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Abstract. Many efforts have been devoted to quantifying
the impact of intercontinental transport on global air qual-
ity by using global chemical transport models with horizon-
tal resolutions of hundreds of kilometers in recent decades.
In this study, a global online air quality source–receptor
model (GNAQPMS-SM) is designed to effectively compute
the contributions of various regions to ambient pollutant con-
centrations. The newly developed model is able to quantify
source–receptor (S-R) relationships in one simulation with-
out introducing errors by nonlinear chemistry. We calculate
the surface and planetary boundary layer (PBL) S-R rela-
tionships in 19 regions over the whole globe for ozone (O3),
black carbon (BC), and non-sea-salt sulfate (nss-sulfate) by
conducting a high-resolution (0.5◦× 0.5◦) simulation for the
year 2018. The model exhibits a realistic capacity in repro-
ducing the spatial distributions and seasonal variations of tro-
pospheric O3, carbon monoxide, and aerosols at global and
regional scales – Europe (EUR), North America (NAM), and
East Asia (EA). The correlation coefficient (R) and normal-
ized mean bias (NMB) for seasonal O3 at global background
and urban–rural sites ranged from 0.49 to 0.87 and −2 % to
14.97 %, respectively. For aerosols, the R and NMB in EUR,
NAM, and EA mostly exceed 0.6 and are within ±15 %.
These statistical parameters based on this global simulation
can match those of regional models in key regions. The

simulated tropospheric nitrogen dioxide and aerosol optical
depths are generally in agreement with satellite observations.
The model overestimates ozone concentrations in the upper
troposphere and stratosphere in the tropics, midlatitude, and
polar regions of the Southern Hemisphere due to the use of a
simplified stratospheric ozone scheme and/or biases in esti-
mated stratosphere–troposphere exchange dynamics. We find
that surface O3 can travel a long distance and contributes
a non-negligible fraction to downwind regions. Non-local
source transport explains approximately 35 %–60 % of sur-
face O3 in EA, South Asia (SAS), EUR, and NAM. The O3
exported from EUR can also be transported across the Arctic
Ocean to the North Pacific and contributes nearly 5 %–7.5 %
to the North Pacific. BC is directly linked to local emissions,
and each BC source region mainly contributes to itself and
surrounding regions. For nss-sulfate, contributions of long-
range transport account for 15 %–30 % within the PBL in
EA, SAS, EUR, and NAM. Our estimated international trans-
port of BC and nss-sulfate is lower than that from the Hemi-
spheric Transport of Air Pollution (HTAP) assessment report
in 2010, but most surface O3 results are within the range.
This difference may be related to the different simulation
years, emission inventories, vertical and horizontal resolu-
tions, and S-R revealing methods. Additional emission sen-
sitivity simulation shows a negative O3 response in recep-
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tor region EA in January from EA. The difference between
two methods in estimated S-R relationships of nss-sulfate
and O3 are mainly due to ignoring the nonlinearity of pol-
lutants during chemical processes. The S-R relationship of
aerosols within EA subcontinent is also assessed. The model
that we developed creates a link between the scientific com-
munity and policymakers. Finally, the results are discussed
in the context of future model development and analysis op-
portunities.

1 Introduction

For decades, under the influence of human activities, the con-
centrations of particulate matter, ozone, and their important
precursors have greatly changed even in the most remote re-
gions. Pollutants transported over long distances can have a
negative impact on urban air quality, human health, and cli-
mate change (Fan et al., 2016). The hemispheric and inter-
continental transport of air pollutants has always been an im-
portant international issue. For this reason, many countries
and institutions around the world have launched a series of
cooperative projects to study transboundary transportation,
such as LRTAP (Long-range Transboundary Air Pollution),
TRACE-A (Transport and Chemical Evolution over the At-
lantic), LTP (Long-range Transboundary Air Pollutants in
Northeast Asia), TRACE-P (Transport and Chemical Evolu-
tion over the Pacific; Carmichael et al., 2003), and TF HTAP
(Task Force on Hemispheric Transport of Air Pollution). To
better address and control global air pollution, it is vital to
understand and quantify the sources of air pollutants from a
global perspective.

Large-scale observation systems, including ground obser-
vations, aircraft, laser radars, and satellites, have been used
to investigate the contributions from individual source re-
gions to surface pollution (Venkatram and Karamchandani,
1986). Cooper et al. (2004) explained that air pollution can
be transported across the North Pacific Ocean under the con-
trol of warm conveyor belts by using in situ measurements
from an aircraft platform. Pal et al. (2020) used airborne
in situ measurements of greenhouse gases (GHGs) to ex-
pound the important role of midlatitude cyclones in trans-
porting GHGs across the eastern United States. An extensive
dust event that originated in Africa and transported dust to
South America was observed and tracked by CALIPSO li-
dar (Liu et al., 2008). However, because of the short dura-
tion of field observation activities and limited research area
of observations, it is difficult to clarify the seasonal or in-
terannual changes and attribute pollutants to specific source
regions by only observation methods (Fiore et al., 2009).
Recently, numerical global chemical transport models have
been widely employed (Fiore et al., 2009) to quantify inter-
continental source–receptor (S-R) relationships, as well as
high-concentration pollution caused by local emissions. To a

large extent, the quantitative assessment of intercontinental
transport still depends on the model.

Many global chemical transport models have been used to
study the distribution of air pollutants and estimate their in-
tercontinental transport (Wai et al., 2016; Yang et al., 2017a).
Sensitivity simulation, a numerical method, is widely used
because of its relatively simple operation. It mainly refers
to the reduction in emissions in the source region by a cer-
tain extent, such as 15 % or 20 %, or even directly return-
ing to zero. Numerous studies have applied this method to
assess S-R relationships, including black carbon (BC) trans-
port to the Arctic (Sobhani et al., 2018, using a sulfur trans-
port and deposition model (STEM)) and ozone transport
among the Northern Hemisphere (Nopmongcol et al., 2017,
using the Comprehensive Air Quality Model with Extensions
(CAMx); X. Y. Li et al., 2014, using Model for Ozone and
Related chemical Tracers, version 4 (MOZART-4); Y. Zhu et
al., 2017, using the Goddard Earth Observing System model
coupled to chemistry (GEOS-Chem)). These results all prove
the hemispheric and intercontinental transport of air pollu-
tants and highlight the importance of transboundary trans-
port research from a broader perspective. However, sensitiv-
ity simulation methods usually ignore the nonlinearity of pol-
lutants during chemical processes, which causes some errors
in their estimated S-R relationships of secondary aerosols
and O3.

Sensitivity simulation also requires expensive computa-
tional resources, which results in most global simulations
of pollutants running at coarse horizontal resolutions rang-
ing from 1◦× 1◦ to 5◦× 5◦, such as 4◦× 5◦ in J. Zhu et
al. (2017), 2◦× 2.5◦ in Han et al. (2020), 1◦× 1◦ in Crippa
et al. (2019), and 2.8◦× 2.8◦ in Nagashima et al. (2017), and
S-R relationships are limited to a few regions (e.g., Europe,
North America, East Asia, South Asia). Many recent stud-
ies have revealed that horizontal resolution has a consider-
able influence on model performance in air quality simula-
tions (Lin et al., 2010; Tao et al., 2020). Urban-scale pollu-
tion plumes are often unresolved in global model simulations
with lower resolution, which tend to underestimate the mag-
nitude of pollution formation and destruction, especially in
urban areas (Huijnen et al., 2010). Consequently, the contri-
bution of local emissions, especially from urban areas and
regions with large coastlines, has been underestimated (Van
Dingenen et al., 2018; Dentener et al., 2010; Fenech et al.,
2018).

The tagged tracer method has proven to be a useful tool
to investigate S-R relationships because of its better treat-
ment of nonlinear chemistry and low computational cost (Na-
gashima et al., 2010; X. Y. Li et al., 2014). This method has
already been implemented in CHASER (a chemical atmo-
spheric general circulation model for study of atmospheric
environment and radiative forcing) to calculate the relative
contributions to surface ozone over Japan from a global
perspective (Nagashima et al., 2010, 2017). Van Dingenen
et al. (2018) developed a global reduced-form air quality
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source–receptor model based on a two-way nested global
chemical transport model (Tracer Model version 5; TM5)
and assessed the S-R relationships of 58 regions at a res-
olution of 6◦× 4◦. Due to the limitation of computational
efficiency or defects of models, many studies focus on a sin-
gle species. Therefore, global high-resolution simulations of
multiple air pollutants and their S-R relationships covering
wider regions are needed and could play a key role in policy
development (Amann et al., 2011).

In this study, by coupling an online S-R relation-
ship module into the Global Nested Air Quality Pre-
diction Modeling System (GNAQPMS), we developed a
global tropospheric atmospheric chemistry source–receptor
model (GNAQPMS-SM) and then conducted a 1-year high-
resolution (0.5◦× 0.5◦) simulation for 2018. Then, an ex-
tensive evaluation study was performed to assess the per-
formance of the GNAQPMS with multiple platform obser-
vations. Using this module with GNAQPMS, we analyzed
transport inside and outside East Asia in 19 regions over a
global scale, allowing us to simultaneously identify the S-R
relationships of O3, PM2.5, BC, and non-sea-salt sulfate (nss-
sulfate).

This study is organized as follows: in Sect. 2, we intro-
duce the model configurations, module descriptions, model
domain, emission inventories, meteorological fields, and the
observations and statistical parameters used in the evaluation.
Section 3 presents the comparison of the model simulations
with background observations, both at the surface and aloft.
Model performance in three key regions is also displayed in
Sect. 3. Section 4 illustrates the intercontinental transport of
pollutants both in the surface layer and within the planetary
boundary layer, and compares the results with the HTAP re-
port and emission sensitivity simulation results. The discus-
sions are summarized in Sect. 5.

2 Model description

GNAQPMS-SM includes two parts: GNAQPMS and an on-
line source–receptor relationship module.

2.1 GNAQPMS

GNAQPMS is an offline global chemical transport model de-
veloped by the Institute of Atmospheric Physics, Chinese
Academy of Sciences, and was briefly described by Wang
et al. (2001), Li et al. (2008), and Chen et al. (2015). It in-
cludes horizontal and vertical advection (Walcek and Alek-
sic, 1998), diffusion (Byun and Dennis, 1995), detailed tro-
pospheric O3–NOx–hydrocarbon gaseous (CBM-Z) chem-
istry (Zaveri and Peters, 1999), aqueous (RADM) chemistry
(Stockwell et al., 1990), parameterization of dry and wet de-
position (Zhang et al., 2003; Stockwell et al., 1990), het-
erogeneous chemistry (Li et al., 2012), and a unique dust
particle deflation module (Wang et al., 2002). The horizon-

tal resolution of the model is variable, and terrain-following
coordinates are used vertically. Subgrid vertical transport of
chemical species in GNAQPMS, including convection and
boundary layer diffusion, are calculated by Emanuel’s (1991)
scheme and Byun and Dennis (1995) deriving from Global
Weather Research and Forecasting (GWRF) model output
variables, respectively. An aerosol thermodynamic model
(ISORROPIAI1.7) is applied to compute the composition
and phase state of the inorganic aerosol system in aerosol
chemistry (Nenes et al., 1998). A hybrid volatility basis set
(VBS) approach (Koo et al., 2014) is introduced to simulate
organic aerosols (OAs), combining the simplicity of the 1-
D VBS with the ability to represent the evolution of OAs in
the 2-D space of oxidation state and volatility (Yang et al.,
2019). The UV radiative transfer (TUV) model is coupled
for the online calculation of 20 photolysis rates, including
the aerosol, cloud, and gaseous species effects on photolysis
(Li et al., 2011). A computationally efficient Mie algorithm-
based scheme is adopted to calculate the single scattering
albedo, Ångström coefficient, and aerosol optical depth on-
line for input into the TUV model (Yu et al., 2012). Recently,
a sectional microphysics aerosol model (APM, Yu and Luo,
2009) was coupled into GNAQPMS, and APM includes mi-
crophysics describing nucleation, condensation, coagulation,
and thermodynamic equilibrium with local humidity in more
detail (Chen et al., 2019). In APM, it is assumed that the
aerosol mixing state is semi-external; that is, nucleated sec-
ondary particles are internally mixed, while primary parti-
cles, including BC, primary organic carbon, dust, and sea
salt, are presumed to be made up of a seeding core and a
secondary species coating. The coating of secondary species
can change the hygroscopicity of aerosols and potentially in-
fluence their radiative and heterogeneous chemical effects.
Both primary emitted particles and their coating species are
traced in the model. GNAQPMS can reproduce physical and
chemical processes in the atmosphere at both regional and
global scales. It has been widely used to simulate the global
distribution and international transport of mass and number
concentrations of aerosol compositions, gaseous species (O3
and CO), and mercury (Chen et al., 2015; Wang et al., 2017;
Wei et al., 2019; Chen et al., 2019).

2.2 Online source–receptor relationship module

Air quality S-R models usually quantify the influence of air
pollutant emissions in source regions, considering the impact
of atmospheric physical and chemical processes (Van Din-
genen et al., 2018). For primary pollutants (e.g., mineral dust,
BC, and sea salt), only physical processes such as advection,
diffusion, and dry and wet deposition can affect their S-R
relationships. The response of their concentrations in recep-
tor regions to emissions from source regions is nearly linear,
so emission sensitivity analysis can provide an accurate S-R
assessment. For secondary pollutants, the response of con-
centrations in receptor regions to source emissions is non-
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linear because changes in emissions have the potential to in-
fluence the chemical formation of various secondary species.
An air quality S-R model needs to include a nonlinear func-
tion relationship between source and receptor regions. Pre-
vious studies have suggested that the tagged tracer approach
can prevent the introduction of nonlinear errors during chem-
ical processes and is suitable for evaluating the contributions
of different source regions to secondary pollutants (Derwent
et al., 2004; Li et al., 2013). In this study, an online source–
receptor relationship module based on a tagged tracer ap-
proach is coupled into GNAQPMS. In this module, we as-
sume that each tagged pollutant at each grid from different
source regions (CT) shares the same loss velocities with total
pollutants in the host model (e.g., dry and wet depositions,
outflow by advection, convection, and diffusion). Therefore,
the fraction of each tagged pollutant in total concentrations
(FCT ) at a given grid cell is not changed by the removal pro-
cesses. Primary pollutants are tagged by the geographical
emitting locations, and FCT is calculated by Eq. (1):(

dFCT

dt

)
ij

=

(
Eij +

(
Mij

)
dif+adv+conv

)
/C, (1)

where i represents the ith geographical source region and j

represents the j th grid cell. CT is the mass concentration of
tagged pollutant from the ith source region. FCT is the frac-
tion of tagged species from the ith region in the total mass
concentration of this tagged species at the j th grid cell. Eij

is the pollutants emitted from the ith source region at the j th
grid cell; hence, when the j th grid is outside region i, Eij

is equal to zero. Mij is the CT inflows from the neighboring
grid cells caused by advection, diffusion and convection and
is computed by the inflow fluxes and the ith CT fraction of
those neighboring grid cells. C is the total mass concentra-
tion of tagged species. It is obvious that the contribution of
each source region to the receptor region is strictly positive.
The sum of all relative contributions from individual sources
in the receptor region equals 100 %, and the sum of abso-
lute contributions is equal to the total concentrations for each
species.

Different from primary pollutants, secondary species are
formed through hundreds and thousands of reactions. FCT is
calculated by Eq. (2).(

dFCT

dt

)
ij

=

(
Pij +

(
Mij

)
dif+adv+conv

)
/C (2)

For ozone, O3 is tagged by the geographical location where
it was produced in this module, as shown in Eq. (2). Pij is
the gross production of the ith source region at the j th grid
cell and is calculated by

Pij =

{
PO3 , the j th grid is within ith region
0, the j th grid is outside ith region

P = k1 [HO2] [NO]+ k2 [RO2] [NO] , (3)

k1 and k2 are the rate coefficients of HO2+NO and
RO2+NO, respectively. This method mainly focuses on the
direct transport of ozone itself, while the photochemical pro-
duction of precursors from source regions during transport
(indirect transport) is considered to be the contribution from
ozone production regions. Similar methods were employed
to evaluate the long-distance transport of O3 by Sudo and
Akimoto (2007).

For secondary aerosols, all components are directly related
to specific precursor species. We assume that all species have
the same reactive properties in each given region, period and
emission type (e.g., power plant emissions have the same re-
sponse to transportation emissions). The Pij for irreversibly
partitioning species such as sulfate is apportioned to the pri-
mary precursor SO2 as follows:

PSO4ij
=1SO4×

CT
SO2ij

CSO2j

. (4)

1SO4 is the change in total mass concentration after chemi-
cal transformation. CT

SO2ij
and CSO2j

represent the concen-
trations of the ith tagged source and total SO2 in the j th
grid, respectively. For reversibly partitioning species such
as nitrate, ammonium, and semivolatile secondary organic
aerosols, the chemical equilibrium for aerosols and their
gaseous precursors from each source category (i) is set equal
to the equilibrium for the total species concentrations. The
Pij for the aerosol phase is described in Eq. (5). More details
on aerosols can be found in Wagstrom et al. (2008) and Wu
et al. (2017).

Paerosolij =
(
CT

aeroslij +CT
precursorij

)
×

Caerosolj

Caerosolj+Cprecursorj

−CT
aeroslij (5)

This online S-R module has been successfully applied in re-
gional studies to estimate the impact of transboundary trans-
port on aerosols and ozone in East Asia in both long-term
(Li et al., 2008; Y. Li et al., 2014a, 2016) and heavy episodes
(Wu et al., 2011, 2017). Recently, it has been coupled to a
routine air quality forecast model in China and has demon-
strated its key role in policy development. These applications
give some confidence in simulating the global S-R relation-
ships of pollutants.

2.3 Model domain

To clearly identify different sources of pollutants and quan-
tify the influences of different regions, we separate the global
domain into 19 regions, as illustrated in Fig. 1a. Asia is sepa-
rated into four regions (i.e., South Asia, Southeast Asia, cen-
tral Asia, and East Asia). To better analyze the S-R relation-
ships inside and outside East Asia (EA), EA is further divided
into four regions: Japan, the Republic of Korea, North Korea,
and China. The United States and Canada are merged into
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one region, North America (NAM). Greenland is included in
Europe. The ocean is separated into two regions: the ocean
north of 66.5◦ N and the rest of the ocean. The definitions of
19 source regions are listed in Table S1 in the Supplement. In
particular, to reduce the error in calculating the contribution
of coastal activities to marine emissions, we extend the land
boundary outward by the distance of four grid cells.

Simulation is performed for 2018 after an initial model
spin-up of 6 months, with a horizontal resolution of
0.5◦× 0.5◦. A total of 20 vertical layers are divided in this
study. The bottom layer is approximately 50 m, and the top
layer is approximately 20 km. After calculation of tropo-
spheric height, the monthly stratospheric ozone above the
troposphere is taken from the climatic mean output from
MOZART v2.4 (Horowitz et al., 2003; Logan, 1999). The
model outputs concentrations of air pollutants once an hour.

2.4 Emission inventory

The global anthropogenic emissions of air pollutants ex-
cept NH3 and non-methane volatile organic compound
(NMVOC) emissions are derived from the Emissions
Database for Global Atmospheric Research (EDGAR v5.0;
Crippa et al., 2020; data available at https://edgar.jrc.
ec.europa.eu/overview.php?v=50_AP, last access: 28 July
2020) based on 2015 with a resolution of 0.1◦× 0.1◦, while
NMVOC is from EDGAR v4.3.2. NH3 is adopted from
the HTAP v2.2 emissions inventory for 2010 (Janssens-
Maenhout et al., 2015; data available at https://edgar.jrc.
ec.europa.eu/htap_v2/index.php?SECURE=123, last access:
28 July 2020) because the NH3 emissions in China from
the HTAP v2.2 inventory are more consistent with those
from Chinese regional inventories compared with EDGAR
v5.0. Anthropogenic emissions are mainly divided into five
source categories: residential, agricultural, transportation,
industrial, and power sources. The biogenic emissions of
CO, isoprene, methanol, pinene, and other monoterpenes
are provided by the Model of Emissions of Gases and
Aerosols from Nature (MEGANv2.1; Guenther et al., 2012)
developed by the National Center for Atmospheric Re-
search (NCAR). Emissions from biomass burning are cal-
culated from the Fire Inventory from NCAR (FINN v1)
emissions from Wiedinmyer et al. (2011). FINN provides
daily global emissions with a resolution of 0.1◦× 0.1◦

in 2018 based on satellite observations for detecting ac-
tive fires as thermal anomalies and land cover change
(Wiedinmyer et al., 2011). Gas flaring emissions ECLIPSE
V5a (Klimont et al., 2017; https://iiasa.ac.at/web/home/
research/researchPrograms/air/ECLIPSEv5a.html, last ac-
cess: 28 July 2020) are added in the inventory, and
this will be mentioned later. Climatic 1◦× 1◦ lightning
emissions of nitric oxide from the Global Emissions In-
ventory Activity (GEIA) database are applied in this
study (Price et al., 1997). Soil NOx emissions are from
global hourly emissions for soil NOx (Hudman et al.,

2012; data available at http://ftp.as.harvard.edu/gcgrid/data/
ExtData/HEMCO/OFFLINE_SOILNOX/v2019-01/, last ac-
cess: 28 July 2020). Volcanic SO2 emissions are from Carn et
al. (2015) (data available at http://ftp.as.harvard.edu/gcgrid/
data/ExtData/HEMCO/VOLCANO/v2019-08/, last access:
28 July 2020). CO, dimethylsulfide (DMS), CHBr3, CH3I,
CH2Br2, and carbonyl sulfide (OCS) from the oceans are
taken from the CAMS-81 project with a resolution of 0.5◦

(Granier et al., 2019). Table 1 summarizes the total emis-
sions of anthropogenic and natural sources from several re-
gions used in this study. These results show similar emission
magnitudes to those in previous global emission inventories
(Badia et al., 2017; Yang et al., 2017a; Klimont et al., 2017).

2.5 Meteorological fields

The GWRF version 3.6 model was used to generate essen-
tial input meteorological data for GNAQPMS. GWRF is an
extension of the mesoscale Weather Research and Forecast-
ing (WRF) model and was developed for global weather re-
search and forecasting applications (Y. Zhang et al., 2012).
Compared to traditional general circulation models (GCMs),
GWRF enables a unified framework for the modeling of
atmospheric processes and their interactions across scales
spanning from global to local scales through one-way or two-
way nesting. In this study, the GWRF model is driven by Na-
tional Centers for Environmental Prediction (NCEP) Final
Analysis (FNL) data. The global horizontal spatial resolu-
tion is 0.5◦× 0.5◦. Vertically, the GWRF data require inter-
polation for input into GNAQPMS. The comparison between
simulated meteorological fields and reanalysis data is shown
in Fig. S1 in the Supplement. GWRF can simulate the spa-
tial distribution of wind speed well, with deviations of less
than 1 m/s in most regions. Compared with Global Precipi-
tation Climatology Project (GPCP) reanalysis data, the sim-
ulated precipitation field may be underestimated by approxi-
mately 30 %, which is similar to previous results (Sugiura et
al., 2006; Mori et al., 2020).

2.6 Observation data and statistical parameters

The ground sites used for comparison are shown in Fig. 1b.
Observations for CO are collected from the World Data Cen-
ter for Greenhouse Gas (WDCGG; data available at https:
//gaw.kishou.go.jp/search, last access: 28 July 2020). The
measurement data for O3 in Europe are obtained from the Eu-
ropean Monitoring and Evaluation Programme (EMEP; data
available at http://ebas.nilu.no/, last access: 16 June 2020),
those in the US are from the United States Environmental
Protection Agency (EPA; data available at https://aqs.epa.
gov/aqsweb/airdata/download_files.html, last access: 3 Au-
gust 2020), and those in East Asia are from the Acid De-
position Monitoring Network in East Asia (EANET; data
available at https://www.eanet.asia/, last access: 3 August
2020) and the Chinese National Environment Monitoring
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Figure 1. (a) Model domain and (b) stations for the evaluation used in this study.

Table 1. Total emissions from several regions used in the GNAQPMS simulation (Tg/yr).

NH3 SO2 OC BC NO NO2 CO

China 11.48 32.45 4.42 1.37 17.61 2.89 142.10
RBU 2.62 3.94 1.37 0.21 4.32 1.03 33.03
MCA 2.43 3.21 0.47 0.13 5.29 0.47 35.00
MDE 1.97 9.29 0.26 0.15 5.39 0.89 21.46
SAF 5.25 4.80 8.11 1.19 8.75 2.91 166.98
NAF 1.95 1.90 0.94 0.21 2.01 0.39 25.39
PAN 0.89 1.29 0.42 0.08 2.66 0.38 14.45
SEA 6.07 5.85 4.58 0.72 9.55 2.13 115.04
SAS 12.42 13.25 4.44 1.04 9.08 1.63 110.43
EUR 6.71 6.39 0.84 0.25 6.60 1.05 26.35
CAS 0.75 1.83 0.11 0.03 1.17 0.16 4.78
NAM 5.82 10.10 0.63 0.25 11.25 1.64 60.17
SAM 5.0 3.56 1.21 0.35 8.22 0.62 60.90
South Korea 0.09 0.85 0.04 0.02 1.00 0.16 4.11
Japan 0.58 1.35 0.04 0.05 1.71 0.27 6.30
North Korea 0.09 0.22 0.03 0.006 0.10 0.01 0.96

Center (CNEMC; data available at http://www.cnemc.cn/,
last access: 3 August 2020). The vertical observation data
of O3 come from the World Ozone and Ultraviolet Ra-
diation Data Centre (WOUDC; data available at https://
www.woudc.org/home.php, last access: 3 August 2020).
The observation data for PM2.5 and PM2.5 components
in different regions are collected from IQAir (data avail-
able at https://www.iqair.cn/cn-en/world-air-quality-report,
last access: 3 August 2020), CNEMC, EANET, EMEP,
and the United States Interagency Monitoring of Protected
Visual Environment (IMPROVE; data available at http://
views.cira.colostate.edu/fed/QueryWizard/Default.aspx, last
access: 3 August 2020). The SO2 observations are col-
lected from EANET, EPA, and EMEP. NO2 columns
are compared with tropospheric NO2 column concentra-
tion data from the Tropospheric Monitoring Instrument
(TROPOMI; van Geffen et al. (2020); data available at http:

//www.temis.nl/airpollution/no2.php, last access: 3 October
2020), and the resolution of monthly TROPOMI NO2 data
from the Royal Netherlands Meteorological Research In-
stitute (KNMI) used in our paper is 0.125◦× 0.125◦. The
aerosol optical depth (AOD) from the level-3 atmosphere
monthly global product (MOD08_M3; Platnick, 2015; data
available at https://ladsweb.modaps.eosdis.nasa.gov/archive/
allData/61/MOD08_M3/, last access: 3 October 2020), re-
trieved from MODIS Terra, is used to evaluate the simulated
AOD and the horizontal resolution is 1◦× 1◦. We compared
the spatial distribution of AOD and NO2 columns through
one-by-one correspondence between the simulation time and
the MODIS, TROPOMI observed time, the model grid cell
and MODIS, TROPOMI data grid cell. Note that the concen-
tration of PM2.5 mentioned below refers to the total concen-
tration of sulfate, nitrate, ammonium, primary PM2.5, organic
mass (OM), BC, dust, and sea salt. We multiplied all organic
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carbon (OC) values by a conversion factor of 1.8 to obtain
OM, and SNA (mentioned below) refers to the sum of sul-
fate, nitrate, and ammonium.

If observations in the above datasets are available in
2018, the observation data in 2018 are used. If not, the
multiyear observation average is used. When focusing on
seasonal variations, the year is divided into four sea-
sons: March–April–May (MAM), June–July–August (JJA),
September–October–November (SON), and December–
January–February (DJF). The statistical parameters used in
the evaluation include FAC2, the correlation coefficient (R),
and the normalized mean bias (NMB). FAC2 refers to the
proportion of the simulated results falling between 0.5 and 2
times the observed results, and the formulas for R and NMB
are as follows:

R =

∑n
i=1

(
simi − sim

)(
obsi − obs

)√
n∑

i=1

(
simi − sim

)2√ n∑
i=1

(
obsi − obs

)2 (6)

NMB=
∑n

i=1 (simi − obsi)∑n
i=1obsi

, (7)

where simi and sim are the simulation results of the ith sta-
tion and the average of the simulations of all stations, respec-
tively, and obsi and obs are the observation value of the ith
station and the average of the observations of all stations, re-
spectively.

3 Global distribution and evaluation

Detailed evaluation of GNAQPMS annual and seasonal re-
sults with observations is central for assessing the ability of
GNAQPMS to study S-R relationships. In this section, we
compare the measured and simulated seasonal or annual con-
centrations of surface ozone, CO, PM2.5, and its components.

3.1 Model evaluation against background
concentrations

To investigate the model performance in background sta-
tions, we selected more than 60 stations all over the world
from WDCGG.

3.1.1 O3

Figure 2a shows a snapshot of the simulated seasonal sur-
face O3 concentration against WDCGG observations at back-
ground stations from a global perspective in 2018. In general,
the observed magnitudes and seasonal variations of O3 are
reasonably reproduced by the model, with R values of 0.74–
0.87 and NMBs of−1 %–10 % in the four seasons (N = 67).
The model performance is similar to the BCC-GEOS-Chem
(an online global atmospheric model, by coupling the GEOS-
Chem chemical transport model as an atmospheric chem-
istry component in the Beijing Climate Center atmospheric

general circulation model) performance reported by Lu et
al. (2020). Among the four seasons, the model shows the
lowest model biases of −0.35–0.39 ppb relative to WOUDC
surface observations in MAM and JJA. In MAM, the model
captured a band of high O3 with values of 30 ppb or higher
in most Northern Hemisphere and southern polar regions.
The highest values reached 40–60 ppb, extending from north
Africa to East and South Asia. In JJA, this simulated high
ozone band in the Northern Hemisphere was focused over
northern midlatitude (30–45◦ N) continents as a result of in-
tensive photochemical production involving anthropogenic
NOx and VOCs . Interestingly, O3 mixing ratios in the South-
ern Hemisphere significantly increase to 35–40 ppb due to
the injection of stratospheric O3, which is consistent with
observations, as shown in Fig. S2. The model tends to over-
estimate tropospheric ozone levels in DJF, with an NMB of
9.78 %. This overestimation is more prominent in the north-
ern high latitudes because of the overestimation of the strato-
sphere to troposphere in this model, as will be discussed later.

Simulated vertical profiles of ozone are compared with
ozonesonde observations in six regions from WOUDC in
Fig. 3. The simulated magnitude and vertical gradient
of ozone are generally in good agreement with observa-
tions throughout the depth of the middle–lower troposphere
(surface-500 hPa). Model results and observations generally
fell within 1 standard deviation of each other. In EUR and
NAM, the simulation also accurately characterizes the verti-
cal variation in O3 in the whole troposphere. However, the
simulation overestimated O3 mixing ratios in the upper tro-
posphere and stratosphere (500–200 hPa) in other regions.
This is likely caused by the simplified treatment of the strato-
sphere to the troposphere in our model. In the model, strato-
spheric O3 is constrained by relaxation towards zonally and
monthly averaged values from ozone climatologies from Lo-
gan (1999) and Horowitz et al. (2003). These monthly val-
ues may cause the model to produce virtual stratosphere to
troposphere events that are not observed by low-frequency
ozonesonde in WOUDC (only one sample every 1–2 weeks).
The coarse vertical resolution in the upper troposphere and
stratosphere introduces errors in the modeling dynamics of
ozone exchange between the stratosphere and the tropo-
sphere. Similar phenomena have also been reported in pre-
vious studies (Horowitz et al., 2003; Miyazaki et al., 2020;
Verstraeten et al., 2013), which reported that representa-
tions of the stratosphere–troposphere exchange in four mod-
els caused a large overestimation of ozone at 500–90 hPa.

3.1.2 Carbon monoxide (CO)

The annual mean concentration of CO simulated by
GNAQPMS compared with WDCGG observations is shown
in Fig. 2b. CO concentrations are well correlated with ob-
servations, with R values of 0.74–0.84 year round (N =
64), while simulated concentrations are slightly higher, with
NMBs ranging from 17.93 % to 44.60 %. The lowest model
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Figure 2. Spatial distributions of simulated (shaded) surface (a) O3 and (b) CO concentrations compared with WDCGG observations (solid
circles).

biases compared to surface observations are 22.13–22.6 ppb
in DJF and MAM. The seasonal variation in CO is not ob-
vious in the ocean, while it is significant on the continents.
High values are always found in the regions with significant
emissions from industrial sources, such as the US, Europe,
South Asia (SAS), and EA these fossil fuel combustion re-
gions, and in those with significant emissions from biomass
burning, such as central Africa, South America, and South-
east Asia (SEA), in all four seasons. The seasonal results

show that the CO concentration over EA and SAS peaks dur-
ing DJF, followed by MAM and SON, since there is more
fossil fuel combustion for heating, whereas central Africa
experiences a maximum in JJA, which is mainly due to the
stronger biomass burning and biogenic emissions. The pos-
itive biases in JJA reach 41.16 ppb, which is in part due to
the lower OH levels and higher CO direct emission. The
anthropogenic emission of CO in this study is 686.7 Tg/yr,
which is higher than values in other studies, e.g., Horowitz
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Figure 3. Comparisons of GNAQPMS-simulated annual mean ozone vertical profiles with ozonesonde observations averaged over some
regions. Horizontal blue and red bars are the standard deviations of observations and simulations, respectively.

et al. (2020) used 612.4 Tg/yr for year 2014. The main sink
of CO is by reaction with OH. The tropospheric mean con-
centration of OH in our model is 11.9× 105 molecules/cm3,
which is in good agreement with previous studies, e.g., Ba-
dia et al. (2017) with 11.5×105 molecules/cm3 and Voulgar-
akis et al. (2013) with 11.1± 1.8×105 molecules/cm3 from
14 models for 2000. Therefore, the overestimation of CO is
mainly due to high CO anthropogenic emissions.

3.1.3 Nitrogen dioxide (NO2)

Tropospheric NO2 columns from TROPOMI data are com-
pared with GNAQPMS in Fig. 4. As shown in Fig. 4,
the column concentration of NO2 has a range of 0.4-
15×1015 molecules/cm2 over most of the land, the mag-
nitude of which is well reproduced. Because of the short
lifetime of NOx , tropospheric NO2 columns are considered
to be closely sensitive to land surface NOx emissions. As
shown in Fig. 4a, the anthropogenic source areas of EA,
Europe, and the eastern US are the major NOx emission
sources, with high values in SON and DJF. The model sat-
isfactorily captures seasonality and high-value regions of
NO2 columns in the vertical troposphere. The largest differ-
ences are found for eastern China, where GNAQPMS reaches
levels of 15×1015 molecules/cm2, whereas observations are
on average 10×1015 molecules/cm2. This overestimation is
likely because China implemented the toughest-ever clean air
policy in 2013–2017 and reduced NOx emissions by 7.95 Tg
(Zhang et al., 2019). This is not reflected by the EDGAR
v5.0 emission inventory. A negative bias for TROPOMI data
compared to the ground-based measurements (Verhoelst et
al., 2021) may also be a reason for our model positive biases.

3.1.4 PM2.5 and aerosol optical depth

Figure 5c displays the seasonal variation in PM2.5. The con-
centrations over the continents are higher than those over
the ocean in most regions, and the simulated PM2.5 is less
than 1 µg/m3 in the northern and southern polar regions, as
shown in Fig. 5c. There is a high PM2.5 band with val-
ues of approximately 10 µg/m3 in the southern midlatitudes,
which is mainly caused by sea salt. The major PM2.5 hotspots
are over India, East Asia, and central Africa, and PM2.5
reaches a peak during DJF, followed by lower values dur-
ing MAM, and the lowest values are during JJA and SON
since there is higher biomass and fossil fuel burning for heat-
ing, less precipitation, and strengthened positive feedback
between aerosols and the planetary boundary layer (PBL)
(Petaja et al., 2016) during DJF. AOD, which is the total
column aerosol extinction, is positively correlated with the
total aerosol mass concentration in an atmospheric column.
We compare the annual AOD with MODIS satellite data in
Fig. 5a–b. The AOD over the ocean ranges from 0.1 to 0.3,
which is mainly related to sea salt. The high AOD regions
are central and west Africa and South and East Asia, and
AOD reaches a maximum in JJA and connects into a high
band at midlatitudes in the Northern Hemisphere. The max-
imum in central Africa and west Africa in Fig. 5a is due to
the tremendous amount of carbonaceous aerosol emitted by
biomass burning, which often takes place in JJA. The model
reproduces this distribution well, although there is a slightly
negative bias in high-value regions, especially in JJA. The
high AOD in South and East Asia related to high anthro-
pogenic emissions is underestimated. The major hotspots of
AOD are consistent with those of PM2.5. GNAQPMS shows
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Figure 4. Spatial distributions of seasonal mean NO2 columns from (a) GNAQPMS averaged in 2018 and (b) the TROPOMI data.

a weaker AOD in most regions, which may be related to the
low PM2.5 in the simulation, as will be discussed later, and
may be due in part to uncertainty in satellite AOD datasets
(Li et al., 2009).

3.2 Model evaluation against regional/urban
concentrations

O3 and other secondary pollutants significantly vary in re-
gions with large gradients in emissions of NOx and other
precursor emissions. This requires a model with sufficient
spatial and temporal resolution, and coarse grids usually do
not adequately capture urban-scale pollutant levels and gra-
dients when the urban area occupies only a fraction of the
grid cell (Huijnen et al., 2010). In this study, GNAQPMS
employs a fine resolution of 0.5◦× 0.5◦ and outputs hourly
data, which provides us with a good opportunity to investi-
gate detailed air pollutant distributions and their origins in
key regions from a global perspective. Here, we evaluate sur-

face O3, PM2.5, and its compositions in East Asia, Europe,
and North America from the CNEMC, EANET, EMEP, and
IMPROVE air quality networks.

Figure 6 shows a comparison of the annual surface mean
simulated O3, NO2, PM2.5, and PM2.5 components and SO2
concentrations with ground-based observations in different
regions, and detailed information on R and NMB is pro-
vided in Table S2. As shown in Fig. 6a, surface O3 shows
remarkable agreement with the observations. The annual av-
erage simulated O3 concentration of all stations worldwide is
33.38 ppb, while the mean of the observed data is 32.23 ppb,
with an NMB of 3.55 % and an FAC2 of 99.78 %. For NO2,
GNAQPMS shows high correlations with observations and
no significant annual biases in EA, EUR, and NAM. The
simulated and observed NO2 values are 3.57 and 4.36 ppb,
respectively, and 69.14 % of stations are within a factor of 2
of observations, with R values of 0.89, 0.87, and 0.56 and
NMBs of −25.69 %, −31.15 %, and 2.49 % for EA, EUR,
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Figure 5. Spatial distributions of seasonal mean AOD at 550 nm from (a) MODIS data and (b) GNAQPMS averaged in 2018 and (c) PM2.5
in GNAQPMS.

and NAM, respectively (see Fig. 6b and Table S2). NO2 has
a short lifetime and is greatly affected by local sources, and
the model shows stronger spatial correlations with observa-
tions than previous studies in East Asia (Li et al., 2012) and
Europe (Mar et al., 2016; Karamchandani et al., 2017). In ad-
dition, the annual average NMB of −18.21 % with respect to
NO2 is also in line with previously published studies (Zhang
et al., 2013).

In Fig. 6c, the modeled PM2.5 is 18.48 µg/m3, while the
mean of the measured data is 23.27 µg/m3, with an NMB of
−20.56 % and an FAC2 of 86.57 %. Simulated versus ob-
served PM2.5 concentrations across 417 stations highlight the
underprediction of PM2.5. Due to the large contribution of
biomass burning and fossil fuel combustion, PM2.5 is higher
in China and SEA than in EUR and NAM, as shown in
Fig. 6c. The concentration in SAM is obviously underesti-
mated, which may be related to the uncertainty of the emis-
sion inventory in SAM. At present, most models generally
underestimate the concentration of BC (Shindell et al., 2008),
and the difficulties of BC simulation are the parameteriza-
tion scheme selection of BC aging and wet scavenging pro-
cesses, as well as the lack of BC emission sources. Accord-

ing to a previous study, adding gas flaring emissions can im-
prove the surface BC concentration biases, especially in the
Arctic (Huang et al., 2015); therefore, we add the ECLIPSE
V5a flaring emissions in the inventory. However, the sim-
ulated concentration of BC is 186.27 ng/m3, which is un-
derestimated by approximately 174 ng/m3, with an NMB of
−48.37 %, while the R value is up to 0.9 (Fig. 6d). Only
approximately 44 % of stations are within a factor of 2 of
observations. NMB values are −52.08 %, −20.30 %, and
−49.97 % over EA, EUR, and NAM, respectively. The per-
formance for Europe is in agreement with BC simulations us-
ing GEOS-Chem in Europe, showing that BC concentrations
are underpredicted by approximately 30 % (Huang et al.,
2015; Wang et al., 2014), whereas the performance for EA
and NAM is unsatisfactory. Similar to BC, the model can ac-
curately capture the observed spatial distribution (R = 0.82)
but underestimates the levels of OM, with NMB and FAC2
values of −49.33 % and 46.3 %, respectively (Fig. 6e). This
underestimation of BC and OM is more severe over NAM.
However, the spatial correlation of BC and OM is better than
the result in Carter et al. (2020). In Fig. 6f, simulated SNA
shows better agreement with observations than carbonaceous
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Figure 6. Scatterplots of simulated (sim) and observed (obs) annual mean concentrations. The black dotted lines are the 2 : 1, 1 : 1, and 1 : 2
reference lines from left to right. Different regions are plotted with circles in different colors.
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aerosols. The simulated and observed values are 2.76 and
3.42 µg/m3, respectively, and 77.12 % of stations are within
a factor of 2 of observations. GNAQPMS tends to underes-
timate the concentration of sulfate, with an NMB value of
−39.14 % (Fig. 6g). Compared with an NMB of −1.53 %
in EA in Uno et al. (2017) and an NMB of −3.9 % from
GEOS-Chem results in the US in L. Zhang et al. (2012), our
performance of sulfate needs to be improved. This negative
bias could also be attributed to ignoring subgrid aerosol vari-
ations in the model (Qian et al., 2010; Yang et al., 2017a)
and heterogeneous chemistry on aerosol surfaces (Bauer and
Koch, 2005; Andreae and Crutzen, 1997) and could still be
related to the positive bias of SO2 with an NMB of 44.91 %,
as shown in Fig. 6h. Partial incomplete oxidation and a
low rate of conversion from SO2 gas to sulfate particles in
GNAQPMS could lead to the high concentration of SO2 and
low concentration of sulfate in the atmosphere. Generally,
GNAQPMS has a good capability of reproducing the magni-
tudes of pollutants in regions.

3.2.1 East Asia

In Fig. 7, the observations from CNEMC and EANET are
used. GNAQPMS captures the surface O3 seasonal variation
in eastern and western China. Year-round O3 concentrations
averaged over eastern China are approximately 20 ppb lower
than those over western China. Surface O3 over southwest
China reaches a maximum in DJF and MAM and a minimum
in JJA and SON, whereas that over eastern China reaches
a peak in JJA and a trough in DJF, and this seasonality is
determined by abundant photochemical reactions in JJA and
the East Asian monsoon. The enhanced titration of O3 with
the increase of NOx in DJF could also be a possible rea-
son. The model also captures the high values during MAM in
Japan. The peak in the western Pacific is consistent with the
high values in Japan. Figure 7b shows scatterplots of simu-
lated and observed seasonal surface concentrations of O3. As
shown in Fig. 7b, the O3 simulations at most sites are within a
factor of 2 of observations, with R ranging from 0.67 to 0.86
and NMB ranging from −1.26 % to 7.81 % in different sea-
sons. The observed seasonal mean O3 concentration in EA is
between 21.37 and 42.46 ppb, while the simulated concentra-
tion is between 23.04 and 44.07 ppb. The simulation annual
and seasonal results of O3 in EA match those of regional
models participating in the Model Inter-Comparison Study
for Asia Phase III (MICS-Asia III) (Li et al., 2019). Figure
7c shows the frequency of O3 NMB values, distributed as a
function of NMB. NMB of O3 in MAM is most frequently
between −15 % and −10 % in EA, and the frequency of oc-
currence of lower O3 NMB values dramatically decreases.
The NMBs in the other three seasons are most frequently
within±5 % and show an approximately normal distribution.

Figure 8 displays that the seasonal mean simulated PM2.5
concentration is between 20 and 43.85 µg/m3, while the ob-
served data range from 21.03 to 43.56 µg/m3 in EA. The

model shows good spatial correlations with observations and
little seasonal bias, with R values ranging from 0.91–0.92
and NMB values within ±15 %. The frequent spring dust
storms in northern China are an important reason for the
larger PM2.5 biases in MAM. GNAQPMS reproduces the
spatial distribution of PM2.5, including low concentrations
over western China and high concentrations over eastern
China, as well as 5–30 µg/m3 concentrations over the western
Pacific due to sea salt. The North China Plain, central China,
and the Sichuan Basin are the major hotspots, and PM2.5 con-
centrations reach a maximum during DJF, with average con-
centrations above 90 µg/m3, which is related to stronger gra-
dients in population density in these regions and more fossil
fuel combustion for heating in DJF. Compared with that of
O3 NMBs, the probability density function (PDF) of PM2.5
NMBs is not centralized and shows a non-normal distribu-
tion, as displayed in Fig. 8c, especially in DJF.

3.2.2 Europe

Figure 9 shows the validation of GNAQPMS simulations
against EMEP observations. GNAQPMS captures the dis-
tribution of the surface layer O3 concentration fairly well.
The seasonal pattern of O3 in Europe is characterized by
higher values in MAM and lower values in SON. The high
ozone area is mainly located in southern Europe (especially
near Italy and Greece), and the peak ozone concentration is
up to 40 ppb near the Mediterranean in JJA. The model re-
produces the ground-based north–south gradient. The sea-
sonal R values are all above 0.7 except 0.49 in MAM, and
NMB values range from 4.6 % to 14.97 % with a relative
overestimation during DJF in northern and western Europe.
This performance is similar to MOZART (R = 0.53–0.55,
NMB=−19 %–6 %) and RADM2 (R = 0.49–0.58, NMB=
−33 % to −23 %) model simulations over Europe in Mar
et al. (2016). The PDF in Fig. 9c shows that the NMBs in
MAM and DJF are most frequently between 0 % and 10 %,
and those in JJA and SON approximately obey a normal dis-
tribution.

The seasonal observed and simulated station PM2.5 values
are within 10 µg/m3 in Europe, as shown in Fig. 10. Mean
values of PM2.5 in Europe are fairly similar in all seasons,
with a slightly lower concentration in JJA. There is no sig-
nificant model bias in the seasonal mean concentrations ex-
cept for a 20 % low bias in JJA. The model does not cap-
ture the observed high values in southern and central Europe
during JJA. During the other three seasons, the maximum
PM2.5 in central Europe is well pronounced. The annual
NMB value of−4.47 % in Table S2 at EMEP sites is less than
the previously mentioned negative biases of −30.4 % in the
WRF/Polyphemus model (Zhang et al., 2013) and −19.7 %
in the CAMx model (Karamchandani et al., 2017).
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Figure 7. Comparison of surface O3 in East Asia. (a) Spatial distribution of simulated (shaded) surface O3 concentrations compared with
observations (solid circles). (b) Scatterplots of simulated (sim) and observed (obs) seasonal mean O3. The black dotted lines are the 2 : 1,
1 : 1, and 1 : 2 reference lines from left to right. (c) The probability density functions of NMB.

3.2.3 North America

Figure 11 shows the seasonal mean surface O3 concentra-
tion in the US compared with observations from EPA net-
work sites. The seasonal R values are between 0.49 and 0.81,
with slightly poor spatial correlation in JJA, and NMB values
range from −2.0 % to 8.38 %. The seasonalities of ozone in
the eastern and western US are inconsistent. The model can
simulate the high tail of the O3 distribution in the western US
during MAM and DJF but tends to overestimate O3 levels by
approximately 5–10 ppb in the eastern US during JJA, which
also always appears in other regional or corresponding large-

domain CMAQ or GEOS-Chem simulations (Hogrefe et al.,
2018; Fiore et al., 2002; Guo et al., 2018). Several small-
scale high-value stations in western cities, notably in Cali-
fornia, are underestimated, which are affected by the coarser
model resolution relative to finer regional resolution. In gen-
eral, the simulation level in the US matches well with levels
of other regional models (Hogrefe et al., 2018; Nopmongcol
et al., 2017). As shown in Fig. 11c, the NMBs in MAM and
SON are within ±5 % and are normally distributed.

As shown in Fig. 12, the seasonal mean modeled sur-
face PM2.5 concentrations over the US are between 5.64 and
7.41 µg/m3. Similar to Europe, the seasonal observed and
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Figure 8. Comparison of surface PM2.5 in East Asia. (a) Spatial distribution of simulated (shaded) surface PM2.5 concentrations compared
with observations (solid circles). (b) Scatterplots of simulated (sim) and observed (obs) seasonal mean PM2.5. The black dotted lines are the
2 : 1, 1 : 1, and 1 : 2 reference lines from left to right. (c) The probability density functions of NMB.

simulated PM2.5 concentrations are within 9 µg/m3, and the
seasonal variation is inconspicuous. The US can be split into
the western and eastern parts of the country for discussion. In
the west, the hotspot is located in the central region and peaks
during MAM. In the east, the larger high-value zones reach a
maximum during JJA. Except for SON, there is a slight ten-
dency to underestimate the concentration. This performance
over the US is similar to the GEOS-Chem results in Kim et
al. (2015).

4 Results of S-R relationships

4.1 S-R relationships in the surface layer

We have evaluated annual and seasonal model performance
thoroughly. This laid a good foundation for the S-R rela-
tionship analysis that follows. The contributions of different
source regions are calculated and discussed in this section.

4.1.1 Surface PM2.5 source–receptor relationships

PM2.5 has anthropogenic and natural emission sources. All
of sand dust and sea salt are considered to be from natu-
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Figure 9. Same as Fig. 7 but in Europe.

ral emissions. Figure 13 shows the annual and seasonal es-
timates of the contributions to surface PM2.5 (in percent)
from source regions to receptor regions on a global scale.
The transport distance of surface PM2.5 is limited. Local and
natural sources play major roles, with contributions of nearly
more than 90 %, while the contribution of external sources
is small (Fig. 13e). The yearly contribution from EA to it-
self is 77.4 %, and the contributions from natural emissions,
SAS, and SEA to EA are 18.2 %, 2.0 %, and 1.0 %, respec-
tively. Sources in the EA explain approximately 3.6 % of the
PM2.5 concentration in RBU and 2.5 % in SEA. The PM2.5 in
EUR is generally more sensitive to local emissions (68.2 %)
than to natural emissions (27.3 %). OCN and RBU also con-

tribute 2.4 % and 1.1 % to EUR, respectively. These contri-
butions show seasonal variations. As shown in Fig. 13a–d,
local emissions from EA contribute approximately 59.9 %–
93.9 % of the surface PM2.5 concentration over EA in all
seasons, and local emissions from SAS contribute approxi-
mately 33.8 %–95.4 % over SAS, which peaks in DJF due to
greatly increased biomass and fossil fuel burning for heat-
ing. The export of PM2.5 from EA contributes approximately
0.9 %–11.6 % over RBU and CAS, and these contributions
are high in DJF, mainly due to the large emissions and con-
centrations of PM2.5. Similarly, exports from SAS contribute
0.1 %–9.0 % over EA and SEA in the four seasons due to
westerly winds. Desert dust of MDE, NAF, and CAS (Mon-
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Figure 10. Same as Fig. 8 but in Europe.

golia is included in CAS) plays an important role in MAM
and JJA, which is caused by their desert terrain, more dust
storm activity, and higher PM2.5 surface concentration. Be-
cause marine emissions can also make a considerable con-
tribution to air pollution, local sea salt emissions cause nat-
ural emissions to make more than 90 % and 75 % contribu-
tions to NPO and OCN, respectively. Antarctica (SPO) has a
low population, and transportation sources are also small, so
the contribution of natural sources is larger than that in other
regions. Local anthropogenic sources contribute more than
50 % to the PM2.5 concentrations in EA, RBU, SEA, SAS,
EUR, NAM, and SAM and even exceed natural emissions.
SAS contributes 2 % to the EA surface PM2.5 contribution

annually, while EA contributes 0.2 % to SAS. Although SAS
is controlled by the South Asian winter monsoon in DJF, the
northeast wind in DJF is weaker than the southwest wind in
JJA. In addition, the PM2.5 concentration of SAS in DJF is
higher than that in JJA, so the contribution to EA from SAS
is largest in DJF among the four seasons. These midlatitude
regions are dominated by westerly winds and therefore can
make a greater contribution to the downwind receptor region.
PM2.5 can also transport across regions between high lati-
tudes and low latitudes, such as PM2.5 from EUR traveling
south to NAF, especially in JJA. Because of the deposition,
PM2.5 mainly contributes to its surrounding receptor regions
and cannot be transported over long distances in the surface
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Figure 11. Same as Fig. 7 but in the United States.

layer. The near-surface downwind transport is not easy to
cross the Pacific and the Atlantic. For example, only 0.1 %
of PM2.5 in NAM is from EA and 0.2 % of PM2.5 in EUR is
from NAM annually.

To better quantify the S-R relationships for PM2.5 in EA,
we split EA into China, Japan, South Korea, and North Ko-
rea. We select five cities: Busan (35.09◦ N, 128.58◦ E), Seoul
(37.55◦ N, 126.97◦ E), Osaka (34.07◦ N, 135.05◦ E), Tokyo
(35.7◦ N, 139.77◦ E), and Fukuoka (33.6◦ N, 130.58◦ E) to
compute the yearly contributions of China, South Korea,
Japan, and local anthropogenic emissions. As shown in Ta-
ble 2, local anthropogenic emissions are the most promi-
nent source of surface PM2.5 in Busan, Seoul, Osaka, Tokyo,
and Fukuoka, which contribute 63.89 %, 52.83 %, 61.27 %,
78.69 %, and 44 %, respectively. Long-term studies that an-

alyzed long-range transport of PM2.5 seasonally or annually
in South Korea and Japan reported that local contributions
ranged from 30 % to 60 %, depending on the season, and
local contribution was higher in the metropolises of Japan
and South Korea (Kim et al., 2017; Yim et al., 2019; Lee et
al., 2017). There is no significant difference between their
studies and our results. Natural emissions explain ∼ 10 % of
PM2.5 concentrations in the five cities. China makes a greater
contribution to Busan and Seoul (18.61 % and 25.56 %, re-
spectively) in closer South Korea than to Osaka and Tokyo
(8.64 % and 2.28 %, respectively) in farther Japan. Compared
with the other two cities in Japan, Fukuoka is located in
southwestern Japan and is closer to China and South Ko-
rea; thus, the contributions from China and South Korea
reach 18.14 % and 17.14 %, respectively. This is also related
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Figure 12. Same as Fig. 8 but in the United States.

with meteorological conditions controlled by westerly winds,
as mentioned above. China’s contribution to South Korea,
which is closer to China, is generally greater than that to
Japan. Japan is located in the downwind area of South Ko-
rea, so Japan’s contribution to Busan and Seoul (1.05 % and
0.13 %, respectively) is less than that of Korea to Osaka,
Tokyo, and Fukuoka (5.93 %, 0.77 %, and 17.14 %, respec-
tively).

4.1.2 Surface O3 source–receptor relationships

Different from PM2.5, O3 S-R relationships are affected by
many precursors that are emitted, reacted, and then gen-
erated, which are also attributed to the influence of pho-
tochemical reactions, and show a stronger nonlinearity. In
our S-R module, primary pollutants and secondary aerosols

are tagged by their or their precursor emitting locations,
and other secondary species like O3 are tagged by the pro-
duced locations. Therefore, we calculate the O3 contribu-
tion of a source region that was chemically produced in-
side this source region and then transported to another re-
ceptor region, inevitably including amounts of O3 produced
inside this source region from precursors emitted in neigh-
boring source regions and transported to this source region.
As shown in Fig. 14, sources from EA, MCA, MDE, SAF,
SEA, SAS, NAM, and SAM have contributed more than
50 % to themselves in the surface layer. Similar to PM2.5,
the transport of O3 in the midlatitude regions of the North-
ern Hemisphere is also controlled by the prevailing westerly
wind. The contribution of RBU surface O3 from the EUR
source region averages 8.3 % over the year, while the contri-
bution of EUR surface O3 from the RBU source region aver-
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Figure 13. Annual and seasonal estimates of the contributions to surface PM2.5 (%) from source regions to receptor regions.
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Table 2. Contributions from China, South Korea, and Japan to surface PM2.5 (in percent) in five cities.

China South Korea Japan Natural Concentration (µg/m3)

Busan 18.61 % 63.89 % 1.05 % 10.94 % 18.50
Seoul 25.56 % 52.83 % 0.13 % 8.70 % 23.22
Osaka 8.64 % 5.93 % 61.27 % 16.02 % 10.13
Tokyo 2.28 % 0.77 % 78.69 % 12.86 % 12.38
Fukuoka 18.14 % 17.14 % 44 % 13.14 % 13.22

ages 6.5 %. Compared with PM2.5, O3 has a longer surface
transport distance and greater contribution of transboundary
transport, which is above 30 % and generally approximately
50 %. Nearly 25 % of global anthropogenic NOx emissions
originated from shipping, plus the NOx transported to OCN,
and the influence of local photochemical reactions on O3 is
significant in OCN (38.7 %). O3 can be transported across the
ocean through the surface layer. The export of O3 from NAM
contributes 9.2 % of surface O3 concentrations in EUR under
the control of the westerly jet crossing the North Atlantic
and contributes approximately 6 % in MCA due to northerly
winds. NAM also contributes significantly (10.2 %) to NPO
O3. Affected by the South Asian monsoon, O3 originating
from SAS can be transported to EA (8.9 %) and across the
Bay of Bengal to SEA (2.9 %). Sources in EA explain ap-
proximately 3.6 % of O3 effectively crossing the North Pa-
cific to NAM. The exported surface O3 from RBU can travel
to EUR, with a relative contribution (6.5 %) exceeding that to
NAM (5.4 %) and EA (2.8 %). Surface concentrations over
NPO have a close association with emissions from source re-
gions. The largest contribution in NPO is from RBU, and the
contributions from EUR and NAM are similar in magnitude.
Basically, O3 is transported to NPO from every source re-
gion, even from PAN in the Southern Hemisphere. The con-
tribution of the top boundary is large in SPO due to the low
tropopause of SPO and the simplified treatment of the strato-
sphere, while the contribution of the top boundary is smaller
in Northern Hemisphere receptor regions compared with the
contribution of photochemical reactions.

Then, we choose 4 source regions to focus on: EA, SAS,
EUR, and NAM. Figure 15c presents the spatial distribution
of the relative contribution to surface O3 from these regions.
Due to westerly winds in the middle latitudes, non-local
source transport accounts for less than 20 % in the eastern
part of EA and NAM but contributes approximately 30 % in
the western part of NAM and more than 50 % in western EA,
considering the lifetime of O3 and meteorology, where sur-
face O3 is vulnerable to the influence of external sources. As
shown in Fig. 15c, surface O3 can be transported on a hemi-
spheric scale. Exports from EUR can explain approximately
5 %–10 % over North Asia and the northeast Atlantic, and
approximately 5 %–15 % over NPO. Surface O3 can even be
transported across NPO to the North Pacific, making a nearly
5 %–7.5 % contribution. Similarly, O3 from EA can be trans-

ported south to SEA, west to the North Pacific, north to RBU,
and across NPO to the North Atlantic.

4.2 Nss-sulfate and BC source–receptor relationships
within the PBL

Figure 16 displays the yearly relative contributions to nss-
sulfate and BC within the PBL. The transport characteris-
tics of nss-sulfate and BC are similar to those of PM2.5, ex-
hibiting a dominant traveling from west to east. However,
the relative contribution from source regions varies by pollu-
tants, regions, and heights. The contributions of long-range
transport explain approximately 15 %–30 % of nss-sulfate
and 20 %–35 % of BC in EA, SAS, EUR, and NAM. Nss-
sulfate is one of the secondary aerosols that is mainly formed
by SO2 oxidation; hence, the concentration of nss-sulfate is
mostly affected by source regions with high anthropogenic
SO2 emissions, such as EA, SAS, EUR, and NAM. The ex-
ports from EA and EUR are responsible for approximately
20 % of nss-sulfate within the PBL over RBU, the sum of
which is comparable to the contribution from RBU local
sources (40.9 %). The non-local source contribution is simi-
lar to the results in Yang et al. (2017a) based on CESM for
2010–2014, where the contributions of EA and EUR to RBU
are 15 % and 12.5 %, respectively. EA and SAS each ac-
count for more than 20 % of nss-sulfate over SEA, and their
sum is larger than the local contribution from SEA (37.2 %).
Nss-sulfate from EA can be effectively transported to the
surrounding regions with considerable contributions to RBU
(17.4 %), SEA (22.2 %), CAS (18.3 %), and OCN (21.4 %).
The NPO nss-sulfate is more sensitive to emissions from
EUR (45.2 %), RBU (14.4 %), and NAM (8.5 %) than local
emissions (7.1 %). Distinct from nss-sulfate, BC is the pri-
mary aerosol, and its concentration is directly related to BC
source emissions, such as biomass burning and gas flaring.
Therefore, the contribution of “other”, which considers nat-
ural emissions in RBU, SAF, PAN, SEA, and SPO, to BC is
relatively large. RBU, EUR, and NAM have a relative contri-
bution of nearly 40 % to NPO BC within the PBL. The contri-
bution of NAM nss-sulfate and BC concentration within the
PBL from the EA source region is 1.6 % and 5.7 %, respec-
tively. The contribution of EUR nss-sulfate and BC concen-
tration within the PBL from the NAM source region is 3.6 %
and 6.7 %, respectively. The transport distances of nss-sulfate
and BC in the PBL are still limited, and they need to be
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Figure 14. Annual estimates of the contributions to surface O3 (%) from source regions to receptor regions.

uplifted into the upper free troposphere for longer-distance
transport.

Figure 15a–b display the spatial plots of yearly relative
contributions to nss-sulfate and BC concentration within the
PBL for the EA, SAS, EUR, and NAM receptor regions. Rel-
atively speaking, BC is transported longer distances than nss-
sulfate, which can also be found in Fig. 16. Note that the
relative contribution in Fig. 16 is the annual mean contri-
bution of the entire region. The influences of both BC and
nss-sulfate extend throughout more than half of the Northern
Hemisphere, as shown in Fig. 15. BC in the Arctic has always
been a concern, and it is clear that the largest contributions
over NPO within the PBL are from EUR, which is similar
to previous studies (Sobhani et al., 2018). The concentra-
tions of BC are dominated by local sources in eastern China,
while more than 50 % of the BC concentration within the
PBL in western China is from emissions outside China. EA
emissions have up to 7.5 %–12.5 % and 7.5 %–17.5 % contri-
butions to the western US and western Canada BC concen-
trations, respectively. The yearly contribution to the western
US is comparable to the average contribution of 8 % over the
western US based on the CESM model in Yang et al. (2017b).
Among regions outside EA, EA makes a very large contribu-
tion to the Northwest Pacific, with relative values between

35 % and 50 %. Due to the influence of the southwest mon-
soon in summer and northeast monsoon in winter, the BC
from SAS can be transported southward and westward, with
a wide range of transport. Because EUR is close to NPO, the
contribution to some parts of NPO could reach up to 35 %.
In addition to being transported to EUR, BC from NAM
can also travel westward, affecting the northeast Pacific. Al-
though nss-sulfate travels shorter distances than BC, its rela-
tive contribution to the receptor regions is greater. Nss-sulfate
from the EA source region contributes almost 50 % to the
North Pacific, and nss-sulfate from SAS could also make an
approximately 7.5 % contribution to the North Pacific. There
is significant southward sulfate transport to NAF from EUR.
Moreover, the influence of nss-sulfate from NAM extends to
the northwest Pacific, ranging from 35 %–50 %. Due to the
elevated topography of southwest China, both BC and nss-
sulfate from SAS cannot reach eastern China within the PBL.

4.3 Comparison with HTAP results

Despite wide variations in nss-sulfate and BC surface con-
centrations among the different models, S-R relationships
have some similar characteristics. We compare the S-R re-
lationships of surface nss-sulfate and BC in our study with
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Figure 15. Spatial distribution of source region contributions to (a) nss-sulfate; (b) BC concentration within the PBL and (c) O3 (%) in the
surface layer.
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Figure 16. Annual estimates of the contributions to (a) nss-sulfate and (b) BC (%) within the PBL from source regions to receptor regions.
“Other” refers to the effects of natural emissions and the boundary layer.

annual averages in 2001 from six models from part A of the
HTAP report (Dentener et al., 2010), as illustrated in Fig. 17.
More detailed comparisons are listed in Table 3. Because the
height of the surface layer in the models in the HTAP re-
port is not given, we also evaluated the contributions within
the PBL. Although the surface contributions from local re-
gions in our study are higher than the HTAP results, they are
of the same magnitude. Compared with that of nss-sulfate,
the contribution of BC in the surface layer or in the PBL in
our study is closer to that in HTAP, which may be related
to the inactive chemical properties of BC. Nss-sulfate, as a
secondary pollutant, its S-R relationships in the surface layer
are affected by precursors, photochemical processes, phys-
ical loss processes, and mixing during transport. Therefore,
there are some disagreements on surface nss-sulfate contribu-
tions. However, the results of nss-sulfate within the PBL are
more consistent with the results in the HTAP report. For the
transport within the PBL, the contribution from local sources
is smaller than that for surface transport due to the insepara-
ble transport height and distance.

We also compare the contributions to receptor region
NAM and EA surface O3 with the Fiore et al. (2009) study
which is related to HTAP report studies as shown in Fig. S3.
When extrapolated to a 100 % source contribution, the Fiore
et al. (2009) results suggest that EUR and EA contribute from
0.3–2.1 and 0.3–2.0 ppb to surface O3 in NAM and EUR and
NAM contribute from 0.4–2.9 and 0.3–2.0 ppb to surface O3
in EA, respectively. Although most of our results are within
the range, NAM’s contributions to EA in our results are con-
sistently lower, and the contributions from EUR and EA to
NAM are lower in JJA.

In addition to the uncertainties caused by different pro-
cesses represented in models, different simulation years, and
S-R calculation methods, emission inventories could also af-
fect the S-R relationship. With the rapid development of the
economy in the past 20 years, the emissions in many source
regions have changed significantly, which has influenced the
spatial distribution of pollutants and the S-R relationship.
The uncertainties of pollutants between emission invento-
ries are large and can affect our comparison of S-R relation-
ships. The inadequate vertical grid resolution cannot prop-
erly resolve plume gradients which could also introduce un-
certainties (Eastham and Jacob, 2017). Furthermore, when
the horizontal resolution is coarser, it may be responsible for
the lower contribution from source regions to themselves be-
cause of the absence of some local point sources. Addition-
ally, due to the average effect caused by the coarser grid cell,
the transport distance of pollutants could be overestimated,
and the non-local source contribution could also be overpre-
dicted. Finally, the different definitions of source region be-
tween this study and HTAP can also influence the results.
Because cleaner Greenland is included in EUR and cleaner
Canada is included in NAM in this study compared with EU
and NA in HTAP, the regional and annual average surface
concentrations in Europe and North America are lower in our
simulation.

4.4 Comparison with emission sensitivity simulation
results

EA is an emission hotspot in the world. To better isolate
the S-R calculation methods’ effects of other possible rea-
sons, e.g., horizontal and vertical resolution, emission in-
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Figure 17. Contributions of (a) nss-sulfate and (b) BC in the surface layer and within the PBL from the HTAP report and GNAQPMS-SM.
HTAP results with red error bars are based on the annual averages in 2001 from six global models. GNAQPMS-SM results in the surface
layer are shown as black dots, and those within the PBL are shown as blue dots. (The region shown in the x axis of the horizontal coordinate
is the result of HTAP division, which is slightly different from the region defined in this paper.)

Table 3. Relative contributions (%) compared with those in the HTAP report (Dentener et al., 2010). The median and range of the annual
averages of the six models are given below.

Receptor region∗

EA SA EU NA

HTAP Surface PBL HTAP Surface PBL HTAP Surface PBL HTAP Surface PBL

Nss-sulfate:

from EA 76.3 (72.5–87.0) 92.0 85.5 6.1 (1.9–9.6) 0.3 0.7 0.8 (0.0–1.6) 0.1 0.6 4.4 (0.0–5.3) 0.2 1.6
from SA 1.8 (1.5–3.2) 3.0 5.4 58.2 (50.3–71.9) 88.4 82.4 1.3 (0.0–6.8) 0.0 0.1 0.5 (0.0–0.7) 0.0 0.3
from EU 5.0 (0.3–9.8) 0.0 0.2 16.2 (12.1–22.1) 0.1 0.4 78.2 (66.5–91.0) 80.1 70.4 2.6 (0.8–4.6) 0.0 0.2
from NA 0.7 (0.1–2.5) 0.0 0.1 1.1 (0.3–3.5) 0.0 0.2 2.2 (1.1–4.6) 0.4 3.6 79.5 (69.0–83.9) 90.7 83.4

BC:

from EA 84.6 (81.1–95.0) 94.0 81.0 4.8 (3.7–19.5) 0.1 1.1 1.0 (0.09–4.2) 0.0 1.5 2.7 (0.6–4.9) 0.0 5.7
from SA 2.9 (1.7–5.8) 2.3 6.0 71.3 (57.2–90.6) 95.0 73.6 1.2 (0.5–11.1) 0.0 0.7 0.7 (0.09–2.8) 0.0 1.8
from EU 1.0 (0.5–3.9) 0.0 0.3 4.3 (3.2–10.6) 0.0 1.0 88.7 (76.7–96.6) 93.5 64.9 1.4 (0.2–6.1) 0.0 0.3
from NA 0.2 (0.02–0.5) 0.0 0.2 0.5 (0.04–0.8) 0.0 0.5 1.1 (0.2–2.1) 0.0 6.7 79.1 (54.5–98.2) 96.5 70.5
∗ Note that there are some different definitions between the regions used in the table heading and in our study. The definitions of the regions in the table are stipulated by HTAP. Approximately, EA in HTAP is equal to
EA in this paper, SA to SAS, EU to EUR, and NA to NAM.

ventories, and models, we have carried out an additional
emission sensitivity simulation with 20 % reduction of an-
thropogenic emissions in EA in January and July of 2018.
Pollutant response is defined as the ratio between the con-
centration difference between the baseline scenario and the
perturbation scenarios and the concentration of the baseline
scenario, based on the average of all grid cells in the re-
ceptor region. We make the hypothesis that −20 % pertur-
bation responses can be extrapolated towards −100 % per-
turbation range, as an approximation of full response from
the source region EA and compare with our S-R module re-
sults as shown in Fig. 18. The S-R module results are con-
sistently higher than the emission sensitivity simulation re-
sults, except in few regions, partly reflecting the S-R mod-
ule method pays attention to all global sources instead of an-
thropogenic component from regions we focus on, the con-
clusion of which is consistent with HTAP report (Dentener
et al., 2010). There is no significant difference for BC, sug-
gesting that BC levels are largely driven by local emissions

and long-range transport. Nss-sulfate and O3 responses ex-
ist negative values, suggesting that regional nss-sulfate and
O3 levels are also driven by precursor emissions besides lo-
cal emissions and long-range transport. Compared with O3,
the difference between two methods on nss-sulfate is smaller.
O3 shows more negative response and larger difference. Es-
pecially in receptor region EA in January, the O3 responses
are negative due to the strong nonlinearity in O3 chemistry.
In our S-R module method, all contributions are strictly pos-
itive. However, in emission sensitivity method, the impacts
are computed and may appear negative values, particularly
in higher emission regions in DJF, which is also reported in
Li et al. (2008) and Grewe (2004). The differences between
two S-R revealing methods in estimated S-R relationships of
secondary aerosols and O3 are mainly due to the ignorance
of the nonlinearity of pollutants during chemical processes.

https://doi.org/10.5194/gmd-14-7573-2021 Geosci. Model Dev., 14, 7573–7604, 2021



7598 Q. Ye et al.: GNAQPMS-SM: a global tropospheric atmospheric chemistry source–receptor model

Figure 18. BC, nss-sulfate within the PBL and surface O3 contribution from S-R module results and full response from emission sensitivity
simulation results from EA source region in January and July. The y axis of receptor region EA is the coordinate axis on the left shown in
black, and the y axis of other receptor regions is the coordinate axis on the right shown in purple.

5 Summary and future plans

In this study, an online S-R relationship module based on a
tagged tracer approach was coupled into the global tropo-
spheric model GNAQPMS. The developed model can help
us better quantify the contributions of multiple air pollu-
tants from various source regions at the same time without
introducing the nonlinear error of atmospheric chemistry. A
global high-resolution (0.5◦× 0.5◦) simulation of air pollu-
tants in 2018 was conducted with EDGAR v5.0 and other
emission inventories. The global tropospheric atmospheric
chemistry source–receptor model will be useful to clarify the
S-R relationships of various pollutants from a global perspec-
tive and help create a link between the scientific community
and policymakers.

GNAQPMS generally captures the distribution and sea-
sonality of air pollutants at global and regional scales (EA,
EUR, and NAM). The model reproduces the seasonal dis-
tribution of surface O3 at background stations from WD-
CGG and vertical variation of ozonesonde observed O3 in the
middle–lower troposphere from WOUDC. The overestima-
tion of O3 mixing ratios in the upper troposphere and strato-
sphere in the tropics, midlatitude, and polar region of the
Southern Hemisphere could be attributed to the lack of ex-
plicit simulation of stratosphere chemistry and the simplified
treatment of the exchange of stratosphere with troposphere in
GNAQPMS. The mean concentration of tropospheric OH is
11.9×105 molecules/cm3, which is similar to previous stud-
ies. The seasonalities of NO2 columns and AOD are well

captured. The concentration of surface O3 is in good agree-
ment with observations from global background and urban–
rural sites, with spatial correlations ranging from 0.49 to
0.87 and NMB values ranging from−2.07 % to 14.97 %. Al-
though the model tends to underestimate the surface concen-
trations of NO2, BC, OC, and sulfate, simulated PM2.5 and
SNA show strong correlations and no significant biases with
observations over EA, EUR, and NAM. In general, the per-
formance of the high-resolution global model and that of the
regional model is well matched.

The relative contributions of 19 source regions to pollu-
tants show some similarities and vary with species, regions
and heights. Transport in the midlatitudes is dominated in
the west–east direction under the control of westerly winds.
Only a small minority of PM2.5 can be transported across
the Pacific and Atlantic through the surface layer. The PM2.5
generated or emitted in the source region mainly contributes
to itself and its surrounding regions. For the S-R relation-
ships inside EA, local anthropogenic emissions from Busan,
Seoul, Osaka, Tokyo, and Fukuoka are the major contrib-
utors to their own surface PM2.5. Contributions from non-
local sources account for approximately 20 %–55 % of sur-
face PM2.5. South Korea is closer to downwind of China;
thus, China’s contribution to South Korea is greater than
that to Japan. Compared with surface PM2.5, surface O3 can
be transported on a hemispheric scale (e.g., from PAN in
the Southern Hemisphere to NPO). Non-local source trans-
port explains approximately 35 %–60 % of surface O3 in EA,
SAS, EUR, and NAM. O3 from EUR can be transported
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across NPO to the North Pacific and contributes nearly 5 %–
7.5 % to the North Pacific. BC, as a primary aerosol, is di-
rectly linked to emissions. As a result, in the RBU, SAF,
PAN, and SEA regions, where biomass burning emissions
are large, natural emissions make a significant contribution to
BC within the PBL. In contrast to BC, nss-sulfate is mainly
generated by the oxidation of SO2, the S-R relationship of
which is mainly influenced by source regions with high local
emissions. The contributions of long-range transport account
for 15 %–30 % within the PBL in EA, SAS, EUR, and NAM.
The transport distance of nss-sulfate and BC is limited in the
PBL and they need to be lifted above the PBL for longer-
distance transport. The contributions of long-range transport
can explain less than approximately 20 % of pollutant con-
centrations over the midlatitude continental regions of the
eastern part of EA and NAM due to the control of westerly
winds, while they can explain approximately 30 % over the
western part of NAM and more than 50 % over western EA.

In comparison with HTAP report results, local contribu-
tions from source regions to surface nss-sulfate and BC in
GNAQPMS-SM exceed the range given in the HTAP report.
When considering the relative contributions within the PBL,
the local contributions decrease and are basically within the
range. Compared with Fiore’s results, most of our results are
within the range, except that NAM’s contribution to EA sur-
face O3 in our results are consistently lower, and the con-
tributions from EUR and EA to NAM surface O3 are lower
in JJA. These differences may be related to different simula-
tion years, S-R revealing methods, and emission inventories.
Different regional definitions and model vertical and hori-
zontal resolutions may also be responsible, among which the
non-local source contribution could be overestimated and the
local source contribution could be underestimated when the
horizontal resolution is coarser. The reasons should be dis-
cussed in detail in future work. We plan to conduct a coarser
horizontal resolution simulation in GNAQPMS-SM to clarify
the sensitivity of S-R relationships to different resolutions.
The impact of uncertainties from emissions and meteorolog-
ical fields (wind field and precipitation field) on S-R relation-
ships could also be quantified in the next step. We also plan to
carry out global simulations of future and historical periods
to explore the changes in S-R relationships and uncertainties,
focusing on S-R relationships.

Additional emission sensitivity simulation shows a nega-
tive O3 response in receptor region EA in January from EA.
The difference between two S-R revealing methods in esti-
mated S-R relationships of secondary aerosols and O3 are
mainly due to ignoring the nonlinearity of pollutants during
chemical processes. The S-R module results are consistently
higher than the emission sensitivity simulation results, ex-
cept in few regions, partly reflecting the S-R module method
pays attention to all global sources instead of anthropogenic
component from regions we focus on.

The development of an online S-R module embedded in
GNAQPMS and the analysis of global S-R relationships rep-

resent an important step for China. The S-R relationships
of both primary and secondary pollutants can be calculated
in one simulation. We give our opinions on the controver-
sial topic of the intercontinental transport of pollutants. The
model that we developed creates a link between the scientific
community and policymakers.
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