Articles | Volume 14, issue 12
https://doi.org/10.5194/gmd-14-7573-2021
https://doi.org/10.5194/gmd-14-7573-2021
Model evaluation paper
 | 
15 Dec 2021
Model evaluation paper |  | 15 Dec 2021

High-resolution modeling of the distribution of surface air pollutants and their intercontinental transport by a global tropospheric atmospheric chemistry source–receptor model (GNAQPMS-SM)

Qian Ye, Jie Li, Xueshun Chen, Huansheng Chen, Wenyi Yang, Huiyun Du, Xiaole Pan, Xiao Tang, Wei Wang, Lili Zhu, Jianjun Li, Zhe Wang, and Zifa Wang

Related authors

Molecular composition and processing of aqueous secondary organic aerosol in cloud at a mountain site in southeastern China
Yali Jin, Hao Luo, Siqi Tang, Shuhui Xue, Chengyu Nie, Xiaocong Peng, Yan Zheng, Weiqi Xu, Guohua Zhang, Xiaole Pan, Yele Sun, Qi Chen, Lanzhong Liu, and Defeng Zhao
EGUsphere, https://doi.org/10.5194/egusphere-2025-4322,https://doi.org/10.5194/egusphere-2025-4322, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
A Physics-Constrained Deep-Learning Framework based on Long-Term Remote-Sensing Data for Retrieving Vertical Distribution of PM2.5 Chemical Components
Hongyi Li, Ting Yang, Yele Sun, and Zifa Wang
EGUsphere, https://doi.org/10.5194/egusphere-2025-4237,https://doi.org/10.5194/egusphere-2025-4237, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
OIRF-LEnKF v1.0: A Self-evolving Data Assimilation System by Integrating Incremental Machine Learning with a Localized EnKF for Enhanced PM2.5 Chemical Component Forecasting and Analysis
Hongyi Li, Ting Yang, Lei Kong, Di Zhang, Guigang Tang, and Zifa Wang
EGUsphere, https://doi.org/10.5194/egusphere-2025-3960,https://doi.org/10.5194/egusphere-2025-3960, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Simulated photochemical response to observational constraints on aerosol vertical distribution over North China
Xi Chen, Ke Li, Ting Yang, Xipeng Jin, Lei Chen, Yang Yang, Shuman Zhao, Bo Hu, Bin Zhu, Zifa Wang, and Hong Liao
Atmos. Chem. Phys., 25, 9151–9168, https://doi.org/10.5194/acp-25-9151-2025,https://doi.org/10.5194/acp-25-9151-2025, 2025
Short summary
Modeling simulation of aerosol light absorption over the Beijing–Tianjin–Hebei region: the impact of mixing state and aging processes
Huiyun Du, Jie Li, Xueshun Chen, Gabriele Curci, Fangqun Yu, Yele Sun, Xu Dao, Song Guo, Zhe Wang, Wenyi Yang, Lianfang Wei, and Zifa Wang
Atmos. Chem. Phys., 25, 5665–5681, https://doi.org/10.5194/acp-25-5665-2025,https://doi.org/10.5194/acp-25-5665-2025, 2025
Short summary

Cited articles

Amann, M., Bertok, I., Borken-Kleefeld, J., Cofala, J., Heyes, C., Hoglund-Isaksson, L., Klimont, Z., Nguyen, B., Posch, M., Rafaj, P., Sandler, R., Schopp, W., Wagner, F., and Winiwarter, W.: Cost-effective control of air quality and greenhouse gases in Europe: Modeling and policy applications, Environ. Modell. Softw., 26, 1489–1501, https://doi.org/10.1016/j.envsoft.2011.07.012, 2011. 
Andreae, M. O. and Crutzen, P. J.: Atmospheric aerosols: Biogeochemical sources and role in atmospheric chemistry, Science, 276, 1052–1058, https://doi.org/10.1126/science.276.5315.1052, 1997. 
Badia, A., Jorba, O., Voulgarakis, A., Dabdub, D., Pérez García-Pando, C., Hilboll, A., Gonçalves, M., and Janjic, Z.: Description and evaluation of the Multiscale Online Nonhydrostatic AtmospheRe CHemistry model (NMMB-MONARCH) version 1.0: gas-phase chemistry at global scale, Geosci. Model Dev., 10, 609–638, https://doi.org/10.5194/gmd-10-609-2017, 2017. 
Bauer, S. E. and Koch, D.: Impact of heterogeneous sulfate formation at mineral dust surfaces on aerosol loads and radiative forcing in the Goddard Institute for Space Studies general circulation model, J. Geophys. Res.-Atmos., 110, D17202, https://doi.org/10.1029/2005jd005870, 2005. 
Byun, D. W. and Dennis, R.: Design artifacts in eulerian air-quality models – evaluation of the effects of layer thickness and vertical profile correction on surface ozone concentrations, Atmos. Environ., 29, 105–126, https://doi.org/10.1016/1352-2310(94)00225-a, 1995. 
Download
Short summary
We developed a global tropospheric atmospheric chemistry source–receptor model. This model can quantify the contributions of multiple air pollutants from various source regions in one simulation without introducing the nonlinear error of atmospheric chemistry. The S-R relationships of PM2.5 and O3 from a global high-resolution (0.5° × 0.5°) simulation were given and compared with previous studies. This model will be useful for creating a link between the scientific community and policymakers.
Share