.64 (0.06–1.00) 0.59 (0.05–0.92) 0.54 (0.04–0.82)
chlor_a, wind_speed 0.65 (0.06–1.00) 0.58 (0.05–0.90) 0.54 (0.04–0.82)
chlor_a, wind_speed, uwnd, vwnd 0.66 (0.06–1.03) 0.57 (0.05–0.88) 0.54 (0.05–0.82)

Figure 4. (a) The original MODIS SST; (b) MODIS SST with ad-
ditional clouds for cross-validation; (c) the DINCAE reconstruction
using the data from panel (b); (d) the expected error standard devi-
ation of the DINCAE reconstruction. All panel values are in ◦C.

max pooling layers, and some smoothing is also expected, as
in Fig. 4. Figure 5 shows an example where the initial data
have almost no clouds and only few clouds are added for val-
idation. The reconstructed field retains the filament and other
small-scale structures. For this image, the RMS error (be-
tween the reconstructed data and the withheld data for cross-
validation) is 0.55 ◦C and its typical range (as defined earlier)
is 0.05 to 0.77 ◦C. The degree of smoothing can be quantified
by the RMS difference of the reconstructed data and the in-
put data (which is not an independent validation metric). This
RMS difference is 0.15 ◦C, which is relatively low given the
typical variability in sea surface temperature in this region.

To assess the improvement spatially, the mean square skill
score S is computed (Fig. 6) for every grid cell.

S = 1−
MSE

MSEref
, (8)

where MSEref is the mean square error of the monovariate
reconstruction corresponding to DINCAE 1.0 relative to the

Figure 5. (a) The original MODIS SST; (b) MODIS SST with ad-
ditional clouds for cross-validation; (c) the DINCAE reconstruction
using the data from panel (b); (d) the expected error standard devi-
ation of the DINCAE reconstruction. All panel values are in ◦C.

validation dataset (per grid cell and averaging over time) and
MSE is the mean square error of the multivariate case (con-
sidering all variables) and with an additional refinement step.
The improvement is spatially quite consistent. The mean
square error is mostly reduced in the northern and central
parts of the Adriatic. Only on some isolated grid cells is a
degradation observed. The skill score reflects the combined
improvement due to the three changes implemented in this
version: updated skip connections, refined step and multivari-
ate reconstruction.

5.2 Non-gridded data

The altimetry data is first gridded by the tool DIVAnd (Barth
et al., 2014). The main parameters here are the spatial corre-
lation length (in km), the temporal correlation scale (days),
the error variance of the observations (normalized by the
background error variance) and the duration of the time win-

Geosci. Model Dev., 15, 2183–2196, 2022 https://doi.org/10.5194/gmd-15-2183-2022



A. Barth et al.: Reliable error estimates for reconstructed missing data in satellite observations 2191

Table 3. Maximum standard deviation in three selected areas.

Obs. SD DIVAnd SD DINCAE SD

East Alboran Gyre 0.136 0.123 0.141
Regions of the Alboran current 0.125 0.112 0.121
Ierapetra Anticyclone 0.153 0.138 0.151

Figure 6. Mean square error skill score of the monovariate recon-
struction corresponding to DINCAE 1.0 and the multivariate case
(considering all variables) and with an additional refinement step.

dow 1twin determining which observations are used to com-
pute the reconstruction at the center of the time window.

All parameters of DIVAnd are also optimized using
Bayesian minimization with an expected improvement in the
acquisition function from minimizing the RMS error relative
to the development datasets.

The best DIVAnd result is obtained with a horizontal cor-
relation length of 74.8 km, a temporal correlation length of
5.5 d, a time window of 13 d and a normalized error variance
of the observations of 20.5. An example reconstruction for
the date 7 June 2017 is illustrated in Fig. 7. The parameters
are determined by Bayesian optimization, minimizing the er-
ror relative to the development dataset. The RMS error of the
analysis for these parameters is 3.61 cm relative to the inde-
pendent test dataset (Fig. 9).

The best performing neural network had a RMS error of
3.58 cm, which is only slightly better than results of DIVAnd
(3.60 cm). When using the Mediterranean sea surface tem-
perature as a co-variable we obtained a RMS error relative to
the test dataset of 3.47 cm, resulting in a clearer advantage of
the neural network approach. The left panels of Figs. 9 and
10 show on the x and y axes the observed altimetry (withheld

during the analysis) and the corresponding reconstructed al-
timetry, respectively. The range of altimetry values from−20
to 30 cm was divided into 51 bins of 1 cm. The colors indi-
cate the number of data points within each bin. For both re-
construction methods, the results scatter around the dashed
line, which corresponds to the case where the reconstructed
data correspond exactly to the observed altimetry. The eddy
field of the DINCAE dataset is also quite similar to the one
obtained from DIVAnd, but the anomalies of the structure are
more pronounced in the DINCAE reconstruction (Fig. 8).

DINCAE and DIVAnd provide a field with the estimated
expected error. For DIVAnd we used the “clever poor man’s
method” as described in Beckers et al. (2014), and the back-
ground error variance is estimated by fitting an empirical co-
variance based on a random pair of points binned by their dis-
tance (Thiebaux, 1986; Troupin et al., 2012). The estimated
error variance is later adjusted by a factor to account for un-
certainties in estimating the background error variance.

We made 10 categories of pixels based on the expected
standard deviation error, evenly distributed between the 10 %
and 90 % percentiles of the expected standard deviation error.
For every category, we computed the actual RMS relative to
the test dataset. Ideally this should correspond to the esti-
mated expected error of the reconstruction (including the ob-
servational error). A global adjustment factor is also applied
so that the average RMS error matches the mean expected er-
ror standard deviation, which is represented in the left panels
of Figs. 9 and 10. This adjustment factor is also applied to
Fig. 7b. The main advantage of DINCAE relative to DIVAnd
is the improved estimate of the error variance of the results.

In summary, the accuracy of the DINCAE reconstruction
is slightly better than the accuracy of the DIVAnd analysis.
However, the main improvement of the DINCAE approach
here is that the expected error variance of the analysis is
much more reliable than the expected error variance of DI-
VAnd.

Figure 11 shows the standard deviation of the sea-level
anomaly computed over the whole time period. From this fig-
ure, three areas in particular stand out corresponding (from
east to west) to the East Alboran Gyre, regions of the Al-
gerian current and the Ierapetra Anticyclone (annotated with
the black rectangle in Fig. 11). The maximum standard de-
viation (related to the surface transport variability) for these
three areas is shown in Table 3. The standard deviation is
also computed from the satellite altimetry data considering
all satellite observations falling within a given grid cell (ex-
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Figure 7. Panel (a) Reconstructed SLA by DIVAnd, (b) expected error standard deviation by DIVAnd (with adjustment), (c) data used during
training (partial) and (d) independent data for validation withheld during analysis. All panel values are in meters.

Figure 8. Panel (a) Reconstructed SLA by DINCAE, (b) expected error standard deviation by DINCAE, (c) data used during training (partial)
and (d) independent data for validation withheld during analysis. All panel values are in meters.
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Figure 9. (a) Altimetry observation from the test data versus the reconstructed values from DIVAnd (using only the training data). (b)
Expected standard deviation of the reconstruction (before and after adjustment) relative to the actual standard deviation of the reconstructed
misfit. The x and y axes of both plots are expressed in meters.

Figure 10. (a) Altimetry observation from the test data versus the reconstructed values from DINCAE with SST as auxiliary parameter (using
only the training data). (b) Expected standard deviation of the reconstruction (before and after adjustment) relative to the actual standard
deviation of the reconstructed misfit. The x and y axes of both plots are expressed in meters.

Figure 11. Standard deviation of the sea-level anomaly for the DI-
VAnd method and DINCAE (including SST as auxiliary parameter).

cluding coastal grid cells with less than 10 observations). The
standard deviation of the DINCAE reconstruction is in all
three regions higher than the standard deviation for DIVAnd
despite the DINCAE reconstruction having a lower RMS er-
ror than DIVAnd. In addition, the standard deviation of DIN-
CAE is in general closer to the observed standard deviation.

6 Conclusions

In this paper, we discussed improvements of the previous
described DINCAE method. The code has been extended
to handle multi-variate reconstructions, which were also de-
scribed in Han et al. (2020). We also found that multivari-
ate reconstruction can improve the reconstruction, but the
largest improvement was obtained by changing the struc-
ture of the neural network by using a newly implemented
different type of skip connection and refinement pass. Inter-
estingly, this type bears some similarities to the hierarchical
multigrid method for solving partial differential equations.
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The handling of different types of satellite data was also im-
proved. While most ocean satellite observations are gridded
data (like sea surface temperature, ocean color, sea surface
salinity and sea ice concentration), some parameters can only
be inferred by nadir-looking satellites along tracks. For such
non-gridded datasets, the first input layer is extended to han-
dle such arbitrary location input data. We were able to show
that the DINCAE method applied with altimetry data pro-
duces better reconstructions, but the main advantages are the
significantly improved estimates of the expected reconstruc-
tion error variance. In this case, the DINCAE method com-
pares favorably to the DIVAnd method (which is similar to
optimal interpolation) in terms of reliability of the expected
error variance, accuracy of the reconstruction relative to the
test dataset and realism of the temporal standard deviation
of the reconstruction assessed from the standard deviation of
the observations.

Code and data availability. The source code is released as open
source under the terms of the GNU General Public Licence v3
(or, at your option, any later version) and available at the ad-
dress https://github.com/gher-ulg/DINCAE.jl (last access: 9 March
2022) (https://doi.org/10.5281/zenodo.6342276, Barth, 2022). The
sea surface temperature (MODIS Terra Level 3 SST Thermal IR
Daily 4km Nighttime v2014.0, https://doi.org/10.5067/MODST-
1D4N4, OBPG, 2015) is available via PO.DAAC (https://podaac.
jpl.nasa.gov/, last access: 10 February 2022, JPL, NASA, USA),
and wind speed (Cross-Calibrated Multi-Platform, CCMP, gridded
surface vector winds) is available from Remote Sensing Systems
(http://www.remss.com/measurements/ccmp/, last access: 19 July
2019). Chlorophyll a from Ocean Biology Processing Group,
NASA, can be accessed at https://oceancolor.gsfc.nasa.gov/data/
overview/ (last access: 18 September 2019). Altimetry data (dataset
SEALEVEL_EUR_PHY_L3_MY_008_061) are made available by
the Copernicus Marine Environment Monitoring Service (2020)
(https://doi.org/10.48670/moi-00139). The L4 gridded SST over
the Mediterranean is the NOAA Optimum Interpolation 1/4 De-
gree Daily Sea Surface Temperature (OISST) Analysis, Version
2 available at https://www.ncei.noaa.gov/metadata/geoportal/rest/
metadata/item/gov.noaa.ncdc:C00844/html (last access: 15 July
2020) (https://doi.org/10.7289/V5SQ8XB5, Reynolds et al., 2008).
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