Articles | Volume 15, issue 5
https://doi.org/10.5194/gmd-15-1995-2022
https://doi.org/10.5194/gmd-15-1995-2022
Model description paper
 | 
09 Mar 2022
Model description paper |  | 09 Mar 2022

Empirical Lagrangian parametrization for wind-driven mixing of buoyant particles at the ocean surface

Victor Onink, Erik van Sebille, and Charlotte Laufkötter

Related authors

Designing and evaluating a public engagement activity about sea level rise
Nieske Vergunst, Tugce Varol, and Erik van Sebille
Geosci. Commun., 8, 67–80, https://doi.org/10.5194/gc-8-67-2025,https://doi.org/10.5194/gc-8-67-2025, 2025
Short summary
Possible provenance of IRD by tracing late Eocene Antarctic iceberg melting using a high-resolution ocean model
Mark V. Elbertsen, Erik van Sebille, and Peter K. Bijl
Clim. Past, 21, 441–464, https://doi.org/10.5194/cp-21-441-2025,https://doi.org/10.5194/cp-21-441-2025, 2025
Short summary
Non-negligible impact of Stokes drift and wave-driven Eulerian currents on simulated surface particle dispersal in the Mediterranean Sea
Siren Rühs, Ton van den Bremer, Emanuela Clementi, Michael C. Denes, Aimie Moulin, and Erik van Sebille
Ocean Sci., 21, 217–240, https://doi.org/10.5194/os-21-217-2025,https://doi.org/10.5194/os-21-217-2025, 2025
Short summary
Quantifying Variability in Lagrangian Particle Dispersal in Ocean Ensemble Simulations: an Information Theory Approach
Claudio M. Pierard, Siren Rühs, Laura Gómez-Navarro, Michael C. Denes, Florian Meirer, Thierry Penduff, and Erik van Sebille
EGUsphere, https://doi.org/10.5194/egusphere-2024-3847,https://doi.org/10.5194/egusphere-2024-3847, 2024
Short summary
Flow patterns, hotspots and connectivity of land-derived substances at the sea surface of Curaçao in the Southern Caribbean
Vesna Bertoncelj, Furu Mienis, Paolo Stocchi, and Erik van Sebille
EGUsphere, https://doi.org/10.5194/egusphere-2024-3112,https://doi.org/10.5194/egusphere-2024-3112, 2024
Short summary

Related subject area

Oceanography
sedInterFoam 1.0: a three-phase numerical model for sediment transport applications with free surfaces
Antoine Mathieu, Yeulwoo Kim, Tian-Jian Hsu, Cyrille Bonamy, and Julien Chauchat
Geosci. Model Dev., 18, 1561–1573, https://doi.org/10.5194/gmd-18-1561-2025,https://doi.org/10.5194/gmd-18-1561-2025, 2025
Short summary
The Ross Sea and Amundsen Sea Ice–Sea Model (RAISE v1.0): a high-resolution ocean–sea ice–ice shelf coupling model for simulating the Dense Shelf Water and Antarctic Bottom Water in the Ross Sea, Antarctica
Zhaoru Zhang, Chuan Xie, Chuning Wang, Yuanjie Chen, Heng Hu, and Xiaoqiao Wang
Geosci. Model Dev., 18, 1375–1393, https://doi.org/10.5194/gmd-18-1375-2025,https://doi.org/10.5194/gmd-18-1375-2025, 2025
Short summary
Sensitivity of the tropical Atlantic to vertical mixing in two ocean models (ICON-O v2.6.6 and FESOM v2.5)
Swantje Bastin, Aleksei Koldunov, Florian Schütte, Oliver Gutjahr, Marta Agnieszka Mrozowska, Tim Fischer, Radomyra Shevchenko, Arjun Kumar, Nikolay Koldunov, Helmuth Haak, Nils Brüggemann, Rebecca Hummels, Mia Sophie Specht, Johann Jungclaus, Sergey Danilov, Marcus Dengler, and Markus Jochum
Geosci. Model Dev., 18, 1189–1220, https://doi.org/10.5194/gmd-18-1189-2025,https://doi.org/10.5194/gmd-18-1189-2025, 2025
Short summary
HIDRA3: a deep-learning model for multipoint ensemble sea level forecasting in the presence of tide gauge sensor failures
Marko Rus, Hrvoje Mihanović, Matjaž Ličer, and Matej Kristan
Geosci. Model Dev., 18, 605–620, https://doi.org/10.5194/gmd-18-605-2025,https://doi.org/10.5194/gmd-18-605-2025, 2025
Short summary
A wave-resolving two-dimensional vertical Lagrangian approach to model microplastic transport in nearshore waters based on TrackMPD 3.0
Isabel Jalón-Rojas, Damien Sous, and Vincent Marieu
Geosci. Model Dev., 18, 319–336, https://doi.org/10.5194/gmd-18-319-2025,https://doi.org/10.5194/gmd-18-319-2025, 2025
Short summary

Cited articles

Berloff, P. S. and McWilliams, J. C.: Material transport in oceanic gyres. Part III: Randomized stochastic models, J. Phys. Oceanogr., 33, 1416–1445, 2003. a, b, c
Boufadel, M., Liu, R., Zhao, L., Lu, Y., Özgökmen, T., Nedwed, T., and Lee, K.: Transport of oil droplets in the upper ocean: impact of the eddy diffusivity, J. Geophys. Res.-Oceans, 125, e2019JC015727, https://doi.org/10.1029/2019JC015727, 2020. a, b, c
Brickman, D. and Smith, P.: Lagrangian stochastic modeling in coastal oceanography, J. Atmos. Ocean. Tech., 19, 83–99, 2002. a, b, c, d, e
Brignac, K. C., Jung, M. R., King, C., Royer, S.-J., Blickley, L., Lamson, M. R., Potemra, J. T., and Lynch, J. M.: Marine debris polymers on main Hawaiian Island beaches, sea surface, and seafloor, Environ. Sci. Technol., 53, 12218–12226, 2019. a
Brunner, K., Kukulka, T., Proskurowski, G., and Law, K. L.: Passive buoyant tracers in the ocean surface boundary layer: 2. Observations and simulations of microplastic marine debris, J. Geophys. Res.-Oceans, 120, 7559–7573, 2015. a, b, c, d
Download
Short summary
Turbulent mixing is a vital process in 3D modeling of particle transport in the ocean. However, since turbulence occurs on very short spatial scales and timescales, large-scale ocean models generally have highly simplified turbulence representations. We have developed parametrizations for the vertical turbulent transport of buoyant particles that can be easily applied in a large-scale particle tracking model. The predicted vertical concentration profiles match microplastic observations well.
Share