Articles | Volume 15, issue 1
https://doi.org/10.5194/gmd-15-105-2022
© Author(s) 2022. This work is distributed under the Creative Commons Attribution 4.0 License.
ISWFoam: a numerical model for internal solitary wave simulation in continuously stratified fluids
Related authors
Cited articles
Alford, M. H., Lien, R. C., Simmons, H., Klymak, J., Ramp, S., Yang, Y. J.,
Tang, D., and Chang, M. H.: Speed and evolution of nonlinear internal waves
transiting the South China Sea, J. Phys. Oceanogr., 40,
1338–1355, https://doi.org/10.1175/2010JPO4388.1, 2010.
Alford, M. H., MacKinnon, J. A., Nash, J. D., Simmons, H., Pickering, A.,
Klymak, J. M., and Beitzel, T.: Energy flux and dissipation in Luzon Strait: Two tales of two ridges, J. Phys. Oceanogr., 41, 2211–2222,
https://doi.org/10.1175/JPO-D-11-073.1, 2011.
Alford, M. H., Peacock, T., MacKinnon, J. A., Nash, J. D., Buijsman, M. C.,
Centurioni, L. R., and Fu, K. H.: The formation and fate of internal waves in
the South China Sea, Nature, 521, 65–69, https://doi.org/10.1038/nature14399, 2015.
Aghsaee, P., Boegman, L., and Lamb, K. G.: Breaking of shoaling internal
solitary waves, J. Fluid Mech., 659, 289,
https://doi.org/10.1017/S002211201000248X, 2010.
Aghsaee, P., Boegman, L., Diamessis, P. J., and Lamb, K. G.:
Boundary-layer-separation-driven vortex shedding beneath internal solitary
waves of depression, J. Fluid Mech., 690, 321,
https://doi.org/10.1017/jfm.2011.432, 2012.