Articles | Volume 14, issue 12
https://doi.org/10.5194/gmd-14-7573-2021
https://doi.org/10.5194/gmd-14-7573-2021
Model evaluation paper
 | 
15 Dec 2021
Model evaluation paper |  | 15 Dec 2021

High-resolution modeling of the distribution of surface air pollutants and their intercontinental transport by a global tropospheric atmospheric chemistry source–receptor model (GNAQPMS-SM)

Qian Ye, Jie Li, Xueshun Chen, Huansheng Chen, Wenyi Yang, Huiyun Du, Xiaole Pan, Xiao Tang, Wei Wang, Lili Zhu, Jianjun Li, Zhe Wang, and Zifa Wang

Related authors

MIPV-NWP-PINN V1.0: Development of a Multi-scale Photovoltaic Power Forecasting Framework Integrating Numerical Weather Prediction with Physics-Informed Neural Networks
Fei Zhang, Xingcai Li, Zifa Wang, Yunyun Wen, Xuyang Zhou, Zichen Wu, Zhuoran Wang, Huansheng Chen, Zhe Wang, and Xueshun Chen
EGUsphere, https://doi.org/10.5194/egusphere-2025-4439,https://doi.org/10.5194/egusphere-2025-4439, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Oxidation-driven acceleration of NPF-to-CCN conversion under polluted atmosphere: Evidence from mountain-top observations in Yangtze River Delta
Weibin Zhu, Sai Shang, Jieqi Wang, Yunfei Wu, Zhaoze Deng, Liang Ran, Ye Kuang, Guiqian Tang, Xiangpeng Huang, Xiaole Pan, Lanzhong Liu, Weiqi Xu, Yele Sun, Bo Hu, Zifa Wang, and Zirui Liu
EGUsphere, https://doi.org/10.5194/egusphere-2025-4901,https://doi.org/10.5194/egusphere-2025-4901, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Enhancing the advection module performance in the EPICC-Model V1.0 via GPU-HADVPPM4HIP V1.0 coupling and GPU-optimized strategies
Kai Cao, Qizhong Wu, Xiao Tang, Jinxi Li, Xueshun Chen, Huansheng Chen, Wending Wang, Huangjian Wu, Lei Kong, Jie Li, Jiang Zhu, and Zifa Wang
EGUsphere, https://doi.org/10.5194/egusphere-2025-2918,https://doi.org/10.5194/egusphere-2025-2918, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Molecular composition and processing of aqueous secondary organic aerosol in cloud at a mountain site in southeastern China
Yali Jin, Hao Luo, Siqi Tang, Shuhui Xue, Chengyu Nie, Xiaocong Peng, Yan Zheng, Weiqi Xu, Guohua Zhang, Xiaole Pan, Yele Sun, Qi Chen, Lanzhong Liu, and Defeng Zhao
EGUsphere, https://doi.org/10.5194/egusphere-2025-4322,https://doi.org/10.5194/egusphere-2025-4322, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
A Physics-Constrained Deep-Learning Framework based on Long-Term Remote-Sensing Data for Retrieving Vertical Distribution of PM2.5 Chemical Components
Hongyi Li, Ting Yang, Yele Sun, and Zifa Wang
EGUsphere, https://doi.org/10.5194/egusphere-2025-4237,https://doi.org/10.5194/egusphere-2025-4237, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary

Cited articles

Amann, M., Bertok, I., Borken-Kleefeld, J., Cofala, J., Heyes, C., Hoglund-Isaksson, L., Klimont, Z., Nguyen, B., Posch, M., Rafaj, P., Sandler, R., Schopp, W., Wagner, F., and Winiwarter, W.: Cost-effective control of air quality and greenhouse gases in Europe: Modeling and policy applications, Environ. Modell. Softw., 26, 1489–1501, https://doi.org/10.1016/j.envsoft.2011.07.012, 2011. 
Andreae, M. O. and Crutzen, P. J.: Atmospheric aerosols: Biogeochemical sources and role in atmospheric chemistry, Science, 276, 1052–1058, https://doi.org/10.1126/science.276.5315.1052, 1997. 
Badia, A., Jorba, O., Voulgarakis, A., Dabdub, D., Pérez García-Pando, C., Hilboll, A., Gonçalves, M., and Janjic, Z.: Description and evaluation of the Multiscale Online Nonhydrostatic AtmospheRe CHemistry model (NMMB-MONARCH) version 1.0: gas-phase chemistry at global scale, Geosci. Model Dev., 10, 609–638, https://doi.org/10.5194/gmd-10-609-2017, 2017. 
Bauer, S. E. and Koch, D.: Impact of heterogeneous sulfate formation at mineral dust surfaces on aerosol loads and radiative forcing in the Goddard Institute for Space Studies general circulation model, J. Geophys. Res.-Atmos., 110, D17202, https://doi.org/10.1029/2005jd005870, 2005. 
Byun, D. W. and Dennis, R.: Design artifacts in eulerian air-quality models – evaluation of the effects of layer thickness and vertical profile correction on surface ozone concentrations, Atmos. Environ., 29, 105–126, https://doi.org/10.1016/1352-2310(94)00225-a, 1995. 
Download
Short summary
We developed a global tropospheric atmospheric chemistry source–receptor model. This model can quantify the contributions of multiple air pollutants from various source regions in one simulation without introducing the nonlinear error of atmospheric chemistry. The S-R relationships of PM2.5 and O3 from a global high-resolution (0.5° × 0.5°) simulation were given and compared with previous studies. This model will be useful for creating a link between the scientific community and policymakers.
Share