Articles | Volume 14, issue 10
https://doi.org/10.5194/gmd-14-6215-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-14-6215-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
WETMETH 1.0: a new wetland methane model for implementation in Earth system models
Claude-Michel Nzotungicimpaye
CORRESPONDING AUTHOR
Department of Geography, Simon Fraser University, Burnaby, BC, Canada
Kirsten Zickfeld
Department of Geography, Simon Fraser University, Burnaby, BC, Canada
Andrew H. MacDougall
Climate and Environment, St. Francis Xavier University, Antigonish,
NS, Canada
Joe R. Melton
Climate Research Division, Environment and Climate Change Canada,
Victoria, BC, Canada
Claire C. Treat
Alfred Wegener Institute, Helmholtz Centre for Polar and Marine
Research, Potsdam, Germany
Michael Eby
School of Earth and Ocean Sciences, University of Victoria, Victoria, BC, Canada
Lance F. W. Lesack
Department of Geography, Simon Fraser University, Burnaby, BC, Canada
Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
Related authors
No articles found.
Fabian Seemann, Michael Zech, Maren Jenrich, Guido Grosse, Benjamin M. Jones, Claire Treat, Lutz Schirrmeister, Susanne Liebner, and Jens Strauss
EGUsphere, https://doi.org/10.5194/egusphere-2025-3727, https://doi.org/10.5194/egusphere-2025-3727, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Arctic coastal landscapes, like those in northernmost Alaska, often contain saline sediments that are more prone to thawing. We studied six sediment cores to understand how thawing and salinity affect organic carbon breakdown and land change. Our results show that salinity speeds up organic matter loss when permafrost thaws. This highlights the overlooked risk of salinity in shaping Arctic landscapes and carbon release as the climate continues to warm.
Jade Skye, Joe R. Melton, Colin Goldblatt, Louis Saumier, Angela Gallego-Sala, Michelle Garneau, R. Scott Winton, Erick B. Bahati, Juan C. Benavides, Lee Fedorchuk, Gérard Imani, Carol Kagaba, Frank Kansiime, Mariusz Lamentowicz, Michel Mbasi, Daria Wochal, Sambor Czerwiński, Jacek Landowski, Joanna Landowska, Vincent Maire, Minna M. Väliranta, Matthew Warren, Lydia E. S. Cole, Marissa A. Davies, Erik A. Lilleskov, Jingjing Sun, and Yuwan Wang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-432, https://doi.org/10.5194/essd-2025-432, 2025
Preprint under review for ESSD
Short summary
Short summary
Peatlands are large stores of carbon but are vulnerable to human activities and climate change. Comprehensive peatland data are vital to understand these ecosystems, but existing datasets are fragmented and contain errors. To address this, we created Peat-DBase — a standardized global database of peat depth measurements with > 200,000 measurements worldwide, showing average depths of 144 cm. Peat-DBase avoids overlapping data compilation efforts while identifying critical observational gaps.
Katharina Jentzsch, Lona van Delden, Matthias Fuchs, and Claire C. Treat
Earth Syst. Sci. Data, 17, 2331–2372, https://doi.org/10.5194/essd-17-2331-2025, https://doi.org/10.5194/essd-17-2331-2025, 2025
Short summary
Short summary
Methane is a greenhouse gas that contributes to global warming, but we do not fully understand how much is released from natural sources like wetlands. To measure methane over large areas, many measurements are needed, often from small chambers that are placed on the ground. However, different researchers use different measurement setups, making it hard to combine data. We surveyed 36 researchers about their methods, summarized the responses, and identified ways to make the data more comparable.
Hanyu Liu, Felix R. Vogel, Misa Ishizawa, Zhen Zhang, Benjamin Poulter, Doug E. J. Worthy, Leyang Feng, Anna L. Gagné-Landmann, Ao Chen, Ziting Huang, Dylan C. Gaeta, Joe R. Melton, Douglas Chan, Vineet Yadav, Deborah Huntzinger, and Scot M. Miller
EGUsphere, https://doi.org/10.5194/egusphere-2025-2150, https://doi.org/10.5194/egusphere-2025-2150, 2025
Short summary
Short summary
We find that the state-of-the-art process-based methane flux models have both lower flux magnitude and reduced inter-model uncertainty compared to a previous model inter-comparison from over a decade ago. Despite these improvements, methane flux estimates from process-based models are still likely too high compared to atmospheric observations. We also find that models with simpler parameterizations often result in better agreement with atmospheric observations in high-latitude North America.
Mélissa Laurent, Mackenzie R. Baysinger, Jörg Schaller, Matthias Lück, Mathias Hoffmann, Torben Windirsch, Ruth H. Ellerbrock, Jens Strauss, and Claire C. Treat
EGUsphere, https://doi.org/10.5194/egusphere-2025-1792, https://doi.org/10.5194/egusphere-2025-1792, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Palsas are peat permafrost mounds underlain by ice-rich permafrost. Due to climate change, they could disappeare by the end of the century. When palsas thaw, changes occur in hydrological conditions affecting the carbon (C) cycle. In our study, we simulated permafrost thaw under different water treatments using 1-meter soil columns from a palsa. We measured CH4 and CO2 emissions for 3-month incubation. Our results show that following thaw, flooding the cores leads to increased CO2 emissions.
Konstantin Gregor, Benjamin F. Meyer, Tillmann Gaida, Victor Justo Vasquez, Karina Bett-Williams, Matthew Forrest, João P. Darela-Filho, Sam Rabin, Marcos Longo, Joe R. Melton, Johan Nord, Peter Anthoni, Vladislav Bastrikov, Thomas Colligan, Christine Delire, Michael C. Dietze, George Hurtt, Akihiko Ito, Lasse T. Keetz, Jürgen Knauer, Johannes Köster, Tzu-Shun Lin, Lei Ma, Marie Minvielle, Stefan Olin, Sebastian Ostberg, Hao Shi, Reiner Schnur, Urs Schönenberger, Qing Sun, Peter E. Thornton, and Anja Rammig
EGUsphere, https://doi.org/10.5194/egusphere-2025-1733, https://doi.org/10.5194/egusphere-2025-1733, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
Geoscientific models are crucial for understanding Earth’s processes. However, they sometimes do not adhere to highest software quality standards, and scientific results are often hard to reproduce due to the complexity of the workflows. Here we gather the expertise of 20 modeling groups and software engineers to define best practices for making geoscientific models maintainable, usable, and reproducible. We conclude with an open-source example serving as a reference for modeling communities.
Marielle Saunois, Adrien Martinez, Benjamin Poulter, Zhen Zhang, Peter A. Raymond, Pierre Regnier, Josep G. Canadell, Robert B. Jackson, Prabir K. Patra, Philippe Bousquet, Philippe Ciais, Edward J. Dlugokencky, Xin Lan, George H. Allen, David Bastviken, David J. Beerling, Dmitry A. Belikov, Donald R. Blake, Simona Castaldi, Monica Crippa, Bridget R. Deemer, Fraser Dennison, Giuseppe Etiope, Nicola Gedney, Lena Höglund-Isaksson, Meredith A. Holgerson, Peter O. Hopcroft, Gustaf Hugelius, Akihiko Ito, Atul K. Jain, Rajesh Janardanan, Matthew S. Johnson, Thomas Kleinen, Paul B. Krummel, Ronny Lauerwald, Tingting Li, Xiangyu Liu, Kyle C. McDonald, Joe R. Melton, Jens Mühle, Jurek Müller, Fabiola Murguia-Flores, Yosuke Niwa, Sergio Noce, Shufen Pan, Robert J. Parker, Changhui Peng, Michel Ramonet, William J. Riley, Gerard Rocher-Ros, Judith A. Rosentreter, Motoki Sasakawa, Arjo Segers, Steven J. Smith, Emily H. Stanley, Joël Thanwerdas, Hanqin Tian, Aki Tsuruta, Francesco N. Tubiello, Thomas S. Weber, Guido R. van der Werf, Douglas E. J. Worthy, Yi Xi, Yukio Yoshida, Wenxin Zhang, Bo Zheng, Qing Zhu, Qiuan Zhu, and Qianlai Zhuang
Earth Syst. Sci. Data, 17, 1873–1958, https://doi.org/10.5194/essd-17-1873-2025, https://doi.org/10.5194/essd-17-1873-2025, 2025
Short summary
Short summary
Methane (CH4) is the second most important human-influenced greenhouse gas in terms of climate forcing after carbon dioxide (CO2). A consortium of multi-disciplinary scientists synthesise and update the budget of the sources and sinks of CH4. This edition benefits from important progress in estimating emissions from lakes and ponds, reservoirs, and streams and rivers. For the 2010s decade, global CH4 emissions are estimated at 575 Tg CH4 yr-1, including ~65 % from anthropogenic sources.
Richard G. Williams, Philip Goodwin, Paulo Ceppi, Chris D. Jones, and Andrew MacDougall
EGUsphere, https://doi.org/10.5194/egusphere-2025-800, https://doi.org/10.5194/egusphere-2025-800, 2025
Short summary
Short summary
How the climate system responds when carbon emissions cease is an open question: some climate models reveal a slight warming, whereas most models reveal a slight cooling. Their climate response is affected by how the planet takes up heat and radiates heat back to space, and how the land and ocean sequester carbon from the atmosphere. A framework is developed to connect the temperature response of the climate models to competing and opposing-signed thermal and carbon contributions.
Libo Wang, Lawrence Mudryk, Joe R. Melton, Colleen Mortimer, Jason Cole, Gesa Meyer, Paul Bartlett, and Mickaël Lalande
EGUsphere, https://doi.org/10.5194/egusphere-2025-1264, https://doi.org/10.5194/egusphere-2025-1264, 2025
Short summary
Short summary
This study shows that an alternate snow cover fraction (SCF) parameterization significantly improves SCF simulated in the CLASSIC model in mountainous areas for all three choices of meteorological datasets. Annual mean bias, unbiased root mean squared area, and correlation improve by 75 %, 32 %, and 7 % when evaluated with MODIS SCF observations over the Northern Hemisphere. We also link relative biases in the meteorological forcing data to differences in simulated snow water equivalent and SCF.
Zhen Zhang, Benjamin Poulter, Joe R. Melton, William J. Riley, George H. Allen, David J. Beerling, Philippe Bousquet, Josep G. Canadell, Etienne Fluet-Chouinard, Philippe Ciais, Nicola Gedney, Peter O. Hopcroft, Akihiko Ito, Robert B. Jackson, Atul K. Jain, Katherine Jensen, Fortunat Joos, Thomas Kleinen, Sara H. Knox, Tingting Li, Xin Li, Xiangyu Liu, Kyle McDonald, Gavin McNicol, Paul A. Miller, Jurek Müller, Prabir K. Patra, Changhui Peng, Shushi Peng, Zhangcai Qin, Ryan M. Riggs, Marielle Saunois, Qing Sun, Hanqin Tian, Xiaoming Xu, Yuanzhi Yao, Yi Xi, Wenxin Zhang, Qing Zhu, Qiuan Zhu, and Qianlai Zhuang
Biogeosciences, 22, 305–321, https://doi.org/10.5194/bg-22-305-2025, https://doi.org/10.5194/bg-22-305-2025, 2025
Short summary
Short summary
This study assesses global methane emissions from wetlands between 2000 and 2020 using multiple models. We found that wetland emissions increased by 6–7 Tg CH4 yr-1 in the 2010s compared to the 2000s. Rising temperatures primarily drove this increase, while changes in precipitation and CO2 levels also played roles. Our findings highlight the importance of wetlands in the global methane budget and the need for continuous monitoring to understand their impact on climate change.
Benjamin Mark Sanderson, Victor Brovkin, Rosie Fisher, David Hohn, Tatiana Ilyina, Chris Jones, Torben Koenigk, Charles Koven, Hongmei Li, David Lawrence, Peter Lawrence, Spencer Liddicoat, Andrew Macdougall, Nadine Mengis, Zebedee Nicholls, Eleanor O'Rourke, Anastasia Romanou, Marit Sandstad, Jörg Schwinger, Roland Seferian, Lori Sentman, Isla Simpson, Chris Smith, Norman Steinert, Abigail Swann, Jerry Tjiputra, and Tilo Ziehn
EGUsphere, https://doi.org/10.5194/egusphere-2024-3356, https://doi.org/10.5194/egusphere-2024-3356, 2024
Short summary
Short summary
This study investigates how climate models warm in response to simplified carbon emissions trajectories, refining understanding of climate reversibility and commitment. Metrics are defined for warming response to cumulative emissions and for the cessation or ramp-down to net-zero and net-negative levels. Results indicate that previous concentration-driven experiments may have overstated zero emissions commitment due to emissions rates exceeding historical levels.
Makcim L. De Sisto and Andrew H. MacDougall
Biogeosciences, 21, 4853–4873, https://doi.org/10.5194/bg-21-4853-2024, https://doi.org/10.5194/bg-21-4853-2024, 2024
Short summary
Short summary
The remaining carbon budget (RCB) represents the allowable future CO2 emissions before a temperature target is reached. Understanding the uncertainty in the RCB is critical for effective climate regulation and policy-making. One major source of uncertainty is the representation of the carbon cycle in Earth system models. We assessed how nutrient limitation affects the estimation of the RCB. We found a reduction in the estimated RCB when nutrient limitation is taken into account.
Misa Ishizawa, Douglas Chan, Doug Worthy, Elton Chan, Felix Vogel, Joe R. Melton, and Vivek K. Arora
Atmos. Chem. Phys., 24, 10013–10038, https://doi.org/10.5194/acp-24-10013-2024, https://doi.org/10.5194/acp-24-10013-2024, 2024
Short summary
Short summary
Methane (CH4) emissions in Canada for 2007–2017 were estimated using Canada’s surface greenhouse gas measurements. The estimated emissions show no significant trend, but emission uncertainty was reduced as more measurement sites became available. Notably for climate change, we find the wetland CH4 emissions show a positive correlation with surface air temperature in summer. Canada’s measurement network could monitor future CH4 emission changes and compliance with climate change mitigation goals.
Katharina Jentzsch, Elisa Männistö, Maija E. Marushchak, Aino Korrensalo, Lona van Delden, Eeva-Stiina Tuittila, Christian Knoblauch, and Claire C. Treat
Biogeosciences, 21, 3761–3788, https://doi.org/10.5194/bg-21-3761-2024, https://doi.org/10.5194/bg-21-3761-2024, 2024
Short summary
Short summary
During cold seasons, methane release from northern wetlands is important but often underestimated. We studied a boreal bog to understand methane emissions in spring and fall. At cold temperatures, methane release decreases due to lower production rates, but efficient methane transport through plant structures, decaying plants, and the release of methane stored in the pore water keep emissions ongoing. Understanding these seasonal processes can improve models for methane release in cold climates.
Piers M. Forster, Chris Smith, Tristram Walsh, William F. Lamb, Robin Lamboll, Bradley Hall, Mathias Hauser, Aurélien Ribes, Debbie Rosen, Nathan P. Gillett, Matthew D. Palmer, Joeri Rogelj, Karina von Schuckmann, Blair Trewin, Myles Allen, Robbie Andrew, Richard A. Betts, Alex Borger, Tim Boyer, Jiddu A. Broersma, Carlo Buontempo, Samantha Burgess, Chiara Cagnazzo, Lijing Cheng, Pierre Friedlingstein, Andrew Gettelman, Johannes Gütschow, Masayoshi Ishii, Stuart Jenkins, Xin Lan, Colin Morice, Jens Mühle, Christopher Kadow, John Kennedy, Rachel E. Killick, Paul B. Krummel, Jan C. Minx, Gunnar Myhre, Vaishali Naik, Glen P. Peters, Anna Pirani, Julia Pongratz, Carl-Friedrich Schleussner, Sonia I. Seneviratne, Sophie Szopa, Peter Thorne, Mahesh V. M. Kovilakam, Elisa Majamäki, Jukka-Pekka Jalkanen, Margreet van Marle, Rachel M. Hoesly, Robert Rohde, Dominik Schumacher, Guido van der Werf, Russell Vose, Kirsten Zickfeld, Xuebin Zhang, Valérie Masson-Delmotte, and Panmao Zhai
Earth Syst. Sci. Data, 16, 2625–2658, https://doi.org/10.5194/essd-16-2625-2024, https://doi.org/10.5194/essd-16-2625-2024, 2024
Short summary
Short summary
This paper tracks some key indicators of global warming through time, from 1850 through to the end of 2023. It is designed to give an authoritative estimate of global warming to date and its causes. We find that in 2023, global warming reached 1.3 °C and is increasing at over 0.2 °C per decade. This is caused by all-time-high greenhouse gas emissions.
Salvatore R. Curasi, Joe R. Melton, Elyn R. Humphreys, Txomin Hermosilla, and Michael A. Wulder
Geosci. Model Dev., 17, 2683–2704, https://doi.org/10.5194/gmd-17-2683-2024, https://doi.org/10.5194/gmd-17-2683-2024, 2024
Short summary
Short summary
Canadian forests are responding to fire, harvest, and climate change. Models need to quantify these processes and their carbon and energy cycling impacts. We develop a scheme that, based on satellite records, represents fire, harvest, and the sparsely vegetated areas that these processes generate. We evaluate model performance and demonstrate the impacts of disturbance on carbon and energy cycling. This work has implications for land surface modeling and assessing Canada’s terrestrial C cycle.
Makcim L. De Sisto, Andrew H. MacDougall, Nadine Mengis, and Sophia Antoniello
Geosci. Model Dev., 16, 4113–4136, https://doi.org/10.5194/gmd-16-4113-2023, https://doi.org/10.5194/gmd-16-4113-2023, 2023
Short summary
Short summary
In this study, we developed a nitrogen and phosphorus cycle in an intermediate-complexity Earth system climate model. We found that the implementation of nutrient limitation in simulations has reduced the capacity of land to take up atmospheric carbon and has decreased the vegetation biomass, hence, improving the fidelity of the response of land to simulated atmospheric CO2 rise.
Bo Qu, Alexandre Roy, Joe R. Melton, Jennifer L. Baltzer, Youngryel Ryu, Matteo Detto, and Oliver Sonnentag
EGUsphere, https://doi.org/10.5194/egusphere-2023-1167, https://doi.org/10.5194/egusphere-2023-1167, 2023
Preprint archived
Short summary
Short summary
Accurately simulating photosynthesis and evapotranspiration challenges terrestrial biosphere models across North America’s boreal biome, in part due to uncertain representation of the maximum rate of photosynthetic carboxylation (Vcmax). This study used forest stand scale observations in an optimization framework to improve Vcmax values for representative vegetation types. Several stand characteristics well explained spatial Vcmax variability and were useful to improve boreal forest modelling.
V. Rachel Chimuka, Claude-Michel Nzotungicimpaye, and Kirsten Zickfeld
Biogeosciences, 20, 2283–2299, https://doi.org/10.5194/bg-20-2283-2023, https://doi.org/10.5194/bg-20-2283-2023, 2023
Short summary
Short summary
We propose a new method to quantify carbon cycle feedbacks under negative CO2 emissions. Our method isolates the lagged carbon cycle response to preceding positive emissions from the response to negative emissions. Our findings suggest that feedback parameters calculated with the novel approach are larger than those calculated with the conventional approach whereby carbon cycle inertia is not corrected for, with implications for the effectiveness of carbon dioxide removal in reducing CO2 levels.
Piers M. Forster, Christopher J. Smith, Tristram Walsh, William F. Lamb, Robin Lamboll, Mathias Hauser, Aurélien Ribes, Debbie Rosen, Nathan Gillett, Matthew D. Palmer, Joeri Rogelj, Karina von Schuckmann, Sonia I. Seneviratne, Blair Trewin, Xuebin Zhang, Myles Allen, Robbie Andrew, Arlene Birt, Alex Borger, Tim Boyer, Jiddu A. Broersma, Lijing Cheng, Frank Dentener, Pierre Friedlingstein, José M. Gutiérrez, Johannes Gütschow, Bradley Hall, Masayoshi Ishii, Stuart Jenkins, Xin Lan, June-Yi Lee, Colin Morice, Christopher Kadow, John Kennedy, Rachel Killick, Jan C. Minx, Vaishali Naik, Glen P. Peters, Anna Pirani, Julia Pongratz, Carl-Friedrich Schleussner, Sophie Szopa, Peter Thorne, Robert Rohde, Maisa Rojas Corradi, Dominik Schumacher, Russell Vose, Kirsten Zickfeld, Valérie Masson-Delmotte, and Panmao Zhai
Earth Syst. Sci. Data, 15, 2295–2327, https://doi.org/10.5194/essd-15-2295-2023, https://doi.org/10.5194/essd-15-2295-2023, 2023
Short summary
Short summary
This is a critical decade for climate action, but there is no annual tracking of the level of human-induced warming. We build on the Intergovernmental Panel on Climate Change assessment reports that are authoritative but published infrequently to create a set of key global climate indicators that can be tracked through time. Our hope is that this becomes an important annual publication that policymakers, media, scientists and the public can refer to.
Mélissa Laurent, Matthias Fuchs, Tanja Herbst, Alexandra Runge, Susanne Liebner, and Claire C. Treat
Biogeosciences, 20, 2049–2064, https://doi.org/10.5194/bg-20-2049-2023, https://doi.org/10.5194/bg-20-2049-2023, 2023
Short summary
Short summary
In this study we investigated the effect of different parameters (temperature, landscape position) on the production of greenhouse gases during a 1-year permafrost thaw experiment. For very similar carbon and nitrogen contents, our results show a strong heterogeneity in CH4 production, as well as in microbial abundance. According to our study, these differences are mainly due to the landscape position and the hydrological conditions established as a result of the topography.
Francisco José Cuesta-Valero, Hugo Beltrami, Almudena García-García, Gerhard Krinner, Moritz Langer, Andrew H. MacDougall, Jan Nitzbon, Jian Peng, Karina von Schuckmann, Sonia I. Seneviratne, Wim Thiery, Inne Vanderkelen, and Tonghua Wu
Earth Syst. Dynam., 14, 609–627, https://doi.org/10.5194/esd-14-609-2023, https://doi.org/10.5194/esd-14-609-2023, 2023
Short summary
Short summary
Climate change is caused by the accumulated heat in the Earth system, with the land storing the second largest amount of this extra heat. Here, new estimates of continental heat storage are obtained, including changes in inland-water heat storage and permafrost heat storage in addition to changes in ground heat storage. We also argue that heat gains in all three components should be monitored independently of their magnitude due to heat-dependent processes affecting society and ecosystems.
Karina von Schuckmann, Audrey Minière, Flora Gues, Francisco José Cuesta-Valero, Gottfried Kirchengast, Susheel Adusumilli, Fiammetta Straneo, Michaël Ablain, Richard P. Allan, Paul M. Barker, Hugo Beltrami, Alejandro Blazquez, Tim Boyer, Lijing Cheng, John Church, Damien Desbruyeres, Han Dolman, Catia M. Domingues, Almudena García-García, Donata Giglio, John E. Gilson, Maximilian Gorfer, Leopold Haimberger, Maria Z. Hakuba, Stefan Hendricks, Shigeki Hosoda, Gregory C. Johnson, Rachel Killick, Brian King, Nicolas Kolodziejczyk, Anton Korosov, Gerhard Krinner, Mikael Kuusela, Felix W. Landerer, Moritz Langer, Thomas Lavergne, Isobel Lawrence, Yuehua Li, John Lyman, Florence Marti, Ben Marzeion, Michael Mayer, Andrew H. MacDougall, Trevor McDougall, Didier Paolo Monselesan, Jan Nitzbon, Inès Otosaka, Jian Peng, Sarah Purkey, Dean Roemmich, Kanako Sato, Katsunari Sato, Abhishek Savita, Axel Schweiger, Andrew Shepherd, Sonia I. Seneviratne, Leon Simons, Donald A. Slater, Thomas Slater, Andrea K. Steiner, Toshio Suga, Tanguy Szekely, Wim Thiery, Mary-Louise Timmermans, Inne Vanderkelen, Susan E. Wjiffels, Tonghua Wu, and Michael Zemp
Earth Syst. Sci. Data, 15, 1675–1709, https://doi.org/10.5194/essd-15-1675-2023, https://doi.org/10.5194/essd-15-1675-2023, 2023
Short summary
Short summary
Earth's climate is out of energy balance, and this study quantifies how much heat has consequently accumulated over the past decades (ocean: 89 %, land: 6 %, cryosphere: 4 %, atmosphere: 1 %). Since 1971, this accumulated heat reached record values at an increasing pace. The Earth heat inventory provides a comprehensive view on the status and expectation of global warming, and we call for an implementation of this global climate indicator into the Paris Agreement’s Global Stocktake.
Joe R. Melton, Ed Chan, Koreen Millard, Matthew Fortier, R. Scott Winton, Javier M. Martín-López, Hinsby Cadillo-Quiroz, Darren Kidd, and Louis V. Verchot
Geosci. Model Dev., 15, 4709–4738, https://doi.org/10.5194/gmd-15-4709-2022, https://doi.org/10.5194/gmd-15-4709-2022, 2022
Short summary
Short summary
Peat-ML is a high-resolution global peatland extent map generated using machine learning techniques. Peatlands are important in the global carbon and water cycles, but their extent is poorly known. We generated Peat-ML using drivers of peatland formation including climate, soil, geomorphology, and vegetation data, and we train the model with regional peatland maps. Our accuracy estimation approaches suggest Peat-ML is of similar or higher quality than other available peatland mapping products.
Charles D. Koven, Vivek K. Arora, Patricia Cadule, Rosie A. Fisher, Chris D. Jones, David M. Lawrence, Jared Lewis, Keith Lindsay, Sabine Mathesius, Malte Meinshausen, Michael Mills, Zebedee Nicholls, Benjamin M. Sanderson, Roland Séférian, Neil C. Swart, William R. Wieder, and Kirsten Zickfeld
Earth Syst. Dynam., 13, 885–909, https://doi.org/10.5194/esd-13-885-2022, https://doi.org/10.5194/esd-13-885-2022, 2022
Short summary
Short summary
We explore the long-term dynamics of Earth's climate and carbon cycles under a pair of contrasting scenarios to the year 2300 using six models that include both climate and carbon cycle dynamics. One scenario assumes very high emissions, while the second assumes a peak in emissions, followed by rapid declines to net negative emissions. We show that the models generally agree that warming is roughly proportional to carbon emissions but that many other aspects of the model projections differ.
Pierre Friedlingstein, Matthew W. Jones, Michael O'Sullivan, Robbie M. Andrew, Dorothee C. E. Bakker, Judith Hauck, Corinne Le Quéré, Glen P. Peters, Wouter Peters, Julia Pongratz, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Rob B. Jackson, Simone R. Alin, Peter Anthoni, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Laurent Bopp, Thi Tuyet Trang Chau, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Kim I. Currie, Bertrand Decharme, Laique M. Djeutchouang, Xinyu Dou, Wiley Evans, Richard A. Feely, Liang Feng, Thomas Gasser, Dennis Gilfillan, Thanos Gkritzalis, Giacomo Grassi, Luke Gregor, Nicolas Gruber, Özgür Gürses, Ian Harris, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Ingrid T. Luijkx, Atul Jain, Steve D. Jones, Etsushi Kato, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Arne Körtzinger, Peter Landschützer, Siv K. Lauvset, Nathalie Lefèvre, Sebastian Lienert, Junjie Liu, Gregg Marland, Patrick C. McGuire, Joe R. Melton, David R. Munro, Julia E. M. S. Nabel, Shin-Ichiro Nakaoka, Yosuke Niwa, Tsuneo Ono, Denis Pierrot, Benjamin Poulter, Gregor Rehder, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Thais M. Rosan, Jörg Schwinger, Clemens Schwingshackl, Roland Séférian, Adrienne J. Sutton, Colm Sweeney, Toste Tanhua, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Francesco Tubiello, Guido R. van der Werf, Nicolas Vuichard, Chisato Wada, Rik Wanninkhof, Andrew J. Watson, David Willis, Andrew J. Wiltshire, Wenping Yuan, Chao Yue, Xu Yue, Sönke Zaehle, and Jiye Zeng
Earth Syst. Sci. Data, 14, 1917–2005, https://doi.org/10.5194/essd-14-1917-2022, https://doi.org/10.5194/essd-14-1917-2022, 2022
Short summary
Short summary
The Global Carbon Budget 2021 describes the data sets and methodology used to quantify the emissions of carbon dioxide and their partitioning among the atmosphere, land, and ocean. These living data are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
David Olefeldt, Mikael Hovemyr, McKenzie A. Kuhn, David Bastviken, Theodore J. Bohn, John Connolly, Patrick Crill, Eugénie S. Euskirchen, Sarah A. Finkelstein, Hélène Genet, Guido Grosse, Lorna I. Harris, Liam Heffernan, Manuel Helbig, Gustaf Hugelius, Ryan Hutchins, Sari Juutinen, Mark J. Lara, Avni Malhotra, Kristen Manies, A. David McGuire, Susan M. Natali, Jonathan A. O'Donnell, Frans-Jan W. Parmentier, Aleksi Räsänen, Christina Schädel, Oliver Sonnentag, Maria Strack, Suzanne E. Tank, Claire Treat, Ruth K. Varner, Tarmo Virtanen, Rebecca K. Warren, and Jennifer D. Watts
Earth Syst. Sci. Data, 13, 5127–5149, https://doi.org/10.5194/essd-13-5127-2021, https://doi.org/10.5194/essd-13-5127-2021, 2021
Short summary
Short summary
Wetlands, lakes, and rivers are important sources of the greenhouse gas methane to the atmosphere. To understand current and future methane emissions from northern regions, we need maps that show the extent and distribution of specific types of wetlands, lakes, and rivers. The Boreal–Arctic Wetland and Lake Dataset (BAWLD) provides maps of five wetland types, seven lake types, and three river types for northern regions and will improve our ability to predict future methane emissions.
Lina Teckentrup, Martin G. De Kauwe, Andrew J. Pitman, Daniel S. Goll, Vanessa Haverd, Atul K. Jain, Emilie Joetzjer, Etsushi Kato, Sebastian Lienert, Danica Lombardozzi, Patrick C. McGuire, Joe R. Melton, Julia E. M. S. Nabel, Julia Pongratz, Stephen Sitch, Anthony P. Walker, and Sönke Zaehle
Biogeosciences, 18, 5639–5668, https://doi.org/10.5194/bg-18-5639-2021, https://doi.org/10.5194/bg-18-5639-2021, 2021
Short summary
Short summary
The Australian continent is included in global assessments of the carbon cycle such as the global carbon budget, yet the performance of dynamic global vegetation models (DGVMs) over Australia has rarely been evaluated. We assessed simulations by an ensemble of dynamic global vegetation models over Australia and highlighted a number of key areas that lead to model divergence on both short (inter-annual) and long (decadal) timescales.
Lynsay Spafford and Andrew H. MacDougall
Geosci. Model Dev., 14, 5863–5889, https://doi.org/10.5194/gmd-14-5863-2021, https://doi.org/10.5194/gmd-14-5863-2021, 2021
Short summary
Short summary
Land biogeochemical cycles influence global climate change. Their influence is examined through complex computer models that account for the interaction of the land, ocean, and atmosphere. Improved models used in the recent round of model intercomparison used inconsistent validation methods to compare simulated land biogeochemistry to datasets. For the next round of model intercomparisons we recommend a validation protocol with explicit reference datasets and informative performance metrics.
Andrew H. MacDougall
Biogeosciences, 18, 4937–4952, https://doi.org/10.5194/bg-18-4937-2021, https://doi.org/10.5194/bg-18-4937-2021, 2021
Short summary
Short summary
Permafrost soils hold about twice as much carbon as the atmosphere. As the Earth warms the organic matter in these soils will decay, releasing CO2 and CH4. It is expected that these soils will continue to release carbon to the atmosphere long after man-made emissions of greenhouse gases cease. Here we use a method employing hundreds of slightly varying model versions to estimate how much warming permafrost carbon will cause after human emissions of CO2 end.
Gesa Meyer, Elyn R. Humphreys, Joe R. Melton, Alex J. Cannon, and Peter M. Lafleur
Biogeosciences, 18, 3263–3283, https://doi.org/10.5194/bg-18-3263-2021, https://doi.org/10.5194/bg-18-3263-2021, 2021
Short summary
Short summary
Shrub and sedge plant functional types (PFTs) were incorporated in the land surface component of the Canadian Earth System Model to improve representation of Arctic tundra ecosystems. Evaluated against 14 years of non-winter measurements, the magnitude and seasonality of carbon dioxide and energy fluxes at a Canadian dwarf-shrub tundra site were better captured by the shrub PFTs than by previously used grass and tree PFTs. Model simulations showed the tundra site to be an annual net CO2 source.
Wolfgang A. Obermeier, Julia E. M. S. Nabel, Tammas Loughran, Kerstin Hartung, Ana Bastos, Felix Havermann, Peter Anthoni, Almut Arneth, Daniel S. Goll, Sebastian Lienert, Danica Lombardozzi, Sebastiaan Luyssaert, Patrick C. McGuire, Joe R. Melton, Benjamin Poulter, Stephen Sitch, Michael O. Sullivan, Hanqin Tian, Anthony P. Walker, Andrew J. Wiltshire, Soenke Zaehle, and Julia Pongratz
Earth Syst. Dynam., 12, 635–670, https://doi.org/10.5194/esd-12-635-2021, https://doi.org/10.5194/esd-12-635-2021, 2021
Short summary
Short summary
We provide the first spatio-temporally explicit comparison of different model-derived fluxes from land use and land cover changes (fLULCCs) by using the TRENDY v8 dynamic global vegetation models used in the 2019 global carbon budget. We find huge regional fLULCC differences resulting from environmental assumptions, simulated periods, and the timing of land use and land cover changes, and we argue for a method consistent across time and space and for carefully choosing the accounting period.
Zichong Chen, Junjie Liu, Daven K. Henze, Deborah N. Huntzinger, Kelley C. Wells, Stephen Sitch, Pierre Friedlingstein, Emilie Joetzjer, Vladislav Bastrikov, Daniel S. Goll, Vanessa Haverd, Atul K. Jain, Etsushi Kato, Sebastian Lienert, Danica L. Lombardozzi, Patrick C. McGuire, Joe R. Melton, Julia E. M. S. Nabel, Benjamin Poulter, Hanqin Tian, Andrew J. Wiltshire, Sönke Zaehle, and Scot M. Miller
Atmos. Chem. Phys., 21, 6663–6680, https://doi.org/10.5194/acp-21-6663-2021, https://doi.org/10.5194/acp-21-6663-2021, 2021
Short summary
Short summary
NASA's Orbiting Carbon Observatory 2 (OCO-2) satellite observes atmospheric CO2 globally. We use a multiple regression and inverse model to quantify the relationships between OCO-2 and environmental drivers within individual years for 2015–2018 and within seven global biomes. Our results point to limitations of current space-based observations for inferring environmental relationships but also indicate the potential to inform key relationships that are very uncertain in process-based models.
Christian Seiler, Joe R. Melton, Vivek K. Arora, and Libo Wang
Geosci. Model Dev., 14, 2371–2417, https://doi.org/10.5194/gmd-14-2371-2021, https://doi.org/10.5194/gmd-14-2371-2021, 2021
Short summary
Short summary
This study evaluates how well the CLASSIC land surface model reproduces the energy, water, and carbon cycle when compared against a wide range of global observations. Special attention is paid to how uncertainties in the data used to drive and evaluate the model affect model skill. Our results show the importance of incorporating uncertainties when evaluating land surface models and that failing to do so may potentially misguide future model development.
Nadine Mengis, David P. Keller, Andrew H. MacDougall, Michael Eby, Nesha Wright, Katrin J. Meissner, Andreas Oschlies, Andreas Schmittner, Alexander J. MacIsaac, H. Damon Matthews, and Kirsten Zickfeld
Geosci. Model Dev., 13, 4183–4204, https://doi.org/10.5194/gmd-13-4183-2020, https://doi.org/10.5194/gmd-13-4183-2020, 2020
Short summary
Short summary
In this paper, we evaluate the newest version of the University of Victoria Earth System Climate Model (UVic ESCM 2.10). Combining recent model developments as a joint effort, this version is to be used in the next phase of model intercomparison and climate change studies. The UVic ESCM 2.10 is capable of reproducing changes in historical temperature and carbon fluxes well. Additionally, the model is able to reproduce the three-dimensional distribution of many ocean tracers.
Cited articles
Archer, D.: A data-driven model of the global calcite lysocline, Global
Biogeochem. Cy., 10, 511–526, 1996.
Arora, V. K., Boer, G. J., Friedlingstein, P., Eby, M., Jones, C. D.,
Christian, J. R., Bonan, G., Bopp, L., Brovkin, V., Cadule, P., Hajima, T.,
Ilyina, T., Lindsay, K., Tjiputra, J. F., and Wu, T.: Carbon-concentration
and carbon-climate feedbacks in CMIP5 earth system models, J. Climate, 26,
5289–5314, 2013.
Arora, V. K., Melton, J. R., and Plummer, D.: An assessment of natural methane fluxes simulated by the CLASS-CTEM model, Biogeosciences, 15, 4683–4709, https://doi.org/10.5194/bg-15-4683-2018, 2018.
Aselmann, I. and Crutzen, P. J.: Global distribution of natural freshwater
wetlands and rice paddies, their net primary productivity, seasonality and
possible methane emissions, J. Atmos. Chem., 8, 307–358, 1989.
Avis, C. A., Weaver, A. J., and Meissner, K. J.: Reduction in areal extent of
high-latitude wetlands in response to permafrost thaw, Nat. Geosci., 4,
444–448, 2011.
Barba, J., Bradford, M., Brewer, P., Bruhn, D., Covey, K., von Haren, J.,
Megonigal, J., Mikkelsen, T., Pangala, S., Pihlatie, M., Poulter, B.,
Rivas-Ubach, A., Schadt, C., Terazawa, K., Warner, D., Zhang, Z., and Vargas,
R.: Methane emissions from tree stems: a new frontier in the global carbon
cycle, New Phytol., 222, 18–28, 2019.
Blazewicz, S. J., Petersen, D. G., Waldrop, M. P., and Firestone, M. K.:
Anaerobic oxidation of methane in tropical and boreal soils: Ecological
significance in terrestrial methane cycling, J. Geophys. Res.-Biogeo., 117, 1–9, 2012.
Blodau, C.: Carbon cycling in peatlands – A review of processes and
controls, Environ. Rev., 10, 111–134, 2002.
Blodau, C., Basiliko, N., and Moore, T. R.: Carbon turnover in peatland
mesocosms exposed to different water table levels, Biogeochemistry, 67,
331–351, 2004.
Bloom, A. A., Bowman, K. W., Lee, M., Turner, A. J., Schroeder, R., Worden, J. R., Weidner, R., McDonald, K. C., and Jacob, D. J.: A global wetland methane emissions and uncertainty dataset for atmospheric chemical transport models (WetCHARTs version 1.0), Geosci. Model Dev., 10, 2141–2156, https://doi.org/10.5194/gmd-10-2141-2017, 2017.
Bohn, T. J., Melton, J. R., Ito, A., Kleinen, T., Spahni, R., Stocker, B. D., Zhang, B., Zhu, X., Schroeder, R., Glagolev, M. V., Maksyutov, S., Brovkin, V., Chen, G., Denisov, S. N., Eliseev, A. V., Gallego-Sala, A., McDonald, K. C., Rawlins, M. A., Riley, W. J., Subin, Z. M., Tian, H., Zhuang, Q., and Kaplan, J. O.: WETCHIMP-WSL: intercomparison of wetland methane emissions models over West Siberia, Biogeosciences, 12, 3321–3349, https://doi.org/10.5194/bg-12-3321-2015, 2015.
Bridgham, S. D., Cadillo-Quiroz, H., Keller, J. K., and Zhuang, Q.: Methane
emissions from wetlands: biogeochemical, microbial, and modeling
perspectives from local to global scales, Glob. Chang. Biol., 19,
1325–1346, 2013.
Brune, A., Frenzel, P., and Cypionka, H.: Life at the oxic-anoxic interface:
microbial activities and adaptations, FEMS Microbiol. Rev., 24, 691–710,
2000.
Cadillo-Quiroz, H., Bräuer, S., Yashiro, E., Sun, C., Yavitt, J., and
Zinder, S.: Vertical profiles of methanogenesis and methanogens in two
contrasting acidic peatlands in central New York State, USA, Environ.
Microbiol., 8, 1428–1440, 2006.
Chen, Y. and Murrell, J. C.: Methanotrophs in moss, Nature, 3, 595–596,
2010.
Comyn-Platt, E., Hayman, G., Huntingford, C., Chadburn, S. E., Burke, E. J.,
Harper, A. B., Collins, W. J., Webber, C. P., Powell, T., Cox, P. M.,
Gedney, N., and Sitch, S.: Carbon budgets for 1.5 and 2∘ C targets
lowered by natural wetland and permafrost feedbacks, Nat. Geosci., 11,
568–573, 2018.
Conrad, R.: The global methane cycle: Recent advances in understanding the
microbial processes involved, Environ. Microbiol. Rep., 1, 285–292, 2009.
Couwenberg, J., Dommain, R., and Joosten, H.: Greenhouse gas fluxes from
tropical peatlands in south-east Asia, Glob. Chang. Biol., 16, 1715–1732,
2010.
Cox, P. M.: Description of the “TRIFFID” Dynamic Global Vegetation Model, UK Met Office, Exeter, UK, Hadley Centre technical note 24, 17 pp., 2001.
Dargie, G. C., Lewis, S. L., Lawson, I. T., Mitchard, E. T. A., Page, S. E.,
Bocko, Y. E., and Ifo, S. A.: Age, extent and carbon storage of the central
Congo Basin peatland complex, Nature, 542, 86–90, 2017.
Dean, J. F., Middelburg, J. J., Röckmann, T., Aerts, R., Blauw, L. G.,
Egger, M., Jetten, M. S. M., de Jong, A. E. E., Meisel, O. H., Rasigraf, O.,
Slomp, C. P., in't Zandt, M., and Dolman, A. J.: Methane feedbacks to the
global climate system in a warmer world, Rev. Geophys., 56, 207–250, 2018.
Dunfield, P., Knowles, R., Dumont, R., and Moore, T. R.: Methane production
and consumption in temperate and subarctic peat soils: Response to
temperature and pH, Soil Biol. Biogeochem., 25, 321–326, 1993.
Duval, T. and Radu, D.: Effect of temperature and soil organic matter
quality on greenhouse gas production from temperate poor and rich fen soils,
Ecol. Eng., 114, 167–172, 2018.
Eby, M., Zickfeld, K., Montenegro, A., Archer, D., Meissner, K. J., and
Weaver, A. J.: Lifetime of anthropogenic climate change: Millennial time
scales of potential CO2 and surface temperature perturbations, J. Climate, 22,
2501–2511, 2009.
Eliseev, A. V., Mokhov, I. I., Arzhanov, M. M., Demchenko, P. F., and
Denisov, S. N.: Interaction of the methane cycle and processes in wetland
ecosystems in a climate model of intermediate complexity, Atmos. Ocean.
Phys., 44, 147–162, 2008.
Estop-Aragonés, C., Knorr, K.-H., and Blodau, C.: Controls on in situ
oxygen and dissolved inorganic carbon dynamics in peats of a temperate fen,
J. Geophys. Res., 117, G02002, https://doi.org/10.1029/2011JG001888, 2012.
Frolking, S., Roulet, N. T., Moore, T. R., Lafleur, P. M., Bubier, J. L., and
Crill, P. M.: Modeling seasonal to annual carbon balance of Mer Bleue Bog,
Ontario, Canada, Global Biogeochem. Cy., 16, 1–21, 2002.
Gauthier, M., Bradley, R., and Šimek, M.: More evidence that anaerobic
oxidation of methane is prevalent in soils: Is it time to upgrade our
biogeochemical models?, Soil Biol. Biochem., 80, 167–174, 2015.
Gedney, N. and Cox, P. M.: The sensitivity of global climate model
simulations to the representation of soil moisture heterogeneity, J.
Hydrometeorol., 4, 1265–1275, 2003.
Gedney, N., Cox, P. M., and Huntingford, C.: Climate feedback from wetland
methane emissions, Geophys. Res. Lett., 31, L20503, https://doi.org/10.1029/2004GL020919, 2004.
Gedney, N., Huntingford, C., Comyn-Platt, E., and Wiltshire, A.: Significant
feedbacks of wetland methane release on climate change and the causes of
their uncertainty, Environ. Res. Lett., 14, 084027, https://doi.org/10.1088/1748-9326/ab2726, 2019.
Girkin, N. T., Turner, B. L., Ostle, N., Craigon, J., and Sjögersten, S.:
Root exudate analogues accelerate CO2 and CH4 production in tropical peat, Soil Biol. Biochem., 117, 48–55, 2018.
Glagolev, M., Kleptsova, I., Filippov, I., Maksyutov, S., and Machida, T.:
Regional methane emission from West Siberia mire landscapes, Environ. Res.
Lett., 6, 045214, https://doi.org/10.1088/1748-9326/6/4/045214, 2011.
Grant, R. F.: Simulation of methanogenesis in the mathematical model ecosys,
Soil Biol. Biochem., 30, 883–896, 1998.
Gumbricht, T., Roman-Cuesta, R., Verchot, L., Herold, M., Wittmann, F.,
Householder, E., Herold, N., and Murdiyarso, D.: An expert system model for
mapping tropical wetlands and peatlands reveals South America as the largest
contributor, Glob. Chang. Biol., 23, 3581–3599, 2016.
Hegarty, T.: Temperature coefficient (Q10), seed germination and other
biological processes, Nature, 243, 305–306, 1973.
Helbig, M., Quinton, W. L., and Sonnentag, O.: Warmer spring conditions
increase annual methane emissions from a boreal peat landscape with sporadic
permafrost, Environ. Res. Lett., 12, 115009, https://doi.org/10.1088/1748-9326/aa8c85, 2017.
Hodson, E. L., Poulter, B., Zimmermann, N. E., Prigent, C., and Kaplan, J.
O.: The El Nino-Southern Oscillation and wetland methane interannual
variability, Geophys. Res. Lett., 38, L08810, https://doi.org/10.1029/2011GL046861, 2011.
Hoehler, T. and Alperin, M.: Methane minimalism, Nature, 507, 436–437,
2014.
Hoehler, T. M., Alperin, M. J., Albert, D. B., and Martens, C. S.: Field and
laboratory studies of methane oxidation in an anoxic marine sediment:
Evidence for a methanogen-sulfate reducer consortium, Global Biogeochem. Cy., 8, 451–463, 1994.
Hopcroft, P. O., Valdes, P. J., and Beerling, D. J.: Simulating idealized
Dansgaard-Oeschger events and their potential impacts on the global methane
cycle, Quat. Sci. Rev., 30, 3258–3268, 2011.
Hu, H., Landgraf, J., Detmers, R., Borsdorff, T., Aan de Brugh, J., Aben,
I., Butz, A., and Hasekamp, O.: Toward global mapping of methane with
TROPOMI: First results and intersatellite comparison to GOSAT, Geophys. Res.
Lett., 45, 3682–3689, 2018.
Jauhiainen, J., Takahashi, H., Heikkinen, J. E. P., Martikainen, P. J., and
Vasander, H.: Carbon fluxes from a tropical peat swamp forest floor, Glob.
Chang. Biol., 11, 1788–1797, 2005.
Kim, Y.: Effect of thaw depth on fluxes of CO2 and CH4 in manipulated Arctic
coastal tundra of Barrow, Alaska, Sci. Total Environ., 505, 385–389, 2015.
Kirschke, S., Bousquet, P., Ciais, P., Saunois, M., Canadell, J. G.,
Dlugokencky, E. J., Bergamaschi, P., Bergmann, D., Blake, D. R., Bruhwiler,
L., Cameron-Smith, P., Castaldi, S., Chevallier, F., Feng, L., Fraser, A.,
Heimann, M., Hodson, E. L., Houweling, S., Josse, B., Fraser, P. J.,
Krummel, P. B., Lamarque, J.-F., Langenfelds, R. L., Le Quéré, C.,
Naik, V., Palmer, P. I., Pison, I., Plummer, D., Poulter, B., Prinn, R. G.,
Rigby, M., Ringeval, B., Santini, M., Schmidt, M., Shindell, D. T., Simpson,
I. J., Spahni, R., Paul Steele, L., Strode, S. A., Sudo, K., Szopa, S., Van
der Werf, G. R., Voulgarakis, A., Van Weele, M., Weiss, R. F., Williams, J.
E., and Zeng, G.: Three decades of global methane sources and sinks, Nat.
Geosci., 6, 813–823, 2013.
Koven, C. D., Ringeval, B., Friedlingstein, P., Ciais, P., Cadule, P.,
Khvorostyanov, D., Krinner, G., and Tarnocai, C.: Permafrost carbon-climate
feedbacks accelerate global warming, Proc. Natl. Acad. Sci. USA, 108,
14769–14774, 2011.
Koven, C. D., Lawrence, D. M., and Riley, W. J.: Permafrost carbon-climate
feedback is sensitive to deep soil carbon decomposability but not deep soil
nitrogen dynamics, Proc. Natl. Acad. Sci. USA, 112, 3752–3757, 2015.
Kwon, M., Jung, J., Tripathi, B., Göckede, M., Lee, Y., and Kim, M.:
Dynamics of microbial communities and CO2 and CH4 fluxes in the tundra ecosystems of the changing Arctic, J. Microbiol., 57, 325–336, 2019.
Le Mer, J. and Roger, P.: Production, oxidation, emission and consumption of
methane by soils: A review, Eur. J. Soil Biol., 37, 25–50, 2001.
Loulergue, L., Schilt, A., Spahni, R., Masson-Delmotte, V., Blunier, T.,
Lemieux, B., Barnola, J., Raynaud, D., Stocker, T., and Chappellaz, J.:
Orbital and millennial-scale features of atmospheric CH4 over the past
800,000 years, Nature, 453, 383–386, 2008.
Lovley, D. R. and Klug, M. J.: Model for the distribution of sulfate
reduction and methanogenesis in freshwater sediments, Geochim. Cosmochim.
Acta, 50, 11–18, 1986.
Lupascu, M., Wadham, E. R. C., and Pancost, R. D.: Temperature sensitivity of
methane production in the permafrost active layer at Stordalen, Sweden: A
comparison with non-permafrost northern wetlands, Arctic, Antarct. Alp.
Res., 44, 469–482, 2012.
MacDougall, A. H. and Knutti, R.: Projecting the release of carbon from permafrost soils using a perturbed parameter ensemble modelling approach, Biogeosciences, 13, 2123–2136, https://doi.org/10.5194/bg-13-2123-2016, 2016.
MacDougall, A. H., Avis, C. A., and Weaver, A. J.: Significant contribution
to climate warming from the permafrost carbon feedback, Nat. Geosci., 5,
719–721, 2012.
Mastepanov, M., Sigsgaard, C., Tagesson, T., Ström, L., Tamstorf, M. P., Lund, M., and Christensen, T. R.: Revisiting factors controlling methane emissions from high-Arctic tundra, Biogeosciences, 10, 5139–5158, https://doi.org/10.5194/bg-10-5139-2013, 2013.
Matthews, H. D., Weaver, A. J., Meissner, K. J., Gillett, N. P., and Eby, M.:
Natural and anthropogenic climate change: Incorporating historical land
cover change, vegetation dynamics and the global carbon cycle, Clim. Dyn.,
22, 461–479, 2004.
McCalley, C. K., Woodcroft, B. J., Hodgkins, S. B., Wehr, R. A., Kim, E.-H.,
Mondav, R., Crill, P. M., Chanton, J. P., Rich, V. I., Tyson, G. W., and
Saleska, S. R.: Methane dynamics regulated by microbial community response
to permafrost thaw, Nature, 514, 478–481, 2014.
Meissner, K. J., Weaver, A. J., Matthews, H. D., and Cox, P. M.: The role of
land surface dynamics in glacial inception: A study with the UVic Earth
System Model, Clim. Dyn., 21, 515–537, 2003.
Melton, J. R., Wania, R., Hodson, E. L., Poulter, B., Ringeval, B., Spahni, R., Bohn, T., Avis, C. A., Beerling, D. J., Chen, G., Eliseev, A. V., Denisov, S. N., Hopcroft, P. O., Lettenmaier, D. P., Riley, W. J., Singarayer, J. S., Subin, Z. M., Tian, H., Zürcher, S., Brovkin, V., van Bodegom, P. M., Kleinen, T., Yu, Z. C., and Kaplan, J. O.: Present state of global wetland extent and wetland methane modelling: conclusions from a model inter-comparison project (WETCHIMP), Biogeosciences, 10, 753–788, https://doi.org/10.5194/bg-10-753-2013, 2013.
Metje, M. and Frenzel, P.: Methanogenesis and methanogenic pathways in a
peat from subarctic permafrost, Environ. Microbiol., 9, 954–964, 2007.
Miller, S. M., Worthy, D. E. J., Michalak, A. M., Wofsy, S. C., Kort, E. A.,
Havice, T. C., Andrews, A. E., Dlugokencky, E. J., Kaplan, J. O., Levi, P.
J., Tian, H., and Zhang, B.: Observational constraints on the distribution,
seasonality, and environmental predictors of North American boreal methane
emissions, Global Biogeochem. Cy., 28, 146–160, 2014.
Mitsch, W. and Mander, Ü.: Wetlands and carbon revisited, Ecol. Eng.,
114, 1–6, 2018.
Moore, T. and Roulet, N.: Methane flux: Water table relations in northern
wetlands, Geophys. Res. Lett., 20, 587–590, 1993.
Moosavi, S. and Crill, P.: CH4 oxidation by tundra wetlands as measured by a selective inhibitor technique, J. Geophys. Res.-Atmos., 103, 29093–29106, 1998.
Nzotungicimpaye, C.: WETMETH: A new wetland methane model for implementation in Earth system models, Federated Research Data Repository [data set], https://doi.org/10.20383/101.0215, 2021.
Nzotungicimpaye, C.-M. and Zickfeld, K.: The contribution from methane to
the permafrost carbon feedback, Curr. Clim. Chang. Reports, 3, 58–68, 2017.
Nzotungicimpaye, C.-M. and Zickfeld, K.: The first version of WETMETH, a
model for wetland methane emissions (WETMETH 1.0), Zenodo [code],
https://doi.org/10.5281/zenodo.4066112, 2020.
O'Connor, F. M., Boucher, O., Gedney, N., Jones, C. D., Folberth, G. A.,
Coppell, R., Friedlingstein, P., Collins, W. J., Chappellaz, J., Ridley, J., and Johnson, C. E.: Possible role of wetlands, permafrost, and methane
hydrates in the methane cycle under future climate change: A review, Rev.
Geophys., 48, RG4005, https://doi.org/10.1029/2010RG000326, 2010.
Olefeldt, D., Turetsky, M. R., Crill, P. M., and McGuire, A. D.:
Environmental and physical controls on northern terrestrial methane
emissions across permafrost zones, Glob. Chang. Biol., 19, 589–603, 2013.
Orr, J. C.: On ocean carbon-cycle model comparison, Tellus B, 51, 509–510,
1999.
Pandey, S., Houweling, S., Krol, M., Aben, I., Monteil, G., Nechita-Banda,
N., Dlugokencky, E. J., Detmers, R., Hasekamp, O., Xu, X., Riley, W. J.,
Poulter, B., Zhang, Z., McDonald, K. C., White, J. W. C., Bousquet, P., and
Röckmann, T.: Enhanced methane emissions from tropical wetlands during
the 2011 La Niña, Sci. Rep., 7, 45759, https://doi.org/10.1038/srep45759, 2017.
Pangala, S. R., Enrich-Prast, A., Basso, L. S., Peixoto, R. B., Bastviken,
D., Hornibrook, E. R. C., Gatti, L. V., Ribeiro, H., Calazans, L. S. B.,
Sakuragui, C. M., Bastos, W. R., Malm, O., Gloor, E., Miller, J. B., and
Gauci, V.: Large emissions from floodplains trees close the Amazon methane
budget, Nature, 522, 230–234, 2017.
Panikov, N. S. and Dedysh, S. N.: Cold season CH4 and CO2 emission from
boreal peat bogs (West Siberia): Winter fluxes and thaw activation dynamics,
Global Biogeochem. Cy., 14, 1071–1080, 2000.
Papa, F., Prigent, C., Aires, F., Jimenez, C., Rossow, W. B., and Matthews,
E.: Interannual variability of surface water extent at the global scale,
1993-2004, J. Geophys. Res.-Atmos., 115, D12111, https://doi.org/10.1029/2009JD012674, 2010.
Paudel, R., Mahowald, N. M., Hess, P. G. M., Meng, L., and Riley, W. J.:
Attribution of changes in global wetland methane emissions from
pre-industrial to present using CLM4.5-BGC, Environ. Res. Lett., 11, 034020, https://doi.org/10.1088/1748-9326/11/3/034020, 2016.
Peltola, O., Vesala, T., Gao, Y., Räty, O., Alekseychik, P., Aurela, M., Chojnicki, B., Desai, A. R., Dolman, A. J., Euskirchen, E. S., Friborg, T., Göckede, M., Helbig, M., Humphreys, E., Jackson, R. B., Jocher, G., Joos, F., Klatt, J., Knox, S. H., Kowalska, N., Kutzbach, L., Lienert, S., Lohila, A., Mammarella, I., Nadeau, D. F., Nilsson, M. B., Oechel, W. C., Peichl, M., Pypker, T., Quinton, W., Rinne, J., Sachs, T., Samson, M., Schmid, H. P., Sonnentag, O., Wille, C., Zona, D., and Aalto, T.: Monthly gridded data product of northern wetland methane emissions based on upscaling eddy covariance observations, Earth Syst. Sci. Data, 11, 1263–1289, https://doi.org/10.5194/essd-11-1263-2019, 2019.
Pickett-Heaps, C. A., Jacob, D. J., Wecht, K. J., Kort, E. A., Wofsy, S. C., Diskin, G. S., Worthy, D. E. J., Kaplan, J. O., Bey, I., and Drevet, J.: Magnitude and seasonality of wetland methane emissions from the Hudson Bay Lowlands (Canada), Atmos. Chem. Phys., 11, 3773–3779, https://doi.org/10.5194/acp-11-3773-2011, 2011.
Poindexter, C. M., Baldocchi, D. D., Matthes, J. H., Knox, S. H., and
Variano, E. A.: The contribution of an overlooked transport process to a
wetland's methane emissions, Geophys. Res. Lett., 43, 6276–6284, 2016.
Poulter, B., Bousquet, P., Canadell, J. G., Ciais, P., Peregon, A., Saunois,
M., Arora, V. K., Beerling, D. J., Brovkin, V., Jones, C. D., Joos, F.,
Gedney, N., Ito, A., Kleinen, T., Koven, C. D., McDonald, K., Melton, J. R.,
Peng, C., Peng, S., Prigent, C., Schroeder, R., Riley, W. J., Saito, M.,
Spahni, R., Tian, H., Taylor, L., Viovy, N., Wilton, D., Wiltshire, A., Xu,
X., Zhang, B., Zhang, Z., and Zhu, Q.: Global wetland contribution to
2000–2012 atmospheric methane growth rate dynamics, Environ. Res. Lett., 12,
094013, https://doi.org/10.1088/1748-9326/aa8391, 2017.
Prigent, C., Matthews, E., Aires, F., and Rossow, W. B.: Remote sensing of
global wetland dynamics with multiple satellite data sets, Geophys. Res.
Lett., 28, 4631–4634, 2001.
Prigent, C., Papa, F., Aires, F., Rossow, W. B., and Matthews, E.: Global
inundation dynamics inferred from multiple satellite observations,
1993-2000, J. Geophys. Res.-Atmos., 112, D12107, https://doi.org/10.1029/2006JD007847, 2007.
Prigent, C., Papa, F., Aires, F., Jiménez, C., Rossow, W. B., and
Matthews, E.: Changes in land surface water dynamics since the 1990s and
relation to population pressure, Geophys. Res. Lett., 39, L08403, https://doi.org/10.1029/2012GL051276, 2012.
Reeburgh, W.: Methane consumption in Cariaco Trench waters and sediments,
Earth Planet. Sci. Lett., 28, 337–344, 1976.
Rhodes, R. H., Brook, E. J., McConnell, J. R., Blunier, T., Sime, L. C.,
Faïn, X., and Mulvaney, R.: Atmospheric methane variability:
Centennial-scale signals in the Last Glacial Period, Global Biogeochem.
Cy., 31, 575–590, 2017.
Riley, W. J., Subin, Z. M., Lawrence, D. M., Swenson, S. C., Torn, M. S., Meng, L., Mahowald, N. M., and Hess, P.: Barriers to predicting changes in global terrestrial methane fluxes: analyses using CLM4Me, a methane biogeochemistry model integrated in CESM, Biogeosciences, 8, 1925–1953, https://doi.org/10.5194/bg-8-1925-2011, 2011.
Ringeval, B., Friedlingstein, P., Koven, C., Ciais, P., de Noblet-Ducoudré, N., Decharme, B., and Cadule, P.: Climate-CH4 feedback from wetlands and its interaction with the climate-CO2 feedback, Biogeosciences, 8, 2137–2157, https://doi.org/10.5194/bg-8-2137-2011, 2011.
Rivkina, E., Laurinavichius, K., McGrath, J., Tiedje, J., Shcherbakova, V., and Gilichinsky, D.: Microbial life in permafrost, Adv. Sp. Res., 33,
1215–1221, 2004.
Rogelj, J., Forster, P. M., Kriegler, E., Smith, C. J., and Séférian,
R.: Estimating and tracking the remaining carbon budget for stringent
climate targets, Nature, 571, 335–342, 2019.
Roslev, P. and King, G.: Regulation of methane oxidation in a freshwater
wetland by water table changes and anoxia, FEMS Microbiol. Ecol., 19,
105–115, 1996.
Schipper, L. A., Hobbs, J. K., Rutledge, S., and Arcus, V. L.: Thermodynamic
theory explains the temperature optima of soil microbial processes and high
Q10 values at low temperatures, Glob. Chang. Biol., 20, 3578–3586, 2014.
Schmittner, A., Oschlies, A., Matthews, H. D., and Galbraith, E. D.: Future
changes in climate, ocean circulation, ecosystems, and biogeochemical
cycling simulated for a business-as-usual CO2 emission scenario until year 4000 AD, Global Biogeochem. Cy., 22, GB1013, https://doi.org/10.1029/2007GB002953, 2008.
Schneider von Deimling, T., Meinshausen, M., Levermann, A., Huber, V., Frieler, K., Lawrence, D. M., and Brovkin, V.: Estimating the near-surface permafrost-carbon feedback on global warming, Biogeosciences, 9, 649–665, https://doi.org/10.5194/bg-9-649-2012, 2012.
Schneider von Deimling, T., Grosse, G., Strauss, J., Schirrmeister, L., Morgenstern, A., Schaphoff, S., Meinshausen, M., and Boike, J.: Observation-based modelling of permafrost carbon fluxes with accounting for deep carbon deposits and thermokarst activity, Biogeosciences, 12, 3469–3488, https://doi.org/10.5194/bg-12-3469-2015, 2015.
Schuur, E. A. G., McGuire, A. D., Schädel, C., Grosse, G., Harden, J.
W., Hayes, D. J., Hugelius, G., Koven, C. D., Kuhry, P., Lawrence. D. M.,
Natali, S. M., Olefeldt, D., Romanovsky, V. E., Schaefer, K., Turetsky, M.
R., Treat, C. C., and Vonk, J. E.: Climate change and the permafrost carbon
feedback, Nature, 520, 171–179, 2015.
Segers, R.: Methane production and methane consumption: A review of
processes underlying wetland methane fluxes, Biogeochemistry, 41, 23–51,
1998.
Shindell, D. T., Walter, B. P., and Faluvegi, G.: Impacts of climate change
on methane emissions from wetlands, Geophys. Res. Lett., 31, L21202, https://doi.org/10.1029/2004GL021009, 2004.
Singleton, C. M., McCalley, C. K., Woodcroft, B. J., Boyd, J. A., Evans, P.
N., Hodgkins, S. B., Chanton, J. P., Frolking, S., Crill, P. M., Saleska, S.
R., Rich, V. I., and Tyson, G. W.: Methanotrophy across a natural permafrost
thaw environment, ISME J., 12, 2544–2558, 2018.
Sjögersten, S., Black, C., Evers, S., Hoyos-Santillan, J., Wright, E., and Turner, B.: Tropical wetlands: A missing link in the global carbon
cycle?, Global Biogeochem. Cy., 28, 1371–1386, 2014.
Sjögersten, S., Aplin, P., Gauci, V., Peacock, M., Siegenthaler, A., and
Turner, B. L.: Temperature response of ex-situ greenhouse gas emissions from
tropical peatlands: Interactions between forest type and peat moisture
conditions, Geoderma, 324, 47–55, 2018.
Smemo, K. A. and Yavitt, J. B.: Anaerobic oxidation of methane: an underappreciated aspect of methane cycling in peatland ecosystems?, Biogeosciences, 8, 779–793, https://doi.org/10.5194/bg-8-779-2011, 2011.
Song, C., Xu, X., Sun, X., Tian, H., Sun, L., Miao, Y., Wang, X., and Guo,
Y.: Large methane emission upon spring thaw from natural wetlands in the
northern permafrost region, Environ. Res. Lett., 7, 034009, https://doi.org/10.1088/1748-9326/7/3/034009, 2012.
Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An overview of CMIP5 and
the experiment design, Bull. Am. Meteorol. Soc., 93, 485–498, 2012.
Thompson, R. L., Sasakawa, M., Machida, T., Aalto, T., Worthy, D., Lavric, J. V., Lund Myhre, C., and Stohl, A.: Methane fluxes in the high northern latitudes for 2005–2013 estimated using a Bayesian atmospheric inversion, Atmos. Chem. Phys., 17, 3553–3572, https://doi.org/10.5194/acp-17-3553-2017, 2017.
Thornton, B., Wik, M., and Crill, P. M.: Double-counting challenges the
accuracy of high-latitude methane inventories, Geophys. Res. Lett., 43,
12569–12577, 2016.
Tokarska, K. and Gillett, N.: Cumulative carbon emissions budgets consistent
with 1.5∘ C global warming, Nat. Clim. Chang., 8, 296–299, 2018.
Tootchi, A., Jost, A., and Ducharne, A.: Multi-source global wetland maps combining surface water imagery and groundwater constraints, Earth Syst. Sci. Data, 11, 189–220, https://doi.org/10.5194/essd-11-189-2019, 2019.
Treat, C. C., Natali, S. M., Ernakovich, J., Iversen, C. M., Lupascu, M.,
McGuire, A. D., Norby, R. J., Roy Chowdhury, T., Richter, A., Santruckova,
H., Schädel, C., Schuur, E. A. G., Sloan, V. L., Turetsky, M. R., and
Waldrop, M. P.: A pan-Arctic synthesis of CH4 and CO2 production from anoxic soil incubations, Glob. Chang. Biol., 21, 2787–2803, 2015.
Treat, C. C., Bloom, A. A., and Marushchak, M. E.: Nongrowing season methane
emissions–a significant component of annual emissions across northern
ecosystems, Glob. Chang. Biol., 24, 3331–3343, 2018.
Walz, J., Knoblauch, C., Böhme, L., and Pfeiffer, E. M.: Regulation of
soil organic matter decomposition in permafrost-affected Siberian tundra
soils – Impact of oxygen availability, freezing and thawing, temperature,
and labile organic matter, Soil Biol. Biochem., 110, 34–43, 2017.
Wania, R., Ross, I., and Prentice, I. C.: Integrating peatlands and
permafrost into a dynamic global vegetation model: 1. Evaluation and
sensitivity of physical land surface processes, Global Biogeochem. Cy.,
23, GB3014, 2009.
Wania, R., Ross, I., and Prentice, I. C.: Implementation and evaluation of a new methane model within a dynamic global vegetation model: LPJ-WHyMe v1.3.1, Geosci. Model Dev., 3, 565–584, https://doi.org/10.5194/gmd-3-565-2010, 2010.
Wania, R., Melton, J. R., Hodson, E. L., Poulter, B., Ringeval, B., Spahni, R., Bohn, T., Avis, C. A., Chen, G., Eliseev, A. V., Hopcroft, P. O., Riley, W. J., Subin, Z. M., Tian, H., van Bodegom, P. M., Kleinen, T., Yu, Z. C., Singarayer, J. S., Zürcher, S., Lettenmaier, D. P., Beerling, D. J., Denisov, S. N., Prigent, C., Papa, F., and Kaplan, J. O.: Present state of global wetland extent and wetland methane modelling: methodology of a model inter-comparison project (WETCHIMP), Geosci. Model Dev., 6, 617–641, https://doi.org/10.5194/gmd-6-617-2013, 2013.
Weaver, A. J., Eby, M., Wiebe, E. C., Bitz, C. M., Duffy, P. B., Ewen, T.
L., Fanning, A. F., Holland, M. M., MacFayden, A., Matthews, H. D.,
Meissner, K. J., Saenko, O., Schmittner, A., Wang, H., and Yoshimori, M.: The
UVic Earth System Climate Model: Model description, climatology, and
applications to past, present and future climates, Atmos.-Ocean, 39,
361–428, 2001.
Whalen, S. C.: Biogeochemistry of methane exchange between natural wetlands
and the atmosphere, Environ. Eng. Sci., 22, 73–94, 2005.
Wheeler, B. D.: Water and plants in freshwater wetlands, in: Eco-Hydrology,
edited by: Baird, A. J. and Wilby, R. L., Routledge, London, UK, 127–180,
1999.
Whiticar, M. J. and Faber, E.: Methane oxidation in sediment and water
column environments-Isotope evidence, Adv. Org. Geochemistry, 10, 759–768,
1985.
Wild, B., Gentsch, N., Čapek, P., Diáková, K., Alves, R. J. E.,
Bárta, J., Gittel, A., Hugelius, G., Knoltsch, A., Kuhry, P.,
Lashchinskiy, N., Mikutta, R., Palmtag, J., Schleper, C., Schnecker, J.,
Shibistova, O., Takriti, M., Torsvik, V. L., Urich, T., Watzka, M.,
Šantrůčková, H., Guggenberger, G., and Richter, A.:
Plant-derived compounds stimulate the decomposition of organic matter in
arctic permafrost soils, Sci. Rep., 6, 25607, https://doi.org/10.1038/srep25607, 2016.
Wu, Y., Verseghy, D. L., and Melton, J. R.: Integrating peatlands into the coupled Canadian Land Surface Scheme (CLASS) v3.6 and the Canadian Terrestrial Ecosystem Model (CTEM) v2.0, Geosci. Model Dev., 9, 2639–2663, https://doi.org/10.5194/gmd-9-2639-2016, 2016.
Xu, X., Elias, D. A., Graham, D. E., Phelps, T. J., Carroll, S. L.,
Wullschleger, S. D., and Thornton, P. E.: A microbial functional group-based
module for simulating methane production and consumption: Application to an
incubated permafrost soil, J. Geophys. Res.-Biogeo., 120,
1315–1333, 2015.
Xu, X., Yuan, F., Hanson, P. J., Wullschleger, S. D., Thornton, P. E., Riley, W. J., Song, X., Graham, D. E., Song, C., and Tian, H.: Reviews and syntheses: Four decades of modeling methane cycling in terrestrial ecosystems, Biogeosciences, 13, 3735–3755, https://doi.org/10.5194/bg-13-3735-2016, 2016.
Yvon-Durocher, G., Allen, A. P., Bastviken, D., Conrad, R., Gudasz, C.,
St-Pierre, A., Thanh-Duc, N., and Del Giorgio, P. A.: Methane fluxes show
consistent temperature dependence across microbial to ecosystem scales,
Nature, 507, 488–491, 2014.
Zalman, C. A., Meade, N., Chanton, J., Kostka, J. E., Bridgham, S. D., and
Keller, J. K.: Methylotrophic methanogenesis in sphagnum-dominated peatland
soils, Soil Biol. Biochem., 118, 156–160, 2018.
Zhang, B., Tian, H., Lu, C., Chen, G., Pan, S., Anderson, C., and Poulter,
B.: Methane emissions from global wetlands: An assessment of the uncertainty
associated with various wetland extent data sets, Atmos. Environ., 165,
310–321, 2017.
Zhang, Z., Zimmermann, N. E., Stenke, A., Li, X., Hodson, E. L., Zhu, G.,
Huang, C., and Poulter, B.: Emerging role of wetland methane emissions in
driving 21st century climate change, Proc. Natl. Acad. Sci. USA, 114,
9647–9652, 2017.
Zhang, Z., Zimmermann, N. E., Calle, L., Hurtt, G., Chatterjee, A., and
Poulter, B.: Enhanced response of global wetland methane emissions to the
2015–2016 El Niño-Southern Oscillation event, Environ. Res. Lett., 13,
074009, https://doi.org/10.1088/1748-9326/aac939, 2018.
Zhu, Q., Peng, C., Chen, H., Fang, X., Liu, J., Jiang, H., Yang, Y., and
Yang, G.: Estimating global natural wetland methane emissions using process
modelling: spatio-temporal patterns and contributions to atmospheric methane
fluctuations, Glob. Ecol. Biogeogr., 24, 959–972, 2015.
Zickfeld, K., Eby, M., Matthews, H. D., and Weaver, A. J.: Setting cumulative
emissions targets to reduce the risk of dangerous climate change,
Proc. Natl. Acad. Sci. USA, 106, 16129–16134, 2009.
Zona, D., Gioli, B., Commane, R., Lindaas, J., Wofsy, S. C., Miller, C. E.,
Dinardo, S. J., Dengel, S., Sweeney, C., Karion, A., Chang, R. Y.-W.,
Henderson, J. M., Murphy, P. C., Goodrich, J. P., Moreaux, V., Liljedahl,
A., Watts, J. D., Kimball, J. S., Lipson, D. A., and Oechel, W. C.: Cold
season emissions dominate the Arctic tundra methane budget, Proc. Natl. Acad. Sci. USA, 113, 40–45, 2016.
Short summary
In this paper, we describe a new wetland methane model (WETMETH) developed for use in Earth system models. WETMETH consists of simple formulations to represent methane production and oxidation in wetlands. We also present an evaluation of the model performance as embedded in the University of Victoria Earth System Climate Model (UVic ESCM). WETMETH is capable of reproducing mean annual methane emissions consistent with present-day estimates from the regional to the global scale.
In this paper, we describe a new wetland methane model (WETMETH) developed for use in Earth...