Articles | Volume 15, issue 5
https://doi.org/10.5194/gmd-15-1995-2022
https://doi.org/10.5194/gmd-15-1995-2022
Model description paper
 | 
09 Mar 2022
Model description paper |  | 09 Mar 2022

Empirical Lagrangian parametrization for wind-driven mixing of buoyant particles at the ocean surface

Victor Onink, Erik van Sebille, and Charlotte Laufkötter

Related authors

Using surface drifters to characterise near-surface ocean dynamics in the southern North Sea: a data-driven approach
Jimena Medina-Rubio, Madlene Nussbaum, Ton S. van den Bremer, and Erik van Sebille
EGUsphere, https://doi.org/10.5194/egusphere-2025-3287,https://doi.org/10.5194/egusphere-2025-3287, 2025
This preprint is open for discussion and under review for Ocean Science (OS).
Short summary
The effect of advocacy on perceived credibility of climate scientists in a Dutch text on greening of gardens
Erik van Sebille, Celine Weel, Rens Vliegenthart, and Mark Bos
EGUsphere, https://doi.org/10.5194/egusphere-2025-3131,https://doi.org/10.5194/egusphere-2025-3131, 2025
This preprint is open for discussion and under review for Geoscience Communication (GC).
Short summary
How frames and narratives in press releases shape newspaper science articles: the case of ocean plastic pollution.
Aike Vonk, Mark Bos, and Erik van Sebille
EGUsphere, https://doi.org/10.5194/egusphere-2025-2216,https://doi.org/10.5194/egusphere-2025-2216, 2025
Short summary
Flow patterns, hotspots, and connectivity of land-derived substances at the sea surface of Curaçao in the southern Caribbean
Vesna Bertoncelj, Furu Mienis, Paolo Stocchi, and Erik van Sebille
Ocean Sci., 21, 945–964, https://doi.org/10.5194/os-21-945-2025,https://doi.org/10.5194/os-21-945-2025, 2025
Short summary
Dissolved organic carbon dynamics in a changing ocean: A COBALTv2–ESM2M coupled model analysis
Lana Flanjak, Aaron Wienkers, and Charlotte Laufkötter
EGUsphere, https://doi.org/10.5194/egusphere-2025-1639,https://doi.org/10.5194/egusphere-2025-1639, 2025
Short summary

Related subject area

Oceanography
Wave forecast investigations on downscaling, source terms, and tides for Aotearoa New Zealand
Rafael Santana, Richard Gorman, Emily Lane, Stuart Moore, Cyprien Bosserelle, Glen Reeve, and Christo Rautenbach
Geosci. Model Dev., 18, 4877–4898, https://doi.org/10.5194/gmd-18-4877-2025,https://doi.org/10.5194/gmd-18-4877-2025, 2025
Short summary
Impacts of the CICE sea ice model and ERA atmosphere on an Antarctic MetROMS ocean model, MetROMS-UHel-v1.0
Cecilia Äijälä, Yafei Nie, Lucía Gutiérrez-Loza, Chiara De Falco, Siv Kari Lauvset, Bin Cheng, David Anthony Bailey, and Petteri Uotila
Geosci. Model Dev., 18, 4823–4853, https://doi.org/10.5194/gmd-18-4823-2025,https://doi.org/10.5194/gmd-18-4823-2025, 2025
Short summary
Comparing an idealized deterministic–stochastic model (SUP model, version 1) of the tide- and wind-driven sea surface currents in the Gulf of Trieste to high-frequency radar observations
Sofia Flora, Laura Ursella, and Achim Wirth
Geosci. Model Dev., 18, 4685–4712, https://doi.org/10.5194/gmd-18-4685-2025,https://doi.org/10.5194/gmd-18-4685-2025, 2025
Short summary
PIBM 1.0: an individual-based model for simulating phytoplankton acclimation, diversity, and evolution in the ocean
Iria Sala and Bingzhang Chen
Geosci. Model Dev., 18, 4155–4182, https://doi.org/10.5194/gmd-18-4155-2025,https://doi.org/10.5194/gmd-18-4155-2025, 2025
Short summary
An effective communication topology for performance optimization: a case study of the finite-volume wave modeling (FVWAM)
Renbo Pang, Fujiang Yu, Yuanyong Gao, Ye Yuan, Liang Yuan, and Zhiyi Gao
Geosci. Model Dev., 18, 4119–4136, https://doi.org/10.5194/gmd-18-4119-2025,https://doi.org/10.5194/gmd-18-4119-2025, 2025
Short summary

Cited articles

Berloff, P. S. and McWilliams, J. C.: Material transport in oceanic gyres. Part III: Randomized stochastic models, J. Phys. Oceanogr., 33, 1416–1445, 2003. a, b, c
Boufadel, M., Liu, R., Zhao, L., Lu, Y., Özgökmen, T., Nedwed, T., and Lee, K.: Transport of oil droplets in the upper ocean: impact of the eddy diffusivity, J. Geophys. Res.-Oceans, 125, e2019JC015727, https://doi.org/10.1029/2019JC015727, 2020. a, b, c
Brickman, D. and Smith, P.: Lagrangian stochastic modeling in coastal oceanography, J. Atmos. Ocean. Tech., 19, 83–99, 2002. a, b, c, d, e
Brignac, K. C., Jung, M. R., King, C., Royer, S.-J., Blickley, L., Lamson, M. R., Potemra, J. T., and Lynch, J. M.: Marine debris polymers on main Hawaiian Island beaches, sea surface, and seafloor, Environ. Sci. Technol., 53, 12218–12226, 2019. a
Brunner, K., Kukulka, T., Proskurowski, G., and Law, K. L.: Passive buoyant tracers in the ocean surface boundary layer: 2. Observations and simulations of microplastic marine debris, J. Geophys. Res.-Oceans, 120, 7559–7573, 2015. a, b, c, d
Download
Short summary
Turbulent mixing is a vital process in 3D modeling of particle transport in the ocean. However, since turbulence occurs on very short spatial scales and timescales, large-scale ocean models generally have highly simplified turbulence representations. We have developed parametrizations for the vertical turbulent transport of buoyant particles that can be easily applied in a large-scale particle tracking model. The predicted vertical concentration profiles match microplastic observations well.
Share