Articles | Volume 15, issue 5
https://doi.org/10.5194/gmd-15-1995-2022
https://doi.org/10.5194/gmd-15-1995-2022
Model description paper
 | 
09 Mar 2022
Model description paper |  | 09 Mar 2022

Empirical Lagrangian parametrization for wind-driven mixing of buoyant particles at the ocean surface

Victor Onink, Erik van Sebille, and Charlotte Laufkötter

Related authors

Evaluating the impact of climate communication activities by scientists: what is known and necessary?
Frances Wijnen, Madelijn Strick, Mark Bos, and Erik van Sebille
Geosci. Commun., 7, 91–100, https://doi.org/10.5194/gc-7-91-2024,https://doi.org/10.5194/gc-7-91-2024, 2024
Short summary
Non-negligible impact of Stokes drift and wave-driven Eulerian currents on simulated surface particle dispersal in the Mediterranean Sea
Siren Rühs, Ton van den Bremer, Emanuela Clementi, Michael C. Denes, Aimie Moulin, and Erik van Sebille
EGUsphere, https://doi.org/10.5194/egusphere-2024-1002,https://doi.org/10.5194/egusphere-2024-1002, 2024
Short summary
The (non)effect of personalization in climate texts on credibility of climate scientists
Anna Leerink, Mark Bos, Daan Reijnders, and Erik van Sebille
EGUsphere, https://doi.org/10.5194/egusphere-2024-543,https://doi.org/10.5194/egusphere-2024-543, 2024
Short summary
Assessing the drift of fish aggregating devices in the tropical Pacific Ocean
Philippe F. V. W. Frankemölle, Peter D. Nooteboom, Joe Scutt Phillips, Lauriane Escalle, Simon Nicol, and Erik van Sebille
Ocean Sci., 20, 31–41, https://doi.org/10.5194/os-20-31-2024,https://doi.org/10.5194/os-20-31-2024, 2024
Short summary
A comparison of Eulerian and Lagrangian methods for vertical particle transport in the water column
Tor Nordam, Ruben Kristiansen, Raymond Nepstad, Erik van Sebille, and Andy M. Booth
Geosci. Model Dev., 16, 5339–5363, https://doi.org/10.5194/gmd-16-5339-2023,https://doi.org/10.5194/gmd-16-5339-2023, 2023
Short summary

Related subject area

Oceanography
Implementation of additional spectral wave field exchanges in a three-dimensional wave–current coupled WAVEWATCH-III (version 6.07) and CROCO (version 1.2) configuration: assessment of their implications for macro-tidal coastal hydrodynamics
Gaetano Porcile, Anne-Claire Bennis, Martial Boutet, Sophie Le Bot, Franck Dumas, and Swen Jullien
Geosci. Model Dev., 17, 2829–2853, https://doi.org/10.5194/gmd-17-2829-2024,https://doi.org/10.5194/gmd-17-2829-2024, 2024
Short summary
Comparison of 4-dimensional variational and ensemble optimal interpolation data assimilation systems using a Regional Ocean Modeling System (v3.4) configuration of the eddy-dominated East Australian Current system
Colette Gabrielle Kerry, Moninya Roughan, Shane Keating, David Gwyther, Gary Brassington, Adil Siripatana, and Joao Marcos A. C. Souza
Geosci. Model Dev., 17, 2359–2386, https://doi.org/10.5194/gmd-17-2359-2024,https://doi.org/10.5194/gmd-17-2359-2024, 2024
Short summary
LOCATE v1.0: numerical modelling of floating marine debris dispersion in coastal regions using Parcels v2.4.2
Ivan Hernandez, Leidy M. Castro-Rosero, Manuel Espino, and Jose M. Alsina Torrent
Geosci. Model Dev., 17, 2221–2245, https://doi.org/10.5194/gmd-17-2221-2024,https://doi.org/10.5194/gmd-17-2221-2024, 2024
Short summary
New insights into the South China Sea throughflow and water budget seasonal cycle: evaluation and analysis of a high-resolution configuration of the ocean model SYMPHONIE version 2.4
Ngoc B. Trinh, Marine Herrmann, Caroline Ulses, Patrick Marsaleix, Thomas Duhaut, Thai To Duy, Claude Estournel, and R. Kipp Shearman
Geosci. Model Dev., 17, 1831–1867, https://doi.org/10.5194/gmd-17-1831-2024,https://doi.org/10.5194/gmd-17-1831-2024, 2024
Short summary
MQGeometry-1.0: a multi-layer quasi-geostrophic solver on non-rectangular geometries
Louis Thiry, Long Li, Guillaume Roullet, and Etienne Mémin
Geosci. Model Dev., 17, 1749–1764, https://doi.org/10.5194/gmd-17-1749-2024,https://doi.org/10.5194/gmd-17-1749-2024, 2024
Short summary

Cited articles

Berloff, P. S. and McWilliams, J. C.: Material transport in oceanic gyres. Part III: Randomized stochastic models, J. Phys. Oceanogr., 33, 1416–1445, 2003. a, b, c
Boufadel, M., Liu, R., Zhao, L., Lu, Y., Özgökmen, T., Nedwed, T., and Lee, K.: Transport of oil droplets in the upper ocean: impact of the eddy diffusivity, J. Geophys. Res.-Oceans, 125, e2019JC015727, https://doi.org/10.1029/2019JC015727, 2020. a, b, c
Brickman, D. and Smith, P.: Lagrangian stochastic modeling in coastal oceanography, J. Atmos. Ocean. Tech., 19, 83–99, 2002. a, b, c, d, e
Brignac, K. C., Jung, M. R., King, C., Royer, S.-J., Blickley, L., Lamson, M. R., Potemra, J. T., and Lynch, J. M.: Marine debris polymers on main Hawaiian Island beaches, sea surface, and seafloor, Environ. Sci. Technol., 53, 12218–12226, 2019. a
Brunner, K., Kukulka, T., Proskurowski, G., and Law, K. L.: Passive buoyant tracers in the ocean surface boundary layer: 2. Observations and simulations of microplastic marine debris, J. Geophys. Res.-Oceans, 120, 7559–7573, 2015. a, b, c, d
Download
Short summary
Turbulent mixing is a vital process in 3D modeling of particle transport in the ocean. However, since turbulence occurs on very short spatial scales and timescales, large-scale ocean models generally have highly simplified turbulence representations. We have developed parametrizations for the vertical turbulent transport of buoyant particles that can be easily applied in a large-scale particle tracking model. The predicted vertical concentration profiles match microplastic observations well.