Articles | Volume 15, issue 5
https://doi.org/10.5194/gmd-15-2105-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-15-2105-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
RADIv1: a non-steady-state early diagenetic model for ocean sediments in Julia and MATLAB/GNU Octave
Department of Earth Sciences, Utrecht University, Utrecht, the Netherlands
Department of Earth and Planetary Sciences, McGill University, Montreal, Canada
Matthew P. Humphreys
Department of Ocean Systems (OCS), NIOZ Royal Netherlands Institute for Sea Research, Texel, the Netherlands
Monica M. Wilhelmus
Center for Fluid Mechanics, School of Engineering, Brown University, Providence, USA
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, USA
Dustin Carroll
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, USA
Moss Landing Marine Laboratories, San José State University, Moss Landing, USA
William M. Berelson
Department of Earth Sciences, University of Southern California, Los Angeles, USA
Dimitris Menemenlis
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, USA
Jack J. Middelburg
Department of Earth Sciences, Utrecht University, Utrecht, the Netherlands
Jess F. Adkins
Geological and Planetary Sciences, California Institute of Technology, Pasadena, USA
Related authors
Anne L. Kruijt, Robin van Dijk, Olivier Sulpis, Luc Beaufort, Guillaume Lassus, Geert-Jan Brummer, A. Daniëlle van der Burg, Ben A. Cala, Yasmina Ourradi, Katja T. C. A. Peijnenburg, Matthew P. Humphreys, Sonia Chaabane, Appy Sluijs, and Jack J. Middelburg
EGUsphere, https://doi.org/10.5194/egusphere-2025-4234, https://doi.org/10.5194/egusphere-2025-4234, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
We measured the three main types of plankton that produce calcium carbonate in the ocean, at the same time and location. While coccolithophores were the biggest contributors, we found that planktonic gastropods, not foraminifera, were the second largest contributor. This challenges the current view and improves our understanding of how these organisms influence oceans’ carbon cycling.
Hinne Florian van der Zant, Olivier Sulpis, Jack J. Middelburg, Matthew P. Humphreys, Raphaël Savelli, Dustin Carroll, Dimitris Menemenlis, Kay Sušelj, and Vincent Le Fouest
EGUsphere, https://doi.org/10.5194/egusphere-2025-2244, https://doi.org/10.5194/egusphere-2025-2244, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
We developed a model to simulate seafloor biogeochemical processes across a wide range of marine environments, from shallow coastal zones to deep-sea sediments. From this model, we derived a set of simple equations that predict how carbon, oxygen, and alkalinity are exchanged between sediments and overlying waters. These equations provide an efficient way to improve how ocean models represent seafloor interactions, which are often missing or overly simplified.
Samantha Siedlecki, Stanley Nmor, Gennadi Lessin, Kelly Kearney, Subhadeep Rakshit, Colleen Petrik, Jessica Luo, Cristina Schultz, Dalton Sasaki, Kayla Gillen, Anh Pham, Christopher Somes, Damian Brady, Jeremy Testa, Christophe Rabouille, Isa Elegbede, and Olivier Sulpis
EGUsphere, https://doi.org/10.5194/egusphere-2025-1846, https://doi.org/10.5194/egusphere-2025-1846, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
Benthic biogeochemical models are essential for simulating seafloor carbon cycling and climate feedbacks, yet vary widely in structure and assumptions. This paper introduces SedBGC_MIP, a community initiative to compare existing models, refine key processes, and assess uncertainty. We highlight discrepancies through case studies and introduce needs including observational benchmarks. Ultimately, we seek to improve climate and resource projections.
Anne L. Kruijt, Robin van Dijk, Olivier Sulpis, Luc Beaufort, Guillaume Lassus, Geert-Jan Brummer, A. Daniëlle van der Burg, Ben A. Cala, Yasmina Ourradi, Katja T. C. A. Peijnenburg, Matthew P. Humphreys, Sonia Chaabane, Appy Sluijs, and Jack J. Middelburg
EGUsphere, https://doi.org/10.5194/egusphere-2025-4234, https://doi.org/10.5194/egusphere-2025-4234, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
We measured the three main types of plankton that produce calcium carbonate in the ocean, at the same time and location. While coccolithophores were the biggest contributors, we found that planktonic gastropods, not foraminifera, were the second largest contributor. This challenges the current view and improves our understanding of how these organisms influence oceans’ carbon cycling.
Matthew P. Humphreys and Sharyn Ossebaar
EGUsphere, https://doi.org/10.5194/egusphere-2025-3644, https://doi.org/10.5194/egusphere-2025-3644, 2025
This preprint is open for discussion and under review for Ocean Science (OS).
Short summary
Short summary
The ocean is one of the main reservoirs of carbon dioxide (CO2) on Earth's surface, so it plays an important role in modulating the climate. In this paper, we propose an update to how dissolved CO2 in seawater is determined from laboratory data, which can sometimes improve the accuracy of these measurements.
Hinne Florian van der Zant, Olivier Sulpis, Jack J. Middelburg, Matthew P. Humphreys, Raphaël Savelli, Dustin Carroll, Dimitris Menemenlis, Kay Sušelj, and Vincent Le Fouest
EGUsphere, https://doi.org/10.5194/egusphere-2025-2244, https://doi.org/10.5194/egusphere-2025-2244, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
We developed a model to simulate seafloor biogeochemical processes across a wide range of marine environments, from shallow coastal zones to deep-sea sediments. From this model, we derived a set of simple equations that predict how carbon, oxygen, and alkalinity are exchanged between sediments and overlying waters. These equations provide an efficient way to improve how ocean models represent seafloor interactions, which are often missing or overly simplified.
Samantha Siedlecki, Stanley Nmor, Gennadi Lessin, Kelly Kearney, Subhadeep Rakshit, Colleen Petrik, Jessica Luo, Cristina Schultz, Dalton Sasaki, Kayla Gillen, Anh Pham, Christopher Somes, Damian Brady, Jeremy Testa, Christophe Rabouille, Isa Elegbede, and Olivier Sulpis
EGUsphere, https://doi.org/10.5194/egusphere-2025-1846, https://doi.org/10.5194/egusphere-2025-1846, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
Benthic biogeochemical models are essential for simulating seafloor carbon cycling and climate feedbacks, yet vary widely in structure and assumptions. This paper introduces SedBGC_MIP, a community initiative to compare existing models, refine key processes, and assess uncertainty. We highlight discrepancies through case studies and introduce needs including observational benchmarks. Ultimately, we seek to improve climate and resource projections.
Raphaël Savelli, Dustin Carroll, Dimitris Menemenlis, Jonathan Lauderdale, Clément Bertin, Stephanie Dutkiewicz, Manfredi Manizza, Anthony Bloom, Karel Castro-Morales, Charles E. Miller, Marc Simard, Kevin W. Bowman, and Hong Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2025-1707, https://doi.org/10.5194/egusphere-2025-1707, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
Accounting for carbon and nutrients in rivers is essential for resolving carbon dioxide (CO2) exchanges between the ocean and the atmosphere. In this study, we add the effect of present-day rivers to a pioneering global-ocean biogeochemistry model. This study highlights the challenge for global ocean numerical models to cover the complexity of the flow of water and carbon across the Land-to-Ocean Aquatic Continuum.
Li-Qing Jiang, Amanda Fay, Jens Daniel Müller, Lydia Keppler, Dustin Carroll, Siv K. Lauvset, Tim DeVries, Judith Hauck, Christian Rödenbeck, Luke Gregor, Nicolas Metzl, Andrea J. Fassbender, Jean-Pierre Gattuso, Peter Landschützer, Rik Wanninkhof, Christopher Sabine, Simone R. Alin, Mario Hoppema, Are Olsen, Matthew P. Humphreys, Kumiko Azetsu-Scott, Dorothee C. E. Bakker, Leticia Barbero, Nicholas R. Bates, Nicole Besemer, Henry C. Bittig, Albert E. Boyd, Daniel Broullón, Wei-Jun Cai, Brendan R. Carter, Thi-Tuyet-Trang Chau, Chen-Tung Arthur Chen, Frédéric Cyr, John E. Dore, Ian Enochs, Richard A. Feely, Hernan E. Garcia, Marion Gehlen, Lucas Gloege, Melchor González-Dávila, Nicolas Gruber, Yosuke Iida, Masao Ishii, Esther Kennedy, Alex Kozyr, Nico Lange, Claire Lo Monaco, Derek P. Manzello, Galen A. McKinley, Natalie M. Monacci, Xose A. Padin, Ana M. Palacio-Castro, Fiz F. Pérez, Alizée Roobaert, J. Magdalena Santana-Casiano, Jonathan Sharp, Adrienne Sutton, Jim Swift, Toste Tanhua, Maciej Telszewski, Jens Terhaar, Ruben van Hooidonk, Anton Velo, Andrew J. Watson, Angelicque E. White, Zelun Wu, Hyelim Yoo, and Jiye Zeng
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-255, https://doi.org/10.5194/essd-2025-255, 2025
Preprint under review for ESSD
Short summary
Short summary
This review article provides an overview of 60 existing ocean carbonate chemistry data products, encompassing a broad range of types, including compilations of cruise datasets, gap-filled observational products, model simulations, and more. It is designed to help researchers identify and access the data products that best support their scientific objectives, thereby facilitating progress in understanding the ocean's changing carbonate chemistry.
Clement Bertin, Vincent Le Fouest, Dustin Carroll, Stephanie Dutkiewicz, Dimitris Menemenlis, Atsushi Matsuoka, Manfredi Manizza, and Charles E. Miller
EGUsphere, https://doi.org/10.5194/egusphere-2025-973, https://doi.org/10.5194/egusphere-2025-973, 2025
Short summary
Short summary
We adjusted a model of the Mackenzie River region to account for the riverine export of organic matter that affects light in the water. We show that such export causes a delay in the phytoplankton growth by two weeks and raises the water surface temperature by 1.7 °C. We found that temperature increase turns this coastal region from a sink of carbon dioxide to an emitter. Our findings suggest that rising exports of organic matter can significantly affect the carbon cycle in Arctic coastal areas.
Abdullah A. Fahad, Andrea Molod, Krzysztof Wargan, Dimitris Menemenlis, Patrick Heimbach, Atanas Trayanov, Ehud Strobach, and Lawrence Coy
EGUsphere, https://doi.org/10.21203/rs.3.rs-1892797/v2, https://doi.org/10.21203/rs.3.rs-1892797/v2, 2025
Short summary
Short summary
This study used a 1-degree GEOS-MITgcm coupled GCM to analyze the Northern Hemisphere (NH) stratospheric temperature response to external forcing. Results show the NH polar stratospheric temperature increased from 1992 to 2000, contrary to the expectation of stratospheric cooling with rising CO2. However, from 2000 to 2020, the temperature decreased. The study concluded that changes in CO2 and Ozone drive the meridional eddy transport of heat, dictating polar stratospheric temperature behavior.
Yoshihiro Nakayama, Alena Malyarenko, Hong Zhang, Ou Wang, Matthis Auger, Yafei Nie, Ian Fenty, Matthew Mazloff, Armin Köhl, and Dimitris Menemenlis
Geosci. Model Dev., 17, 8613–8638, https://doi.org/10.5194/gmd-17-8613-2024, https://doi.org/10.5194/gmd-17-8613-2024, 2024
Short summary
Short summary
Global- and basin-scale ocean reanalyses are becoming easily accessible. However, such ocean reanalyses are optimized for their entire model domains and their ability to simulate the Southern Ocean requires evaluation. We conduct intercomparison analyses of Massachusetts Institute of Technology General Circulation Model (MITgcm)-based ocean reanalyses. They generally perform well for the open ocean, but open-ocean temporal variability and Antarctic continental shelves require improvements.
Ellen M. Buckley, Leela Cañuelas, Mary-Louise Timmermans, and Monica M. Wilhelmus
The Cryosphere, 18, 5031–5043, https://doi.org/10.5194/tc-18-5031-2024, https://doi.org/10.5194/tc-18-5031-2024, 2024
Short summary
Short summary
Arctic sea ice cover evolves seasonally from large plates separated by long, linear leads in the winter to a mosaic of smaller sea ice floes in the summer. Here, we present a new image segmentation algorithm applied to thousands of images and identify over 9 million individual pieces of ice. We observe the characteristics of the floes and how they evolve throughout the summer as the ice breaks up.
Louise Delaigue, Gert-Jan Reichart, Chris Galley, Yasmina Ourradi, and Matthew Paul Humphreys
EGUsphere, https://doi.org/10.5194/egusphere-2024-2853, https://doi.org/10.5194/egusphere-2024-2853, 2024
Short summary
Short summary
Our study analyzed pH in ocean surface waters to understand how they fluctuate with changes in temperature, salinity, and biological activities. We found that temperature mainly controls daily pH variations, but biological processes also play a role, especially in affecting CO2 levels between the ocean and atmosphere. Our research shows how these factors together maintain the balance of ocean chemistry, which is crucial for predicting changes in marine environments.
Matthew P. Humphreys
Ocean Sci., 20, 1325–1350, https://doi.org/10.5194/os-20-1325-2024, https://doi.org/10.5194/os-20-1325-2024, 2024
Short summary
Short summary
The ocean takes up carbon dioxide (CO2) from the atmosphere, slowing climate change. This CO2 uptake is controlled by a property called ƒCO2. Seawater ƒCO2 changes as seawater warms or cools, although by an uncertain amount; measurements and calculations give inconsistent results. Here, we work out how ƒCO2 should, in theory, respond to temperature. This matches field data and model calculations but still has discrepancies with scarce laboratory results, which need more measurements to resolve.
Siv K. Lauvset, Nico Lange, Toste Tanhua, Henry C. Bittig, Are Olsen, Alex Kozyr, Marta Álvarez, Kumiko Azetsu-Scott, Peter J. Brown, Brendan R. Carter, Leticia Cotrim da Cunha, Mario Hoppema, Matthew P. Humphreys, Masao Ishii, Emil Jeansson, Akihiko Murata, Jens Daniel Müller, Fiz F. Pérez, Carsten Schirnick, Reiner Steinfeldt, Toru Suzuki, Adam Ulfsbo, Anton Velo, Ryan J. Woosley, and Robert M. Key
Earth Syst. Sci. Data, 16, 2047–2072, https://doi.org/10.5194/essd-16-2047-2024, https://doi.org/10.5194/essd-16-2047-2024, 2024
Short summary
Short summary
GLODAP is a data product for ocean inorganic carbon and related biogeochemical variables measured by the chemical analysis of water bottle samples from scientific cruises. GLODAPv2.2023 is the fifth update of GLODAPv2 from 2016. The data that are included have been subjected to extensive quality controlling, including systematic evaluation of measurement biases. This version contains data from 1108 hydrographic cruises covering the world's oceans from 1972 to 2021.
Milan Y. Patel, Pietro F. Vannucci, Jinsol Kim, William M. Berelson, and Ronald C. Cohen
Atmos. Meas. Tech., 17, 1051–1060, https://doi.org/10.5194/amt-17-1051-2024, https://doi.org/10.5194/amt-17-1051-2024, 2024
Short summary
Short summary
Low-cost particulate matter (PM) sensors are becoming increasingly common in community monitoring and atmospheric research, but these sensors require proper calibration to provide accurate reporting. Here, we propose a hygroscopic growth calibration scheme that evolves in time to account for seasonal changes in hygroscopic growth. In San Francisco and Los Angeles, CA, applying a seasonal hygroscopic growth calibration can account for sensor biases driven by the seasonal cycles in PM composition.
Katharina Gallmeier, J. Xavier Prochaska, Peter Cornillon, Dimitris Menemenlis, and Madolyn Kelm
Geosci. Model Dev., 16, 7143–7170, https://doi.org/10.5194/gmd-16-7143-2023, https://doi.org/10.5194/gmd-16-7143-2023, 2023
Short summary
Short summary
This paper introduces an approach to evaluate numerical models of ocean circulation. We compare the structure of satellite-derived sea surface temperature anomaly (SSTa) instances determined by a machine learning algorithm at 10–80 km scales to those output by a high-resolution MITgcm run. The simulation over much of the ocean reproduces the observed distribution of SSTa patterns well. This general agreement, alongside a few notable exceptions, highlights the potential of this approach.
Jinsol Kim, John B. Miller, Charles E. Miller, Scott J. Lehman, Sylvia E. Michel, Vineet Yadav, Nick E. Rollins, and William M. Berelson
Atmos. Chem. Phys., 23, 14425–14436, https://doi.org/10.5194/acp-23-14425-2023, https://doi.org/10.5194/acp-23-14425-2023, 2023
Short summary
Short summary
In this study, we present the partitioning of CO2 signals from biogenic, petroleum and natural gas sources by combining CO, 13CO2 and 14CO2 measurements. Using measurements from flask air samples at three sites in the greater Los Angeles region, we find larger and positive contributions of biogenic signals in winter and smaller and negative contributions in summer. The largest contribution of natural gas combustion generally occurs in summer.
Christopher Horvat, Ellen Buckley, Madelyn Stewart, Poom Yoosiri, and Monica M. Wilhelmus
EGUsphere, https://doi.org/10.5194/egusphere-2023-2312, https://doi.org/10.5194/egusphere-2023-2312, 2023
Preprint withdrawn
Short summary
Short summary
The decline of sea ice area variability is a leading indicator of climate change, and accurate measurement of sea ice area are of high importance. We develop new measurement of sea ice area coverage using the ICESat-2 laser altimeter, typically used to measure the height of the ice surface. The new method performs as well or better than typical passive microwave measurements, especially for sea ice populated with thin fractures in winter.
Brendan Byrne, David F. Baker, Sourish Basu, Michael Bertolacci, Kevin W. Bowman, Dustin Carroll, Abhishek Chatterjee, Frédéric Chevallier, Philippe Ciais, Noel Cressie, David Crisp, Sean Crowell, Feng Deng, Zhu Deng, Nicholas M. Deutscher, Manvendra K. Dubey, Sha Feng, Omaira E. García, David W. T. Griffith, Benedikt Herkommer, Lei Hu, Andrew R. Jacobson, Rajesh Janardanan, Sujong Jeong, Matthew S. Johnson, Dylan B. A. Jones, Rigel Kivi, Junjie Liu, Zhiqiang Liu, Shamil Maksyutov, John B. Miller, Scot M. Miller, Isamu Morino, Justus Notholt, Tomohiro Oda, Christopher W. O'Dell, Young-Suk Oh, Hirofumi Ohyama, Prabir K. Patra, Hélène Peiro, Christof Petri, Sajeev Philip, David F. Pollard, Benjamin Poulter, Marine Remaud, Andrew Schuh, Mahesh K. Sha, Kei Shiomi, Kimberly Strong, Colm Sweeney, Yao Té, Hanqin Tian, Voltaire A. Velazco, Mihalis Vrekoussis, Thorsten Warneke, John R. Worden, Debra Wunch, Yuanzhi Yao, Jeongmin Yun, Andrew Zammit-Mangion, and Ning Zeng
Earth Syst. Sci. Data, 15, 963–1004, https://doi.org/10.5194/essd-15-963-2023, https://doi.org/10.5194/essd-15-963-2023, 2023
Short summary
Short summary
Changes in the carbon stocks of terrestrial ecosystems result in emissions and removals of CO2. These can be driven by anthropogenic activities (e.g., deforestation), natural processes (e.g., fires) or in response to rising CO2 (e.g., CO2 fertilization). This paper describes a dataset of CO2 emissions and removals derived from atmospheric CO2 observations. This pilot dataset informs current capabilities and future developments towards top-down monitoring and verification systems.
Siv K. Lauvset, Nico Lange, Toste Tanhua, Henry C. Bittig, Are Olsen, Alex Kozyr, Simone Alin, Marta Álvarez, Kumiko Azetsu-Scott, Leticia Barbero, Susan Becker, Peter J. Brown, Brendan R. Carter, Leticia Cotrim da Cunha, Richard A. Feely, Mario Hoppema, Matthew P. Humphreys, Masao Ishii, Emil Jeansson, Li-Qing Jiang, Steve D. Jones, Claire Lo Monaco, Akihiko Murata, Jens Daniel Müller, Fiz F. Pérez, Benjamin Pfeil, Carsten Schirnick, Reiner Steinfeldt, Toru Suzuki, Bronte Tilbrook, Adam Ulfsbo, Anton Velo, Ryan J. Woosley, and Robert M. Key
Earth Syst. Sci. Data, 14, 5543–5572, https://doi.org/10.5194/essd-14-5543-2022, https://doi.org/10.5194/essd-14-5543-2022, 2022
Short summary
Short summary
GLODAP is a data product for ocean inorganic carbon and related biogeochemical variables measured by the chemical analysis of water bottle samples from scientific cruises. GLODAPv2.2022 is the fourth update of GLODAPv2 from 2016. The data that are included have been subjected to extensive quality controlling, including systematic evaluation of measurement biases. This version contains data from 1085 hydrographic cruises covering the world's oceans from 1972 to 2021.
Hector S. Torres, Patrice Klein, Jinbo Wang, Alexander Wineteer, Bo Qiu, Andrew F. Thompson, Lionel Renault, Ernesto Rodriguez, Dimitris Menemenlis, Andrea Molod, Christopher N. Hill, Ehud Strobach, Hong Zhang, Mar Flexas, and Dragana Perkovic-Martin
Geosci. Model Dev., 15, 8041–8058, https://doi.org/10.5194/gmd-15-8041-2022, https://doi.org/10.5194/gmd-15-8041-2022, 2022
Short summary
Short summary
Wind work at the air-sea interface is the scalar product of winds and currents and is the transfer of kinetic energy between the ocean and the atmosphere. Using a new global coupled ocean-atmosphere simulation performed at kilometer resolution, we show that all scales of winds and currents impact the ocean dynamics at spatial and temporal scales. The consequential interplay of surface winds and currents in the numerical simulation motivates the need for a winds and currents satellite mission.
Matthew P. Humphreys, Erik H. Meesters, Henk de Haas, Szabina Karancz, Louise Delaigue, Karel Bakker, Gerard Duineveld, Siham de Goeyse, Andreas F. Haas, Furu Mienis, Sharyn Ossebaar, and Fleur C. van Duyl
Biogeosciences, 19, 347–358, https://doi.org/10.5194/bg-19-347-2022, https://doi.org/10.5194/bg-19-347-2022, 2022
Short summary
Short summary
A series of submarine sinkholes were recently discovered on Luymes Bank, part of Saba Bank, a carbonate platform in the Caribbean Netherlands. Here, we investigate the waters inside these sinkholes for the first time. One of the sinkholes contained a body of dense, low-oxygen and low-pH water, which we call the
acid lake. We use measurements of seawater chemistry to work out what processes were responsible for forming the acid lake and discuss the consequences for the carbonate platform.
Matthew P. Humphreys, Ernie R. Lewis, Jonathan D. Sharp, and Denis Pierrot
Geosci. Model Dev., 15, 15–43, https://doi.org/10.5194/gmd-15-15-2022, https://doi.org/10.5194/gmd-15-15-2022, 2022
Short summary
Short summary
The ocean helps to mitigate our impact on Earth's climate by absorbing about a quarter of the carbon dioxide (CO2) released by human activities each year. However, once absorbed, chemical reactions between CO2 and water reduce seawater pH (
ocean acidification), which may have adverse effects on marine ecosystems. Our Python package, PyCO2SYS, models the chemical reactions of CO2 in seawater, allowing us to quantify the corresponding changes in pH and related chemical properties.
Gerrit Müller, Jack J. Middelburg, and Appy Sluijs
Earth Syst. Sci. Data, 13, 3565–3575, https://doi.org/10.5194/essd-13-3565-2021, https://doi.org/10.5194/essd-13-3565-2021, 2021
Short summary
Short summary
Rivers are major freshwater resources, connectors and transporters on Earth. As the composition of river waters and particles results from processes in their catchment, such as erosion, weathering, environmental pollution, nutrient and carbon cycling, Earth-spanning databases of river composition are needed for studies of these processes on a global scale. While extensive resources on water and nutrient composition exist, we provide a database of river particle composition.
Luca Possenti, Ingunn Skjelvan, Dariia Atamanchuk, Anders Tengberg, Matthew P. Humphreys, Socratis Loucaides, Liam Fernand, and Jan Kaiser
Ocean Sci., 17, 593–614, https://doi.org/10.5194/os-17-593-2021, https://doi.org/10.5194/os-17-593-2021, 2021
Short summary
Short summary
A Seaglider was deployed for 8 months in the Norwegian Sea mounting an oxygen and, for the first time, a CO2 optode and a chlorophyll fluorescence sensor. The oxygen and CO2 data were used to assess the spatial and temporal variability and calculate the net community production, N(O2) and N(CT). The dataset was used to calculate net community production from inventory changes, air–sea flux, diapycnal mixing and entrainment.
Yang Feng, Dimitris Menemenlis, Huijie Xue, Hong Zhang, Dustin Carroll, Yan Du, and Hui Wu
Geosci. Model Dev., 14, 1801–1819, https://doi.org/10.5194/gmd-14-1801-2021, https://doi.org/10.5194/gmd-14-1801-2021, 2021
Short summary
Short summary
Simulation of coastal plume regions was improved in global ECCOv4 with a series of sensitivity tests. We find modeled SSS is closer to SMAP when using daily point-source runoff as well as increasing the resolution from coarse to intermediate. The plume characteristics, freshwater transport, and critical water properties are modified greatly. But this may not happen with a further increase to high resolution. The study will advance the seamless modeling of land–ocean–atmosphere feedback in ESMs.
Junjie Liu, Latha Baskaran, Kevin Bowman, David Schimel, A. Anthony Bloom, Nicholas C. Parazoo, Tomohiro Oda, Dustin Carroll, Dimitris Menemenlis, Joanna Joiner, Roisin Commane, Bruce Daube, Lucianna V. Gatti, Kathryn McKain, John Miller, Britton B. Stephens, Colm Sweeney, and Steven Wofsy
Earth Syst. Sci. Data, 13, 299–330, https://doi.org/10.5194/essd-13-299-2021, https://doi.org/10.5194/essd-13-299-2021, 2021
Short summary
Short summary
On average, the terrestrial biosphere carbon sink is equivalent to ~ 20 % of fossil fuel emissions. Understanding where and why the terrestrial biosphere absorbs carbon from the atmosphere is pivotal to any mitigation policy. Here we present a regionally resolved satellite-constrained net biosphere exchange (NBE) dataset with corresponding uncertainties between 2010–2018: CMS-Flux NBE 2020. The dataset provides a unique perspective on monitoring regional contributions to the CO2 growth rate.
Liang Yu, Joachim C. Rozemeijer, Hans Peter Broers, Boris M. van Breukelen, Jack J. Middelburg, Maarten Ouboter, and Ype van der Velde
Hydrol. Earth Syst. Sci., 25, 69–87, https://doi.org/10.5194/hess-25-69-2021, https://doi.org/10.5194/hess-25-69-2021, 2021
Short summary
Short summary
The assessment of the collected water quality information is for the managers to find a way to improve the water environment to satisfy human uses and environmental needs. We found groundwater containing high concentrations of nutrient mixes with rain water in the ditches. The stable solutes are diluted during rain. The change in nutrients over time is determined by and uptaken by organisms and chemical processes. The water is more enriched with nutrients and looked
dirtierduring winter.
Anne Roepert, Lubos Polerecky, Esmee Geerken, Gert-Jan Reichart, and Jack J. Middelburg
Biogeosciences, 17, 4727–4743, https://doi.org/10.5194/bg-17-4727-2020, https://doi.org/10.5194/bg-17-4727-2020, 2020
Short summary
Short summary
We investigated, for the first time, the spatial distribution of chlorine and fluorine in the shell walls of four benthic foraminifera species: Ammonia tepida, Amphistegina lessonii, Archaias angulatus, and Sorites marginalis. Cross sections of specimens were imaged using nanoSIMS. The distribution of Cl and F was co-located with organics in the rotaliids and rather homogeneously distributed in miliolids. We suggest that the incorporation is governed by the biomineralization pathway.
Cited articles
Adkins, J. F., Naviaux, J. D., Subhas, A. V., Dong, S., and Berelson, W. M.: The Dissolution Rate of CaCO3 in the Ocean, Annu. Rev. Mar. Sci., 13, 57–80, https://doi.org/10.1146/annurev-marine-041720-092514, 2021.
Aller, R. C.: Transport and reactions in the bioirrigated
zone, in: The benthic boundary layer: transport processes and
biogeochemistry, edited by: Boudreau, B. P. and Jørgensen, B. B., Oxford University Press, New York,
269–301, ISBN-13 978-0195118810, 2001.
Anderson, L. A.: On the hydrogen and oxygen content of marine phytoplankton, Deep-Sea Res. Pt. I, 42, 1675–1680, https://doi.org/10.1016/0967-0637(95)00072-E, 1995.
Anderson, L. A. and Sarmiento, J. L.: Redfield ratios of remineralization determined by nutrient data analysis, Global Biogeochem. Cy., 8, 65–80, https://doi.org/10.1029/93GB03318, 1994.
Archer, D.: Modeling the calcite lysocline, J. Geophys. Res., 96, 17037–17050, https://doi.org/10.1029/91JC01812, 1991.
Archer, D. E.: An atlas of the distribution of calcium carbonate in sediments of the deep sea, Global Biogeochem. Cy., 10, 159–174, https://doi.org/10.1029/95GB03016, 1996.
Archer, D., Emerson, S., and Reimers, C.: Dissolution of calcite in deep-sea sediments: pH and O2 microelectrode results, Geochim. Cosmochim. Ac., 53, 2831–2845, https://doi.org/10.1016/0016-7037(89)90161-0, 1989a.
Archer, D., Emerson, S., and Smith, C. R.: Direct measurement of the diffusive sublayer at the deep sea floor using oxygen microelectrodes, Nature, 340, 623–626, https://doi.org/10.1038/340623a0, 1989b.
Archer, D. E., Morford, J. L., and Emerson, S. R.: A model of suboxic sedimentary diagenesis suitable for automatic tuning and gridded global domains, Global Biogeochem. Cy., 16, 171–1721, https://doi.org/10.1029/2000GB001288, 2002.
Arndt, S., Jørgensen, B. B., LaRowe, D. E., Middelburg, J. J., Pancost, R. D., and Regnier, P.: Quantifying the degradation of organic matter in marine sediments: A review and synthesis, Earth-Sci. Rev., 123, 53–86, https://doi.org/10.1016/j.earscirev.2013.02.008, 2013.
Bender, M., Martin, W., Hess, J., Sayles, F., Ball, L., and Lambert, C.: A whole-core squeezer for interfacial pore-water sampling, Limnol. Oceanogr., 32, 1214–1225, https://doi.org/10.4319/lo.1987.32.6.1214, 1987.
Berelson, W. M., Hammond, D. E., McManus, J., and Kilgore, T. E.: Dissolution kinetics of calcium carbonate in equatorial Pacific sediments, Global Biogeochem. Cy., 8, 219–235, https://doi.org/10.1029/93GB03394, 1994.
Berg, P., Huettel, M., Glud, R. N., Reimers, C. E., and Attard, K. M.: Aquatic Eddy Covariance: The Method and Its Contributions to Defining Oxygen and Carbon Fluxes in Marine Environments, 14, 431–455, Annu. Rev. Mar. Sci., https://doi.org/10.1146/annurev-marine-042121-012329, 2022.
Berner, R. A.: Early diagenesis: A theoretical approach, Princeton University Press, 256 pp., ISBN 13 9780691082585, 1980.
Bezanson, J., Edelman, A., Karpinski, S., and Shah, V. B.: Julia: A Fresh Approach to Numerical Computing, SIAM Rev., 59, 65–98, https://doi.org/10.1137/141000671, 2017.
Billett, D. S. M., Lampitt, R. S., Rice, A. L., and Mantoura, R. F. C.: Seasonal sedimentation of phytoplankton to the deep-sea benthos, Nature, 302, 520–522, https://doi.org/10.1038/302520a0, 1983.
Boudreau, B. P.: On the equivalence of nonlocal and radial-diffusion models for porewater irrigation, J. Mar. Res., 42, 731–735, https://doi.org/10.1357/002224084788505924, 1984.
Boudreau, B. P.: Is burial velocity a master parameter for bioturbation?, Geochim. Cosmochim. Ac., 58, 1243–1249, https://doi.org/10.1016/0016-7037(94)90378-6, 1994.
Boudreau, B. P.: The diffusive tortuosity of fine-grained unlithified sediments, Geochim. Cosmochim. Ac., 60, 3139–3142, https://doi.org/10.1016/0016-7037(96)00158-5, 1996a.
Boudreau, B. P.: A method-of-lines code for carbon and nutrient diagenesis in aquatic sediments, Comput. Geosci., 22, 479–496, https://doi.org/10.1016/0098-3004(95)00115-8, 1996b.
Boudreau, B. P.: Diagenetic Models and Their Implementation, Springer-Verlag, Berlin, 414 pp., ISBN-13 978-0387611259, 1997.
Boudreau, B. P. and Guinasso Jr., N. L.: The influence of
a diffusive boundary layer on accretion, dissolution, and diagenesis
at the sea floor, in: The Dynamic Environment of the Ocean Floor,
edited by: Fanning, K. A., Manheim, F. T., Lexington Books, Lexington, 115–145, ISBN 13 9780669028096, 1982.
Boudreau, B. P., Sulpis, O., and Mucci, A.: Control of CaCO3 dissolution at the deep seafloor and its consequences, Geochim. Cosmochim. Ac., 268, 90–106, https://doi.org/10.1016/j.gca.2019.09.037, 2020.
Brendel, P. J. and Luther, G. W. I.: Development of a Gold Amalgam Voltammetric Microelectrode for the Determination of Dissolved Fe, Mn, O2, and S(-II) in Porewaters of Marine and Freshwater Sediments, Environ. Sci. Technol., 29, 751–761, https://doi.org/10.1021/es00003a024, 1995.
Buesseler, K. O., Antia, A. N., Chen, M., Fowler, S. W.,
Gardner, W. D., Gustafsson, O., Harada, K., Michaels, A. F., van der Loeff,
M. R., Sarin, M., Steinberg, D. K., and Trull, T.: An assessment of the use of sediment traps for estimating upper ocean particle fluxes, J. Mar. Res., 65, 345–416, 2007.
Burdige, D. J.: Preservation of Organic Matter in Marine Sediments: Controls, Mechanisms, and an Imbalance in Sediment Organic Carbon Budgets?, Chem. Rev., 107, 467–485, https://doi.org/10.1021/cr050347q, 2007.
Burdige, D. J. and Gieskes, J. M.: A pore water/solid phase diagenetic model for manganese in marine sediments, Am. J. Sci., 283, 29–47, https://doi.org/10.2475/ajs.283.1.29, 1983.
Cai, W.-J. and Reimers, C. E.: The development of pH and pCO2 microelectrodes for studying the carbonate chemistry of pore waters near the sediment-water interface, Limnol. Oceanogr., 38, 1762–1773, https://doi.org/10.4319/lo.1993.38.8.1762, 1993.
Cai, W.-J., Zhao, P., and Wang, Y.: pH and pCO2 microelectrode measurements and the diffusive behavior of carbon dioxide species in coastal marine sediments, Mar. Chem., 70, 133–148, https://doi.org/10.1016/S0304-4203(00)00017-7, 2000.
Cai, W.-J., Ma, Y., Hopkinson, B. M., Grottoli, A. G., Warner, M. E., Ding, Q., Hu, X., Yuan, X., Schoepf, V., Xu, H., Han, C., Melman, T. F., Hoadley, K. D., Pettay, D. T., Matsui, Y., Baumann, J. H., Levas, S., Ying, Y., and Wang, Y.: Microelectrode characterization of coral daytime interior pH and carbonate chemistry, Nat. Commun., 7, 11144, https://doi.org/10.1038/ncomms11144, 2016.
Carroll, D., Menemenlis, D., Adkins, J. F., Bowman, K. W., Brix, H., Dutkiewicz, S., Fenty, I., Gierach, M. M., Hill, C., Jahn, O., Landschützer, P., Lauderdale, J. M., Liu, J., Manizza, M., Naviaux, J. D., Rödenbeck, C., Schimel, D. S., Van der Stocken, T., and Zhang, H.: The ECCO-Darwin Data-Assimilative Global Ocean Biogeochemistry Model: Estimates of Seasonal to Multidecadal Surface Ocean pCO2 and Air-Sea CO2 Flux, J. Adv. Model. Earth Sy., 12, e2019MS001888, https://doi.org/10.1029/2019MS001888, 2020.
Chriss, T. M. and Caldwell, D. R.: Evidence for the influence of form drag on bottom boundary layer flow, J. Geophys. Res., 87, 4148–4154, https://doi.org/10.1029/JC087iC06p04148, 1982.
Cook, P. G., Rodellas, V., Andrisoa, A., and Stieglitz, T. C.: Exchange across the sediment-water interface quantified from porewater radon profiles, J. Hydrol., 559, 873–883, https://doi.org/10.1016/j.jhydrol.2018.02.070, 2018.
Couture, R.-M., Sfafei, B., Van Cappellen, P., Tessier, A., and Gobeil, C.: Non-Steady State Modeling of Arsenic Diagenesis in Lake Sediments, Environ. Sci. Technol., 44, 197–203, https://doi.org/10.1021/es902077q, 2010.
Cowie, G. L. and Hedges, J. I.: Biochemical indicators of diagenetic alteration in natural organic matter mixtures, Nature, 369, 304–307, https://doi.org/10.1038/369304a0, 1994.
Cui, Y., Kump, L. R., Ridgwell, A. J., Charles, A. J., Junium, C. K., Diefendorf, A. F., Freeman, K. H., Urban, N. M., and Harding, I. C.: Slow release of fossil carbon during the Palaeocene–Eocene Thermal Maximum, Nat. Geosci., 4, 481–485, https://doi.org/10.1038/ngeo1179, 2011.
Dade, W. B.: Near-bed turbulence and hydrodynamic control of diffusional mass transfer at the sea floor, Limnol. Oceanogr., 38, 52–69, https://doi.org/10.4319/lo.1993.38.1.0052, 1993.
de Beer, D., Bissett, A., de Wit, R., Jonkers, H., Köhler-Rink, S., Nam, H., Kim, B. H., Eickert, G., and Grinstain, M.: A microsensor for carbonate ions suitable for microprofiling in freshwater and saline environments, Limnol. Oceanogr.-Meth., 6, 532–541, https://doi.org/10.4319/lom.2008.6.532, 2008.
De Borger, E., Tiano, J., Braeckman, U., Rijnsdorp, A. D., and Soetaert, K.: Impact of bottom trawling on sediment biogeochemistry: a modelling approach, Biogeosciences, 18, 2539–2557, https://doi.org/10.5194/bg-18-2539-2021, 2021.
Dickson, A. G.: An exact definition of total alkalinity and a procedure for the estimation of alkalinity and total inorganic carbon from titration data, Deep-Sea Res., 28, 609–623, https://doi.org/10.1016/0198-0149(81)90121-7, 1981.
Dong, S., Berelson, W. M., Rollins, N. E., Subhas, A. V., Naviaux, J. D., Celestian, A. J., Liu, X., Turaga, N., Kemnitz, N. J., Byrne, R. H., and Adkins, J. F.: Aragonite dissolution kinetics and calcite/aragonite ratios in sinking and suspended particles in the North Pacific, Earth Planet. Sc. Lett., 515, 1–12, https://doi.org/10.1016/j.epsl.2019.03.016, 2019.
Egbert, G. D. and Erofeeva, S. Y.: Efficient Inverse Modeling of Barotropic Ocean Tides, J. Atmos. Ocean. Tech., 19, 183–204, https://doi.org/10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2, 2002.
Emerson, S., Jahnke, R., and Heggie, D.: Sediment-water exchange in shallow water estuarine sediments, J. Mar. Res., 42, 709–730, https://doi.org/10.1357/002224084788505942, 1984.
Fiadeiro, M. E. and Veronis, G.: On weighted-mean schemes for the finite-difference approximation to the advection-diffusion equation, Tellus, 29, 512–522, https://doi.org/10.3402/tellusa.v29i6.11385, 1977.
Froelich, P. N., Klinkhammer, G. P., Bender, M. L., Luedtke, N. A., Heath, G. R., Cullen, D., Dauphin, P., Hammond, D., Hartman, B., and Maynard, V.: Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis, Geochim. Cosmochim. Ac., 43, 1075–1090, https://doi.org/10.1016/0016-7037(79)90095-4, 1979.
Glud, R. N., Gundersen, J. K., Revsbech, N. P., and Jørgensen, B. B.: Effects on the benthic diffusive boundary layer imposed by microelectrodes, Limnol. Oceanogr., 39, 462–467, https://doi.org/10.4319/lo.1994.39.2.0462, 1994.
Gruber, N., Clement, D., Carter, B. R., Feely, R. A.,
van Heuven, S., Hoppema, M., Ishii, M., Key, R. M., Kozyr, A., Lauvset, S. K., Monaco, C. L., Mathis, J. T., Murata, A., Olsen, A., Perez, F. F., Sabine, C. L., Tanhua, T., and Wanninkhof, R.: The oceanic sink for anthropogenic CO2 from 1994 to 2007, Science, 363, 1193–1199, https://doi.org/10.1126/science.aau5153, 2019.
Gundersen, J. K. and Jørgensen, B. B.: Microstructure of diffusive boundary layers and the oxygen uptake of the sea floor, Nature, 345, 604–607, https://doi.org/10.1038/345604a0, 1990.
Haffert, L., Haeckel, M., de Stigter, H., and Janssen, F.: Assessing the temporal scale of deep-sea mining impacts on sediment biogeochemistry, Biogeosciences, 17, 2767–2789, https://doi.org/10.5194/bg-17-2767-2020, 2020.
Hales, B., Emerson, S., and Archer, D.: Respiration and dissolution in the sediments of the western North Atlantic: estimates from models of in situ microelectrode measurements of porewater oxygen and pH, Deep-Sea Res. Pt. I, 41, 695–719, https://doi.org/10.1016/0967-0637(94)90050-7, 1994 (data available at: https://doi.org/10.1594/PANGAEA.730420).
Hammond, D. E., McManus, J., Berelson, W. M., Kilgore, T. E., and Pope, R. H.: Early diagenesis of organic material in equatorial Pacific sediments: stpichiometry and kinetics, Deep-Sea Res. Pt. II, 43, 1365–1412, https://doi.org/10.1016/0967-0645(96)00027-6, 1996.
Han, C., Cai, W.-J., Wang, Y., and Ye, Y.: Calibration and evaluation of a carbonate microsensor for studies of the marine inorganic carbon system, J. Oceanogr., 70, 425–433, https://doi.org/10.1007/s10872-014-0243-7, 2014.
Han, X., Fang, H., He, G., and Reible, D.: Effects of roughness and permeability on solute transfer at the sediment water interface, Water Res., 129, 39–50, https://doi.org/10.1016/j.watres.2017.10.049, 2018.
Hedges, J. I., Baldock, J. A., Gélinas, Y., Lee, C., Peterson, M. L., and Wakeham, S. G.: The biochemical and elemental compositions of marine plankton: A NMR perspective, Mar. Chem., 78, 47–63, https://doi.org/10.1016/S0304-4203(02)00009-9, 2002.
Higashino, M. and Stefan, H. G.: Diffusive boundary layer development above a sediment – water interface, Water Environ. Res., 76, 292–300, https://doi.org/10.2175/106143004X141870, 2004.
Homoky, W. B., Weber, T., Berelson, W. M., Conway, T. M., Henderson, G. M., van Hulten, M., Jeandel, C., Severmann, S., and Tagliabue, A.: Quantifying trace element and isotope fluxes at the ocean–sediment boundary: a review, Philos. T. Roy. Soc., 374, 20160246, https://doi.org/10.1098/rsta.2016.0246, 2016.
Hondzo, M.: Dissolved oxygen transfer at the sediment-water interface in a turbulent flow, Water Resour. Res., 34, 3525–3533, https://doi.org/10.1029/1998WR900009, 1998.
Huettel, M., Berg, P., and Kostka, J. E.: Benthic exchange and biogeochemical cycling in permeable sediments, Annu. Rev. Mar. Sci., 6, 23–51, https://doi.org/10.1146/annurev-marine-051413-012706, 2014.
Hülse, D., Arndt, S., Daines, S., Regnier, P., and Ridgwell, A.: OMEN-SED 1.0: a novel, numerically efficient organic matter sediment diagenesis module for coupling to Earth system models, Geosci. Model Dev., 11, 2649–2689, https://doi.org/10.5194/gmd-11-2649-2018, 2018.
Humphreys, M. P. and Sulpis, O.: Radi.jl: the
reactive-advective-diffusive-irrigative diagenetic sediment module
in Julia, Zenodo [code], https://doi.org/10.5281/zenodo.5005650, 2021.
Humphreys, M. P., Lewis, E. R., Sharp, J. D., and Pierrot, D.: PyCO2SYS v1.8: marine carbonate system calculations in Python, Geosci. Model Dev., 15, 15–43, https://doi.org/10.5194/gmd-15-15-2022, 2022.
Jahnke, R. A.: The global ocean flux of particulate organic carbon: Areal distribution and magnitude, Global Biogeochem. Cy., 10, 71–88, https://doi.org/10.1029/95GB03525, 1996.
Jørgensen, B. B.: A comparison of methods for the quantification of bacterial sulfate reduction in coastal marine sediments, Geomicrobiol. J., 1, 29–47, https://doi.org/10.1080/01490457809377722, 1978.
Jørgensen, B. B. and Revsbech, N. P.: Diffusive boundary layers and the oxygen uptake of sediments and detritus, Limnol. Oceanogr., 30, 111–122, https://doi.org/10.4319/lo.1985.30.1.0111, 1985.
Jutras, M., Dufour, C. O., Mucci, A., Cyr, F., and Gilbert, D.: Temporal Changes in the Causes of the Observed Oxygen Decline in the St. Lawrence Estuary, J. Geophys. Res.-Oceans, 125, e2020JC016577, https://doi.org/10.1029/2020JC016577, 2020.
Keir, R. S.: The dissolution kinetics of biogenic calcium carbonates in seawater, Geochim. Cosmochim. Ac., 44, 241–252, https://doi.org/10.1016/0016-7037(80)90135-0, 1980.
Lampitt, R. S.: Evidence for the seasonal deposition of detritus to the deep-sea floor and its subsequent resuspension, Deep-Sea Res., 32, 885–897, https://doi.org/10.1016/0198-0149(85)90034-2, 1985.
Lampitt, R. S., Hillier, W. R., and Challenor, P. G.: Seasonal and diel variation in the open ocean concentration of marine snow aggregates, Nature 362, 737–739, https://doi.org/10.1038/362737a0, 1993.
Lampitt, R. S., Salter, I., de Cuevas, B. A., Hartman, S., Larkin, K. E., and Pebody, C. A.: Long-term variability of downward particle flux in the deep northeast Atlantic: Causes and trends, Deep-Sea Res. Pt. II, 57, 1346–1361, https://doi.org/10.1016/j.dsr2.2010.01.011, 2010.
Larkum, A. W. D., Koch, E. M. W., and Kühl, M.: Diffusive boundary layers and photosynthesis of the epilithic algal community of coral reefs, Mar. Biol., 142, 1073–1082, https://doi.org/10.1007/s00227-003-1022-y, 2003.
Lauvset, S. K., Key, R. M., Olsen, A., van Heuven, S.,
Velo, A., Lin, X., Schirnick, C., Kozyr, A., Tanhua, T., Hoppema,
M., Jutterström, S., Steinfeldt, R., Jeansson, E., Ishii, M.,
Perez, F. F., Suzuki, T., and Watelet, S.: A new global interior
ocean mapped climatology: the
GLODAP version 2, Earth Syst. Sci. Data, 8, 325–340, https://doi.org/10.5194/essd-8-325-2016, 2016 (data available at: https://www.glodap.info/index.php/mapped-data-product/, last access: March 2022).
Lee, C., Wakeham, S. G., and Hedges, J. I.: Composition and flux of particulate amino acids and chloropigments in equatorial Pacific seawater and sediments, Deep-Sea Res. Pt. I, 47, 1535–1568, https://doi.org/10.1016/S0967-0637(99)00116-8, 2000.
Levich, V. G.: Physicochemical Hydrodynamics, Prentice-Hall Inc., Englewood Cliffs, 1962.
Li, Y.-H. and Gregory, S.: Diffusion of ions in sea water and in deep-sea sediments, Geochim. Cosmochim. Ac., 38, 703–714, https://doi.org/10.1016/0016-7037(74)90145-8, 1974.
Lorke, A., Müller, B., Maerki, M., and Wüest, A.: Breathing sediments: The control of diffusive transport across the sediment – water interface by periodic boundary-layer turbulence, Limnol. Oceanogr., 48, 2077–2085, https://doi.org/10.4319/lo.2003.48.6.2077, 2003.
Lueker, T. J., Dickson, A. G., and Keeling, C. D.: Ocean pCO2 calculated from dissolved inorganic carbon, alkalinity, and equations for K1 and K2: validation based on laboratory measurements of CO2 in gas and seawater at equilibrium, Mar. Chem., 70, 105–119, https://doi.org/10.1016/S0304-4203(00)00022-0, 2000.
Martin, W. R. and Bender, M. L.: The variability of benthic fluxes and sedimentary remineralization rates in response to seasonally variable organic carbon rain rates in the deep sea; a modeling study, Am. J. Sci., 288, 561–574, https://doi.org/10.2475/ajs.288.6.561, 1988.
Martiny, A. C., Pham, C. T. A., Primeau, F. W., Vrugt, J. A., Moore, J. K., Levin, S. A., and Lomas, M. W.: Strong latitudinal patterns in the elemental ratios of marine plankton and organic matter, Nat. Geosci., 6, 279–283, https://doi.org/10.1038/ngeo1757, 2013.
Meysman, F. J. and Montserrat, F.: Negative CO2 emissions via enhanced silicate weathering in coastal environments, Biol. Lett.-UK, 13, 20160905, https://doi.org/10.1098/rsbl.2016.0905, 2017.
Meysman, F. J. R., Middelburg, J. J., Herman, P. M. J., and Heip, C. H. R.: Reactive transport in surface sediments. II. Media: an object-oriented problem-solving environment for early diagenesis, Comput. Geosci., 29, 301–318, https://doi.org/10.1016/S0098-3004(03)00007-4, 2003.
Middelburg, J. J.: A simple rate model for organic matter decomposition in marine sediments, Geochim. Cosmochim. Ac., 53, 1577–1581, https://doi.org/10.1016/0016-7037(89)90239-1, 1989.
Middelburg, J. J.: Marine Carbon Biogeochemistry: A Primer for Earth System Scientists, Springer International Publishing, 118 pp., https://doi.org/10.1007/978-3-030-10822-9, 2019.
Middelburg, J. J., Soetaert, K., and Herman, P. M. J.: Empirical relationships for use in global diagenetic models, Deep-Sea Res. Pt. I, 44, 327–344, https://doi.org/10.1016/S0967-0637(96)00101-X, 1997.
Millero, F. J.: Thermodynamics of the carbon dioxide system in the oceans, Geochim. Cosmochim. Ac., 59, 661–677, https://doi.org/10.1016/0016-7037(94)00354-O, 1995.
Montserrat, F., Renforth, P., Hartmann, J., Leermakers, M., Knops, P., and Meysman, F. J.: Olivine Dissolution in Seawater: Implications for CO2 Sequestration through Enhanced Weathering in Coastal Environments, Environ. Sci. Technol., 51, 3960–3972, https://doi.org/10.1021/acs.est.6b05942, 2017.
Morse, J. W.: Calculation of diffusive fluxes across the sediment-water interface, J. Geophys. Res., 79, 5045–5048, https://doi.org/10.1029/JC079i033p05045, 1974.
Mucci, A.: The solubility of calcite and aragonite in seawater at various salinities, temperatures and one atmosphere total pressure, Am. J. Sci., 283, 780–799, https://doi.org/10.2475/ajs.283.7.780, 1983.
Munhoven, G.: Glacial–interglacial rain ratio changes: Implications for atmospheric and ocean–sediment interaction, Deep-Sea Res. Pt. II, 54, 722–746, https://doi.org/10.1016/j.dsr2.2007.01.008, 2007.
Munhoven, G.: Model of Early Diagenesis in the Upper Sediment with Adaptable complexity – MEDUSA (v. 2): a time-dependent biogeochemical sediment module for Earth system models, process analysis and teaching, Geosci. Model Dev., 14, 3603–3631, https://doi.org/10.5194/gmd-14-3603-2021, 2021.
Naviaux, J. D., Subhas, A. V., Dong, S., Rollins, N. E., Liu, X., Byrne, R. H., Berelson, W. M., and Adkins, J. F.: Calcite dissolution rates in seawater: Lab vs. in-situ measurements and inhibition by organic matter, Mar. Chem., 215, 103684, https://doi.org/10.1016/j.marchem.2019.103684, 2019a.
Naviaux, J. D., Subhas, A. V., Rollins, N. E., Dong, S., Berelson, W. M., and Adkins, J. F.: Temperature dependence of calcite dissolution kinetics in seawater, Geochim. Cosmochim. Ac., 246, 363–384, https://doi.org/10.1016/0016-7037(84)90276-X, 2019b.
Paraska, D. W., Hipsey, M. R., and Salmon, S. U.: Sediment diagenesis models: Review of approaches, challenges and opportunities, Environ. Modell. Softw., 61, 297–325, https://doi.org/10.1016/j.envsoft.2014.05.011, 2014.
Perez, F. F., Fontela, M., García-Ibáñez, M., Mercier, H., Velo, A., Lherminier, P., Zunino, P., de la Paz, M., Alonso-Pérez, F., Guallart, E. F., and Padin, X. A.: Meridional overturning circulation conveys fast acidification to the deep Atlantic Ocean, Nature, 554, 515–518, https://doi.org/10.1038/nature25493, 2018.
Pugh, D. T.: Tides, surges and mean sea level, John Wiley & Sons Ltd., 472 pp., ISBN 13 9780471915058, 1987.
Rabouille, C. and Gaillard, J.-F.: Towards the EDGE: Early diagenetic global explanation. A model depicting the early diagenesis of organic matter, O2, NO3, Mn, and PO4, Geochim. Cosmochim. Ac., 55, 2511–2525, https://doi.org/10.1016/0016-7037(91)90369-G, 1991.
Redfield, A. C.: The biological control of chemical factors in the environment, Am. Sci., 46, 205–221, 1958.
Reimers, C. E.: An in situ microprofiling instrument for measuring interfacial pore water gradients: methods and oxygen profiles from the North Pacific Ocean, Deep-Sea Res., 34, 2023–2035, https://doi.org/10.1016/0198-0149(87)90096-3, 1987.
Revsbech, N. P., Jørgensen, B. B., and Blackburn, T. H.: Oxygen in the Sea Bottom Measured with a Microelectrode, Science, 207, 1355–1356, https://doi.org/10.1126/science.207.4437.1355, 1980.
Riley, J. S., Sanders, R., Marsay, C., Le Moigne, F. A. C., Achterberg, E. P., and Poulton, A. J.: The relative contribution of fast and slow sinking particles to ocean carbon export, Global Biogeochem. Cy., 26, GB1026, https://doi.org/10.1029/2011GB004085, 2012.
Røy, H., Hüttel, M., and Jørgensen, B. B.: The role of small-scale sediment topography for oxygen flux across the diffusive boundary layer, Limnol. Oceanogr., 47, 837–847, https://doi.org/10.4319/lo.2002.47.3.0837, 2002.
Santschi, P. H., Bower, P., Nyffeler, U. P., Azevedo, A., and Broecker, W. S.: Estimates of the resistance to chemical transport posed by the deep-sea boundary layer, Limnol. Oceanogr., 28, 899–912, https://doi.org/10.4319/lo.1983.28.5.0899, 1983.
Santschi, P. H., Anderson, R. F., Fleisher, M. Q., and Bowles, W.: Measurements of diffusive sublayer thicknesses in the ocean by alabaster dissolution, and their implications for the measurements of benthic fluxes, J. Geophys. Res.-Oceans, 96, 10641–10657, https://doi.org/10.1029/91JC00488, 1991.
Sayles, F. L.: The composition and diagenesis of interstitial solutions – I. Fluxes across the seawater-sediment interface in the Atlantic Ocean, Geochim. Cosmochim. Ac., 43, 527–454, https://doi.org/10.1016/0016-7037(79)90163-7, 1979.
Sayles, F. L., Martin, W. R., and Deuser, W. G.: Response of benthic oxygen demand to particulate organic carbon supply in the deep sea near Bermuda, Nature, 371, 686–689, https://doi.org/10.1038/371686a0, 1994.
Sayles, F. L., Martin, W. R., Chase, Z., and Anderson,
R. F.: Benthic remineralization and burial of biogenic
SiO2, CaCO3, organic carbon, and detrital
material in the Southern Ocean along a transect at 170∘
West, Deep-Sea Res. Pt. II, 48, 4323–4383, https://doi.org/10.1016/S0967-0645(01)00091-1, 2001 (data available at: http://usjgofs.whoi.edu/jg/dir/jgofs/southern/nbp98_2/, last access: March 2022).
Schulz, H. D.: Quantification of Early Diagenesis:
Dissolved Constituents in Pore Water and Signals in the Solid Phase,
in: Marine Geochemistry, edited by: Schulz, H. D. and Zabel, M., Springer, Berlin, Heidelberg, ISBN 13 9783540321439, 2006.
Sillén, L. G., Martell, A. E., and Bjerrum, J.: Stability constants of metal-ion complexes, Special publication, 17 edn., Chemical Society, London, UK, https://doi.org/10.1021/ed042p521.1, 1964.
Smith, C. R. and Rabouille, C.: What controls the mixed-layer depth in deep-sea sediments? The importance of POC flux, Limnol. Oceanogr., 47, 418–426, https://doi.org/10.4319/lo.2002.47.2.0418, 2002.
Smith, C. R., Berelson, W., Demaster, D. J., Dobbs, F. C., Hammond, D., Hoover, D. J., Pope, R. H., and Stephens, M.: Latitudinal variations in benthic processes in the abyssal equatorial Pacific: control by biogenic particle flux, Deep-Sea Res. Pt. II, 44, 2295–2317, https://doi.org/10.1016/S0967-0645(97)00022-2, 1997.
Smith Jr., K. L. and Baldwin, R. J.: Seasonal fluctuations in deep-sea sediment community oxygen consumption: central and eastern North Pacific, Nature, 307, 624–626, https://doi.org/10.1038/307624a0, 1984.
Smith, K. L., Baldwin, R. J., and Williams, P. M.: Reconciling particulate organic carbon flux and sediment community oxygen consumption in the deep North Pacific, Nature, 359, 313–316, https://doi.org/10.1038/359313a0, 1992.
Smith, K. L., Kaufmann, R. S., and Baldwin, R. J.: Coupling of near-bottom pelagic and benthic processes at abyssal depths in the eastern North Pacific Ocean, Limnol. Oceanogr., 39, 1101–1118, https://doi.org/10.4319/lo.1994.39.5.1101, 1994.
Soetaert, K., Herman, P. M. J., and Middelburg, J. J.: Dynamic response of deep-sea sediments to seasonal variations: A model, Limnol. Oceanogr., 41, 1651–1668, https://doi.org/10.4319/lo.1996.41.8.1651, 1996a.
Soetaert, K., Herman, P. M. J., and Middelburg, J. J.: A model of early diagenetic processes from the shelf to abyssal depths, Geochim. Cosmochim. Ac., 60, 1019–1040, https://doi.org/10.1016/0016-7037(96)00013-0, 1996b.
Soetaert, K., Herman, P. M. J., Middelburg, J. J., Heip,
C., deStigter, H. S., van Weering, T. C. E., Epping, E., and Helder, W.: Modeling 210Pb-derived mixing activity in ocean margin sediments: Diffusive versus nonlocal mixing, J. Mar. Res., 54, 1207–1227, https://doi.org/10.1357/0022240963213808, 1996c.
Sosna, M., Denuault, G., Pascal, R. W., Prien, R. D., and Mowlem, M.: Development of a reliable microelectrode dissolved oxygen sensor, Sensor. Actuat. B-Chem., 123, 344–351, https://doi.org/10.1016/j.snb.2006.08.033, 2007.
Subhas, A. V., Adkins, J. F., Rollins, N. E., Naviaux,
J., Erez, J., and Berelson, W. M.: Catalysis and chemical mechanisms
of calcite dissolution in seawater, P. Natl. Acad. Sci. USA, 114, 8175–8180, https://doi.org/10.1073/pnas.1703604114, 2017.
Sulpis, O., Lix, C., Mucci, A., and Boudreau, B. P.: Calcite dissolution kinetics at the sediment-water interface in natural seawater, Mar. Chem., 195, 70–83, https://doi.org/10.1016/j.marchem.2017.06.005, 2017.
Sulpis, O., Boudreau, B. P., Mucci, A., Jenkins, C. J.,
Trossman, D. S., Arbic, B. K., and Key, R. M.: Current
CaCO3 dissolution at the seafloor caused by anthropogenic
CO2, P. Natl. Acad. Sci. USA, 115, 11700–11705, https://doi.org/10.1073/pnas.1804250115, 2018.
Sulpis, O., Dufour, C. O., Trossman, D. S., Fassbender, A. J., Arbic, B. K., Boudreau, B. P., Dunne, J. P., and Mucci, A.: Reduced CaCO3 Flux to the Seafloor and Weaker Bottom Current Speeds Curtail Benthic CaCO3 Dissolution Over the 21st Century, Global Biogeochem. Cy., 33, 1654–1673, https://doi.org/10.1029/2019GB006230, 2019.
Sulpis, O., Humphreys, M. P., Wilhelmus, M. M., and
Carroll, D.: Radi.m: the reactive-advective-diffusive-irrigative
diagenetic sediment module in MATLAB/ GNU Octave, Zenodo [code], https://doi.org/10.5281/zenodo.4739205, 2021.
Teng, Y.-C., Primeau, F. W., Moore, J. K., Lomas, M. W., and Martiny, A. C.: Global-scale variations of the ratios of carbon to phosphorus in exported marine organic matter, Nat. Geosci., 7, 895–898, https://doi.org/10.1038/ngeo2303, 2014.
Thompson, K. F., Miller, K. A., Currie, D., Johnston, P., and Santillo, D.: Seabed Mining and Approaches to Governance of the Deep Seabed, Frontiers in Marine Science, 5, 480, https://doi.org/10.3389/fmars.2018.00480, 2018.
Trimmer, M., Petersen, J., Sivyer, D. B., Mills, C.,
Young, E., and Parker, E. R.: Impact of long-term benthic trawl disturbance on sediment sorting and biogeochemistry in the southern North Sea, Mar. Ecol. Prog. Ser., 298, 79–94, https://doi.org/10.3354/meps298079, 2005.
Uppström, L. R.: The boron/chlorinity ratio of deep-sea water from the Pacific Ocean, Deep-Sea Res., 21, 161–162, https://doi.org/10.1016/0011-7471(74)90074-6, 1974.
Van Cappellen, P. and Wang, Y.: Cycling of iron and manganese in surface sediments; a general theory for the coupled transport and reaction of carbon, oxygen, nitrogen, sulfur, iron, and manganese, Am. J. Sci., 296, 197–243, https://doi.org/10.2475/ajs.296.3.197, 1996.
van de Velde, S., Van Lancker, V., Hidalgo-Martinez, S., Berelson, W. M., and Meysman, F. J. R.: Anthropogenic disturbance keeps the coastal seafloor biogeochemistry in a transient state, Sci. Rep., 8, 5582, https://doi.org/10.1038/s41598-018-23925-y, 2018.
Walter, L. M. and Morse, J. W.: The dissolution kinetics of shallow marine carbonates in seawater: A laboratory study, Geochim. Cosmochim. Ac., 49, 1503–1513, https://doi.org/10.1016/0016-7037(85)90255-8, 1985.
Wenzhöfer, F., Oguri, K., Middelboe, M., Turnewitsch, R., Toyofuku, T., Kitazato, H., and Glud, R. N.: Benthic carbon mineralization in hadal trenches: Assessment by in situ O2 microprofile measurements, Deep-Sea Res. Pt. I, 116, 276–286, https://doi.org/10.1016/j.dsr.2016.08.013, 2016.
Westrich, J. T. and Berner, R. A.: The role of sedimentary organic matter in bacterial sulfate reduction: The G model tested, Limnol. Oceanogr., 29, 236–249, https://doi.org/10.4319/lo.1984.29.2.0236, 1984.
Yakushev, E. V., Protsenko, E. A., Bruggeman, J., Wallhead, P., Pakhomova, S. V., Yakubov, S. Kh., Bellerby, R. G. J., and Couture, R.-M.: Bottom RedOx Model (BROM v.1.1): a coupled benthic–pelagic model for simulation of water and sediment biogeochemistry, Geosci. Model Dev., 10, 453–482, https://doi.org/10.5194/gmd-10-453-2017, 2017.
Yao, W. and Millero, F. J.: The chemistry of the anoxic waters in the Framvaren Fjord, Norway, Aquat. Geochem., 1, 53–88, https://doi.org/10.1007/BF01025231, 1995.
Zachos, J. C., Röhl, U., Schellenberg, S. A., Sluijs, A., Hodell, D. A., Kelly, D. C., Thomas, E., Nicolo, M., Raffi, I., Lourens, L. J., McCarren, H., and Kroon, D.: Rapid Acidification of the Ocean During the Paleocene-Eocene Thermal Maximum, Science, 308, 1611–1615, https://doi.org/10.1126/science.1109004, 2005.
Zhao, P. and Cai, W.-J.: An Improved Potentiometric pCO2 Microelectrode, Anal. Chem., 69, 2052–5058, https://doi.org/10.1021/ac970747g, 1997.
Zhao, P. and Cai, W.-J.: pH polymeric membrane microelectrodes based on neutral carriers and their application in aquatic environments, Anal. Chim. Acta, 395, 285–291, https://doi.org/10.1016/S0003-2670(99)00359-1, 1999.
Zuddas, P. and Mucci, A.: Kinetics of calcite precipitation from seawater: II. The influence of the ionic strength, Geochim. Cosmochim. Ac., 62, 757–766, https://doi.org/10.1016/S0016-7037(98)00026-X, 1998.
Short summary
A quarter of the surface of the Earth is covered by marine sediments rich in calcium carbonates, and their dissolution acts as a giant antacid tablet protecting the ocean against human-made acidification caused by massive CO2 emissions. Here, we present a new model of sediment chemistry that incorporates the latest experimental findings on calcium carbonate dissolution kinetics. This model can be used to predict how marine sediments evolve through time in response to environmental perturbations.
A quarter of the surface of the Earth is covered by marine sediments rich in calcium carbonates,...